1
|
Raimondeau P, Ksouda S, Marande W, Fuchs AL, Gryta H, Theron A, Puyoou A, Dupin J, Cheptou PO, Vautrin S, Valière S, Manzi S, Baali-Cherif D, Chave J, Christin PA, Besnard G. A hemizygous supergene controls homomorphic and heteromorphic self-incompatibility systems in Oleaceae. Curr Biol 2024; 34:1977-1986.e8. [PMID: 38626764 DOI: 10.1016/j.cub.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/18/2024]
Abstract
Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.
Collapse
Affiliation(s)
- Pauline Raimondeau
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France; Yale Institute of Biospheric Studies, New Haven, CT 06520, USA
| | - Sayam Ksouda
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Anne-Laure Fuchs
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Hervé Gryta
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Anthony Theron
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Aurore Puyoou
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Julia Dupin
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pierre-Olivier Cheptou
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive), UMR 5175, CNRS, Université de Montpellier, Université Paul Valéry, EPHE, IRD, 34293 Montpellier, France
| | - Sonia Vautrin
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France
| | - Sophie Manzi
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Djamel Baali-Cherif
- Laboratoire de Recherche sur les Zones Arides, USTHB/ENSA, 16000 Alger, Algeria
| | - Jérôme Chave
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Guillaume Besnard
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
2
|
Ganguly S, Barua D. Inter-morph pollen flow and reproductive success in a self-compatible species with stigma-height dimorphism: the influence of herkogamy and reciprocity. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:939-946. [PMID: 34396659 DOI: 10.1111/plb.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Inter-morph pollen transfer and its dependence on herkogamy and reciprocity are not completely understood in species with stigma-height dimorphism. We asked whether total stigmatic pollen loads, inter-morph fraction of pollen load and reproductive success differed between morphs in Jasminum malabaricum, a species exhibiting stigma-height dimorphism. We tested whether higher herkogamy and reciprocity resulted in higher inter-morph pollen deposition and reproductive success. We quantified individual-level estimates of herkogamy, reciprocity, total stigmatic pollen load, inter-morph stigmatic pollen fraction and fruit set for both morphs in naturally occurring populations of J. malabaricum. Total pollen load was higher in the long-styled morph, inter-morph pollen fraction was higher in the short-styled morph, but fruit set did not differ between morphs. Higher herkogamy resulted in a higher inter-morph fraction of pollen load and fruit set in the long-styled morph of one population. In the other population, only reciprocity was found to be related to inter-morph pollen deposition. This study is the first to quantify and report natural inter-morph stigmatic pollen load in a species with stigma-height dimorphism. Morph-specific differences in pollen load were similar to patterns commonly observed in heterostylous species. The results highlight the importance of both herkogamy and reciprocity in facilitating inter-morph pollen transfer. Population-specific patterns indicate that local environmental factors determine the relative functional importance of herkogamy and reciprocity.
Collapse
Affiliation(s)
- S Ganguly
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - D Barua
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
3
|
Portillo Lemus LO, Bozec M, Harang M, Coudreuse J, Haury J, Stoeckel S, Barloy D. Self-incompatibility limits sexual reproduction rather than environmental conditions in an invasive water primrose. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:74-86. [PMID: 37284282 PMCID: PMC10168087 DOI: 10.1002/pei3.10042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 06/08/2023]
Abstract
Fruit-set and seed-set depend on environmental conditions and reproductive systems. They are important components of sexual reproductive success in plants. They also control the ecological success and adaptation of invasive plants within their non-native ecosystems. We studied which factors bring about fruit-set and seed-set in invasive populations of the aquatic plant Ludwigia grandiflora subsp. hexapetala. We analyzed fruit set and seed set in 37 populations growing under variable climatic conditions in Western Europe. Sub-samples of seven fruitful and fruitless populations were grown in common controlled conditions. We carried out self- and cross-pollinations, and measured the floral morphometry. Environmental conditions did not affect fruit-set and seed-set in-situ and in common controlled environments. Hand-pollinations showed that individuals from fruitful populations exhibited fruit and seed production whatever the pollen donor, whereas individuals from fruitless populations only did so when pollen came from fruitful populations. Floral morphometry evidenced the existence of two floral morphs that fully overlapped with fruitfulness, and individual incompatibility. Our results rebutted the hypothesis that environmental variations control fruit set and seed set in these invasive populations. We instead showed that fruit set and seed set were controlled by a heteromorphic reproductive system involving a self-incompatible and inter-morph compatible morph (long-styled morph), and a self- and inter-morph compatible reverse morph (short-styled morph). We collected morphs and fruit set records of this species worldwide and found the same relationship: fruitless populations were all composed only of individuals with long-styled floral morph. Our study constitutes the first evidence of a heteromorphic self-incompatible system in Ludwigia genus and Onagraceae family.
Collapse
Affiliation(s)
| | - Michel Bozec
- ESE, Ecology and Ecosystem HealthInstitut AgroINRAERennesFrance
| | - Marilyne Harang
- ESE, Ecology and Ecosystem HealthInstitut AgroINRAERennesFrance
| | - Julie Coudreuse
- ESE, Ecology and Ecosystem HealthInstitut AgroINRAERennesFrance
| | - Jacques Haury
- ESE, Ecology and Ecosystem HealthInstitut AgroINRAERennesFrance
| | | | | |
Collapse
|