1
|
Xu Q, Zhang X, Zhao R, Li S, Liesche J. UBIQUITIN-CONJUGATING ENZYME34 mediates pyrophosphatase AVP1 turnover and regulates abiotic stress responses in Arabidopsis. PLANT PHYSIOLOGY 2025; 197:kiaf015. [PMID: 39797907 PMCID: PMC11809586 DOI: 10.1093/plphys/kiaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton-pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana). Through in vitro and in vivo assays, we established that UBC34 interacts with and ubiquitylates AVP1. Mutant lines in which UBC34 was downregulated showed higher tolerance to salt and low inorganic phosphate (Pi) stresses, while we observed the opposite for plants overexpressing UBC34. Our results showed that UBC34 co-localizes with AVP1, and AVP1 activity is enhanced in the plasma membrane fractions of ubc34 mutants, indicating that UBC34 mediates the turnover of plasma membrane-localized AVP1. We also observed that UBC34 affects the apoplastic pH but not the vacuolar pH of root cells. Based on our results, we propose a mechanistic model in which UBC34 mediates AVP1 turnover at the plasma membrane of root epidermal cells. Downregulation of UBC34 under salt and phosphate starvation conditions enhances AVP1 activity, leading to a higher proton gradient available for sodium sequestration and phosphate uptake.
Collapse
Affiliation(s)
- Qiyu Xu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | - Xingjian Zhang
- Institute of Biology, University of Graz, 8020 Graz, Austria
| | - Ruifeng Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
- Shandong Energy Institute, 266101 Qingdao, China
- Qingdao New Energy Shandong Laboratory, 266101 Qingdao, China
| | | |
Collapse
|
2
|
Araujo-Ruiz K, Mondragón-Flores R. H +-translocating pyrophosphatases in protozoan parasites. Parasitol Res 2024; 123:353. [PMID: 39419910 PMCID: PMC11486809 DOI: 10.1007/s00436-024-08362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Integral membrane pyrophosphatases (mPPases) hydrolyze pyrophosphate. This enzymatic mechanism is coupled with the pumping of H + and/or Na + across membranes, which can be either K + -dependent or K + -independent. Inorganic proton-translocating pyrophosphatases (H + -PPases) can transport protons across cell membranes and are reported in various organisms such as plants, bacteria, and protozoan parasites. The evolutionary implications of these enzymes are of great interest for proposing approaches related to the treatment of parasitic of phytopathogenic diseases. This work presents a literature review on pyrophosphate, pyrophosphatases, their inhibitors and emphasizes H + -PPases found in various medically significant protozoan parasites such as Toxoplasma gondii, the causative agent of toxoplasmosis, and Plasmodium falciparum, the causative agent of malaria, as well as protozoan species that primarily affect animals, such as Eimeria maxima and Besnoitia besnoiti.
Collapse
Affiliation(s)
- Karina Araujo-Ruiz
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 Col. Zacatenco, Ciudad de México, 07360, México
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 Col. Zacatenco, Ciudad de México, 07360, México.
| |
Collapse
|
3
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
García-Contreras R, de la Mora J, Mora-Montes HM, Martínez-Álvarez JA, Vicente-Gómez M, Padilla-Vaca F, Vargas-Maya NI, Franco B. The inorganic pyrophosphatases of microorganisms: a structural and functional review. PeerJ 2024; 12:e17496. [PMID: 38938619 PMCID: PMC11210485 DOI: 10.7717/peerj.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Pyrophosphatases (PPases) are enzymes that catalyze the hydrolysis of pyrophosphate (PPi), a byproduct of the synthesis and degradation of diverse biomolecules. The accumulation of PPi in the cell can result in cell death. Although the substrate is the same, there are variations in the catalysis and features of these enzymes. Two enzyme forms have been identified in bacteria: cytoplasmic or soluble pyrophosphatases and membrane-bound pyrophosphatases, which play major roles in cell bioenergetics. In eukaryotic cells, cytoplasmic enzymes are the predominant form of PPases (c-PPases), while membrane enzymes (m-PPases) are found only in protists and plants. The study of bacterial cytoplasmic and membrane-bound pyrophosphatases has slowed in recent years. These enzymes are central to cell metabolism and physiology since phospholipid and nucleic acid synthesis release important amounts of PPi that must be removed to allow biosynthesis to continue. In this review, two aims were pursued: first, to provide insight into the structural features of PPases known to date and that are well characterized, and to provide examples of enzymes with novel features. Second, the scientific community should continue studying these enzymes because they have many biotechnological applications. Additionally, in this review, we provide evidence that there are m-PPases present in fungi; to date, no examples have been characterized. Therefore, the diversity of PPase enzymes is still a fruitful field of research. Additionally, we focused on the roles of H+/Na+ pumps and m-PPases in cell bioenergetics. Finally, we provide some examples of the applications of these enzymes in molecular biology and biotechnology, especially in plants. This review is valuable for professionals in the biochemistry field of protein structure-function relationships and experts in other fields, such as chemistry, nanotechnology, and plant sciences.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier de la Mora
- Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Manuel Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Marcos Vicente-Gómez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Naurú Idalia Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
5
|
Baykov AA, Anashkin VA, Malinen AM, Bogachev AV. The Mechanism of Energy Coupling in H +/Na +-Pumping Membrane Pyrophosphatase-Possibilities and Probabilities. Int J Mol Sci 2022; 23:9504. [PMID: 36012762 PMCID: PMC9408878 DOI: 10.3390/ijms23169504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Membrane pyrophosphatases (mPPases) found in plant vacuoles and some prokaryotes and protists are ancient cation pumps that couple pyrophosphate hydrolysis with the H+ and/or Na+ transport out of the cytoplasm. Because this function is reversible, mPPases play a role in maintaining the level of cytoplasmic pyrophosphate, a known regulator of numerous metabolic reactions. mPPases arouse interest because they are among the simplest membrane transporters and have no homologs among known ion pumps. Detailed phylogenetic studies have revealed various subtypes of mPPases and suggested their roles in the evolution of the "sodium" and "proton" bioenergetics. This treatise focuses on the mechanistic aspects of the transport reaction, namely, the coupling step, the role of the chemically produced proton, subunit cooperation, and the relationship between the proton and sodium ion transport. The available data identify H+-PPases as the first non-oxidoreductase pump with a "direct-coupling" mechanism, i.e., the transported proton is produced in the coupled chemical reaction. They also support a "billiard" hypothesis, which unifies the H+ and Na+ transport mechanisms in mPPase and, probably, other transporters.
Collapse
Affiliation(s)
- Alexander A. Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Viktor A. Anashkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| | - Anssi M. Malinen
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Alexander V. Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119899, Russia
| |
Collapse
|
6
|
Nitschke W, Schoepp‐Cothenet B, Duval S, Zuchan K, Farr O, Baymann F, Panico F, Minguzzi A, Branscomb E, Russell MJ. Aqueous electrochemistry: The toolbox for life's emergence from redox disequilibria. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | - Simon Duval
- CNRS, BIP (UMR 7281), Aix Marseille Univ Marseille France
| | - Kilian Zuchan
- CNRS, BIP (UMR 7281), Aix Marseille Univ Marseille France
| | - Orion Farr
- CNRS, BIP (UMR 7281), Aix Marseille Univ Marseille France
- Aix Marseille Univ CINaM (UMR 7325) Luminy France
| | - Frauke Baymann
- CNRS, BIP (UMR 7281), Aix Marseille Univ Marseille France
| | - Francesco Panico
- Dipartimento di Chimica Università degli Studi di Milano Milan Italy
| | | | - Elbert Branscomb
- Department of Physics Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana Illinois USA
| | | |
Collapse
|
7
|
A Lumenal Loop Associated with Catalytic Asymmetry in Plant Vacuolar H +-Translocating Pyrophosphatase. Int J Mol Sci 2021; 22:ijms222312902. [PMID: 34884707 PMCID: PMC8657866 DOI: 10.3390/ijms222312902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Membrane-integral inorganic pyrophosphatases (mPPases) couple pyrophosphate hydrolysis with H+ and Na+ pumping in plants and microbes. mPPases are homodimeric transporters with two catalytic sites facing the cytoplasm and demonstrating highly different substrate-binding affinities and activities. The structural aspects of the functional asymmetry are still poorly understood because the structure of the physiologically relevant dimer form with only one active site occupied by the substrate is unknown. We addressed this issue by molecular dynamics (MD) simulations of the H+-transporting mPPase of Vigna radiata, starting from its crystal structure containing a close substrate analog (imidodiphosphate, IDP) in both active sites. The MD simulations revealed pre-existing subunit asymmetry, which increased upon IDP binding to one subunit and persisted in the fully occupied dimer. The most significant asymmetrical change caused by IDP binding is a ‘rigid body’-like displacement of the lumenal loop connecting α-helices 2 and 3 in the partner subunit and opening its exit channel for water. This highly conserved 14–19-residue loop is found only in plant vacuolar mPPases and may have a regulatory function, such as pH sensing in the vacuole. Our data define the structural link between the loop and active sites and are consistent with the published structural and functional data.
Collapse
|
8
|
Transcriptome analysis of upland cotton revealed novel pathways to scavenge reactive oxygen species (ROS) responding to Na 2SO 4 tolerance. Sci Rep 2021; 11:8670. [PMID: 33883626 PMCID: PMC8060397 DOI: 10.1038/s41598-021-87999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Salinity is an extensive and adverse environmental stress to crop plants across the globe, and a major abiotic constraint responsible for limited crop production threatening the crop security. Soil salinization is a widespread problem across the globe, threatening the crop production and food security. Salinity impairs plant growth and development via reduction in osmotic potential, cytotoxicity due to excessive uptake of ions such as sodium (Na+) and chloride (Cl-), and nutritional imbalance. Cotton, being the most cultivated crop on saline-alkaline soils, it is of great importance to elucidate the mechanisms involved in Na2SO4 tolerance which is still lacking in upland cotton. Zhong 9835, a Na2SO4 resistant cultivar was screened for transcriptomic studies through various levels of Na2SO4 treatments, which results into identification of 3329 differentially expressed genes (DEGs) in roots, stems and leave at 300 mM Na2SO4 stress till 12 h in compared to control. According to gene functional annotation analysis, genes involved in reactive oxygen species (ROS) scavenging system including osmotic stress and ion toxicity were significantly up-regulated, especially GST (glutathione transferase). In addition, analysis for sulfur metabolism, results in to identification of two rate limiting enzymes [APR (Gh_D05G1637) and OASTL (Gh_A13G0863)] during synthesis of GSH from SO42-. Furthermore, we also observed a crosstalk of the hormones and TFs (transcription factors) enriched in hormone signal transduction pathway. Genes related to IAA exceeds the rest of hormones followed by ubiquitin related genes which are greater than TFs. The analysis of the expression profiles of diverse tissues under Na2SO4 stress and identification of relevant key hub genes in a network crosstalk will provide a strong foundation and valuable clues for genetic improvements of cotton in response to various salt stresses.
Collapse
|
9
|
Pyrophosphate as an alternative energy currency in plants. Biochem J 2021; 478:1515-1524. [PMID: 33881486 DOI: 10.1042/bcj20200940] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
In the conditions of [Mg2+] elevation that occur, in particular, under low oxygen stress and are the consequence of the decrease in [ATP] and increase in [ADP] and [AMP], pyrophosphate (PPi) can function as an alternative energy currency in plant cells. In addition to its production by various metabolic pathways, PPi can be synthesized in the combined reactions of pyruvate, phosphate dikinase (PPDK) and pyruvate kinase (PK) by so-called PK/PPDK substrate cycle, and in the reverse reaction of membrane-bound H+-pyrophosphatase, which uses the energy of electrochemical gradients generated on tonoplast and plasma membrane. The PPi can then be consumed in its active forms of MgPPi and Mg2PPi by PPi-utilizing enzymes, which require an elevated [Mg2+]. This ensures a continuous operation of glycolysis in the conditions of suppressed ATP synthesis, keeping metabolism energy efficient and less dependent on ATP.
Collapse
|
10
|
Molecular characterization and transcriptional regulation of two types of H +-pyrophosphatases in the scuticociliate parasite Philasterides dicentrarchi. Sci Rep 2021; 11:8519. [PMID: 33875762 PMCID: PMC8055999 DOI: 10.1038/s41598-021-88102-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Proton-translocating inorganic pyrophosphatases (H+-PPases) are an ancient family of membrane bound enzymes that couple pyrophosphate (PPi) hydrolysis to H+ translocation across membranes. In this study, we conducted a molecular characterization of two isoenzymes (PdVP1 and PdVP2) located in respectively the alveolar sacs and in the membranes of the intracellular vacuoles of a scuticociliate parasite (Philasterides dicentrarchi) of farmed turbot. We analyzed the genetic expression of the isoenzymes after administration of antiparasitic drugs and after infection in the host. PdVP1 and PdVP2 are encoded by two genes of 2485 and 3069 bp, which respectively contain 3 and 11 exons and express proteins of 746 and 810 aa of molecular mass 78.9 and 87.6 kDa. Topological predictions from isoenzyme sequences indicate the formation of thirteen transmembrane regions (TMRs) for PdVP1 and seventeen TMRs for PdVP2. Protein structure modelling indicated that both isoenzymes are homodimeric, with three Mg2+ binding sites and an additional K+ binding site in PdVP2. The levels of identity and similarity between the isoenzyme sequences are respectively 33.5 and 51.2%. The molecular weights of the native proteins are 158 kDa (PdVP1) and 178 kDa (PdVP2). The isoenzyme sequences are derived from paralogous genes that form a monophyletic grouping with other ciliate species. Genetic expression of the isoenzymes is closely related to the acidification of alveolar sacs (PdVP1) and intracellular vacuoles (PdVP2): antiparasitic drugs inhibit transcription, while infection increases transcription of both isoenzymes. The study findings show that P. dicentrarchi possesses two isoenzymes with H+-PPase activity which are located in acidophilic cell compartment membranes and which are activated during infection in the host and are sensitive to antiparasitic drugs. The findings open the way to using molecular modelling to design drugs for the treatment of scuticociliatosis.
Collapse
|
11
|
Hu CX, Zeng J, Hao HN, Xu YXY, Liu F, Liu RD, Long SR, Wang ZQ, Cui J. Biological properties and roles of a Trichinella spiralis inorganic pyrophosphatase in molting and developmental process of intestinal larval stages. Vet Res 2021; 52:6. [PMID: 33413587 PMCID: PMC7791673 DOI: 10.1186/s13567-020-00877-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Inorganic pyrophosphatase (PPase) participates in energy cycle and plays a vital role in hydrolysis of inorganic pyrophosphate (PPi) into inorganic phosphate (Pi). The aim of this study was to investigate the biological properties of a Trichinella spiralis PPase (TsPPase) and its role in larval molting and developmental process. The predicted TsPPase consisted of 367 amino acids with a molecular mass of 41.48 kDa and a pI of 5.76. Amino acid sequence alignment and phylogenetic analysis showed that the TsPPase gene encodes a functional family I soluble PPase with the same characteristics as prokaryotic, plant and animal/fungal soluble PPase. The rTsPPase was expressed and purified, it has the activity to catalyze the hydrolysis of PPi to Pi, and the activity was dependent on Mg2+, pH and temperature. The enzymatic activity of rTsPPase was significantly inhibited after its metal binding sites mutation. TsPPase was transcribed and expressed in all T. spiralis phases, especially in muscle larvae (ML) and intestinal infective larvae (IIL). Immunofluorescence assay (IFA) revealed that TsPPase was mainly located in cuticle and stichosome. When the ML and IIL were treated with TsPPase-specific siRNA-279, TsPPase expression and enzymatic activity were obviously reduced, the larval molting and development were also impeded. Intestinal IIL as well as AW burden, IIL molting rates from mice infected with siRNA-treated ML were obviously suppressed. The results indicated that rTsPPase possesses the enzymatic activity of native inorganic pyrophosphatase, and TsPPase plays an important role in development and molting process of intestinal T. spiralis larval stages.
Collapse
Affiliation(s)
- Chen Xi Hu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Nan Hao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Xiu Yue Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Fang Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
12
|
Optimization of nucleotide sugar supply for polysaccharide formation via thermodynamic buffering. Biochem J 2020; 477:341-356. [PMID: 31967651 DOI: 10.1042/bcj20190807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Plant polysaccharides (cellulose, hemicellulose, pectin, starch) are either direct (i.e. leaf starch) or indirect products of photosynthesis, and they belong to the most abundant organic compounds in nature. Although each of these polymers is made by a specific enzymatic machinery, frequently in different cell locations, details of their synthesis share certain common features. Thus, the production of these polysaccharides is preceded by the formation of nucleotide sugars catalyzed by fully reversible reactions of various enzymes, mostly pyrophosphorylases. These 'buffering' enzymes are, generally, quite active and operate close to equilibrium. The nucleotide sugars are then used as substrates for irreversible reactions of various polysaccharide-synthesizing glycosyltransferases ('engine' enzymes), e.g. plastidial starch synthases, or plasma membrane-bound cellulose synthase and callose synthase, or ER/Golgi-located variety of glycosyltransferases forming hemicellulose and pectin backbones. Alternatively, the irreversible step might also be provided by a carrier transporting a given immediate precursor across a membrane. Here, we argue that local equilibria, established within metabolic pathways and cycles resulting in polysaccharide production, bring stability to the system via the arrangement of a flexible supply of nucleotide sugars. This metabolic system is itself under control of adenylate kinase and nucleoside-diphosphate kinase, which determine the availability of nucleotides (adenylates, uridylates, guanylates and cytidylates) and Mg2+, the latter serving as a feedback signal from the nucleotide metabolome. Under these conditions, the supply of nucleotide sugars to engine enzymes is stable and constant, and the metabolic process becomes optimized in its load and consumption, making the system steady and self-regulated.
Collapse
|
13
|
Overexpression of V-type H + pyrophosphatase gene EdVP1 from Elymus dahuricus increases yield and potassium uptake of transgenic wheat under low potassium conditions. Sci Rep 2020; 10:5020. [PMID: 32193452 PMCID: PMC7081212 DOI: 10.1038/s41598-020-62052-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/06/2020] [Indexed: 11/14/2022] Open
Abstract
Lack of potassium in soil limits crop yield. Increasing yield and conserving potassium ore requires improving K use efficiency (KUE). Many genes influence KUE in plants, but it is not clear how these genes function in the field. We identified the V-type H+-pyrophosphatase gene EdVP1 from Elymus dahurica. Gene expression analysis showed that EdVP1 was induced by low potassium stress. Protein subcellular localization analysis demonstrated that EdVP1 localized on the plasma membrane. We overexpressed EdVP1 in two wheat varieties and conducted K tolerance experiments across years. Yield per plant, grain number per spike, plant height, and K uptake of four transgenic wheat lines increased significantly compared with WT; results from two consecutive years showed that EdVP1 significantly increased yield and KUE of transgenic wheat. Pot experiments showed that transgenic plants had significantly longer shoots and roots, and higher K accumulation in shoots and roots and H+-PPase activity in shoots than WT under low K. A fluidity assay of potassium ion in EdVP1 transgenic plant roots showed that potassium ion influx and H+ outflow in transgenic plants were higher than WT. Overexpressing EdVP1 significantly improved yield and KUE of transgenic wheat and was related to higher K uptake capacity in root.
Collapse
|
14
|
Regmi KC, Yogendra K, Farias JG, Li L, Kandel R, Yadav UP, Sha S, Trittermann C, Short L, George J, Evers J, Plett D, Ayre BG, Roy SJ, Gaxiola RA. Improved Yield and Photosynthate Partitioning in AVP1 Expressing Wheat ( Triticum aestivum) Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:273. [PMID: 32256508 PMCID: PMC7090233 DOI: 10.3389/fpls.2020.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/21/2020] [Indexed: 05/28/2023]
Abstract
A fundamental factor to improve crop productivity involves the optimization of reduced carbon translocation from source to sink tissues. Here, we present data consistent with the positive effect that the expression of the Arabidopsis thaliana H+-PPase (AVP1) has on reduced carbon partitioning and yield increases in wheat. Immunohistochemical localization of H+-PPases (TaVP) in spring wheat Bobwhite L. revealed the presence of this conserved enzyme in wheat vasculature and sink tissues. Of note, immunogold imaging showed a plasma membrane localization of TaVP in sieve element- companion cell complexes of Bobwhite source leaves. These data together with the distribution patterns of a fluorescent tracer and [U14C]-sucrose are consistent with an apoplasmic phloem-loading model in wheat. Interestingly, 14C-labeling experiments provided evidence for enhanced carbon partitioning between shoots and roots, and between flag leaves and milk stage kernels in AVP1 expressing Bobwhite lines. In keeping, there is a significant yield improvement triggered by the expression of AVP1 in these lines. Green house and field grown transgenic wheat expressing AVP1 also produced higher grain yield and number of seeds per plant, and exhibited an increase in root biomass when compared to null segregants. Another agriculturally desirable phenotype showed by AVP1 Bobwhite plants is a robust establishment of seedlings.
Collapse
Affiliation(s)
- Kamesh C. Regmi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kalenahalli Yogendra
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Júlia Gomes Farias
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lin Li
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Raju Kandel
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Umesh P. Yadav
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Shengbo Sha
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Laura Short
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Jessey George
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - John Evers
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Darren Plett
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Brian G. Ayre
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Stuart John Roy
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
15
|
Deo TG, Ferreira RCU, Lara LAC, Moraes ACL, Alves-Pereira A, de Oliveira FA, Garcia AAF, Santos MF, Jank L, de Souza AP. High-Resolution Linkage Map With Allele Dosage Allows the Identification of Regions Governing Complex Traits and Apospory in Guinea Grass ( Megathyrsus maximus). FRONTIERS IN PLANT SCIENCE 2020; 11:15. [PMID: 32161603 PMCID: PMC7054243 DOI: 10.3389/fpls.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 05/11/2023]
Abstract
Forage grasses are mainly used in animal feed to fatten cattle and dairy herds, and guinea grass (Megathyrsus maximus) is considered one of the most productive of the tropical forage crops that reproduce by seeds. Due to the recent process of domestication, this species has several genomic complexities, such as autotetraploidy and aposporous apomixis. Consequently, approaches that relate phenotypic and genotypic data are incipient. In this context, we built a linkage map with allele dosage and generated novel information of the genetic architecture of traits that are important for the breeding of M. maximus. From a full-sib progeny, a linkage map containing 858 single nucleotide polymorphism (SNP) markers with allele dosage information expected for an autotetraploid was obtained. The high genetic variability of the progeny allowed us to map 10 quantitative trait loci (QTLs) related to agronomic traits, such as regrowth capacity and total dry matter, and 36 QTLs related to nutritional quality, which were distributed among all homology groups (HGs). Various overlapping regions associated with the quantitative traits suggested QTL hotspots. In addition, we were able to map one locus that controls apospory (apo-locus) in HG II. A total of 55 different gene families involved in cellular metabolism and plant growth were identified from markers adjacent to the QTLs and APOSPORY locus using the Panicum virgatum genome as a reference in comparisons with the genomes of Arabidopsis thaliana and Oryza sativa. Our results provide a better understanding of the genetic basis of reproduction by apomixis and traits important for breeding programs that considerably influence animal productivity as well as the quality of meat and milk.
Collapse
Affiliation(s)
- Thamiris G. Deo
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Rebecca C. U. Ferreira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Letícia A. C. Lara
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Aline C. L. Moraes
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| | | | - Fernanda A. de Oliveira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Antonio A. F. Garcia
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Mateus F. Santos
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Liana Jank
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| |
Collapse
|