1
|
Hawk TE, Piya S, Sultana MS, Zadegan SB, Shipp S, Coffey N, McBride NB, Rice JH, Hewezi T. Soybean MKK2 establishes intricate signalling pathways to regulate soybean response to cyst nematode infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13461. [PMID: 38695657 PMCID: PMC11064803 DOI: 10.1111/mpp.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Mitogen-activated protein kinase (MPK) cascades play central signalling roles in plant immunity and stress response. The soybean orthologue of MPK kinase2 (GmMKK2) was recently identified as a potential signalling node whose expression is upregulated in the feeding site induced by soybean cyst nematode (SCN, Heterodera glycines). To investigate the role of GmMKK2 in soybean-SCN interactions, we overexpressed a catabolically inactive variant referred to as kinase-dead variant (KD-GmMKK2) using transgenic hairy roots. KD-GmMKK2 overexpression caused significant reduction in soybean susceptibility to SCN, while overexpression of the wild-type variant (WT-GmMKK2) exhibited no effect on susceptibility. Transcriptome analysis indicated that KD-GmMKK2 overexpressing plants are primed for SCN resistance via constitutive activation of defence signalling, particularly those related to chitin, respiratory burst, hydrogen peroxide and salicylic acid. Phosphoproteomic profiling of the WT-GmMKK2 and KD-GmMKK2 root samples upon SCN infection resulted in the identification of 391 potential targets of GmMKK2. These targets are involved in a broad range of biological processes, including defence signalling, vesicle fusion, chromatin remodelling and nuclear organization among others. Furthermore, GmMKK2 mediates phosphorylation of numerous transcriptional and translational regulators, pointing to the presence of signalling shortcuts besides the canonical MAPK cascades to initiate downstream signalling that eventually regulates gene expression and translation initiation. Finally, the functional requirement of specific phosphorylation sites for soybean response to SCN infection was validated by overexpressing phospho-mimic and phospho-dead variants of two differentially phosphorylated proteins SUN1 and IDD4. Together, our analyses identify GmMKK2 impacts on signalling modules that regulate soybean response to SCN infection.
Collapse
Affiliation(s)
- Tracy E. Hawk
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | | | | | - Sarah Shipp
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Nicole Coffey
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Natalie B. McBride
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - John H. Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
2
|
Xu L, Liu P, Li X, Mi Q, Zheng Q, Xing J, Yang W, Zhou H, Cao P, Gao Q, Xu G. NtERF283 positively regulates water deficit tolerance in tobacco (Nicotianatabacum L.) by enhancing antioxidant capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108413. [PMID: 38330776 DOI: 10.1016/j.plaphy.2024.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Ethylene responsive factor (ERF) is a plant-specific transcription factor that plays a pivotal regulatory role in various stress responses. Although the genome of tobacco harbors 375 ER F genes, the functional roles of the majority of these genes remain unknown. Expression pattern analysis revealed that NtERF283 was induced by water deficit and salt stresses and mainly expressed in the roots and leaves. Subcellular localization and transcriptional activity assays confirmed that NtERF283 was localized in the nucleus and exhibited transcriptional activity. In comparison to the wild-type (WT), the NtERF283-overexpressing transgenic plants (OE) exhibited enhanced water deficit tolerance, whereas the knockout mutant erf283 displayed contrasting phenotypes. Transcriptional analysis demonstrated that several oxidative stress response genes were significantly altered in OE plants under water deficit conditions. 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining showed that erf283 accumulated a higher level of reactive oxygen species (ROS) compared to the WT under water deficit conditions. Conversely, OE plants displayed the least amount of ROS accumulation. Furthermore, the activities of POD and SOD were higher in OE plants and lower in erf283, suggesting that NtERF283 enhanced the capacity to effectively eliminate ROS, consequently enhancing water deficit tolerance in tobacco. These findings strongly indicate the significance of NtERF283 in promoting tobacco water deficit tolerance through the activation of the antioxidant system.
Collapse
Affiliation(s)
- Li Xu
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Pingping Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Xuemei Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Qingxia Zheng
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Jiaxin Xing
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Wenwu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Peijian Cao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650106, PR China.
| | - Guoyun Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China.
| |
Collapse
|
3
|
Zhu S, Mo Y, Yang Y, Liang S, Xian S, Deng Z, Zhao M, Liu S, Liu K. Genome-wide identification of MAPK family in papaya (Carica papaya) and their involvement in fruit postharvest ripening. BMC PLANT BIOLOGY 2024; 24:68. [PMID: 38262956 PMCID: PMC10807106 DOI: 10.1186/s12870-024-04742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Papaya (Carica papaya) is an economically important fruit cultivated in the tropical and subtropical regions of China. However, the rapid softening rate after postharvest leads to a short shelf-life and considerable economic losses. Accordingly, understanding the mechanisms underlying fruit postharvest softening will be a reasonable way to maintain fruit quality and extend its shelf-life. RESULTS Mitogen-activated protein kinases (MAPKs) are conserved and play essential roles in response to biotic and abiotic stresses. However, the MAPK family remain poorly studied in papaya. Here, a total of nine putative CpMAPK members were identified within papaya genome, and a comprehensive genome-wide characterization of the CpMAPKs was performed, including evolutionary relationships, conserved domains, gene structures, chromosomal locations, cis-regulatory elements and expression profiles in response to phytohormone and antioxidant organic compound treatments during fruit postharvest ripening. Our findings showed that nearly all CpMAPKs harbored the conserved P-loop, C-loop and activation loop domains. Phylogenetic analysis showed that CpMAPK members could be categorized into four groups (A-D), with the members within the same groups displaying high similarity in protein domains and intron-exon organizations. Moreover, a number of cis-acting elements related to hormone signaling, circadian rhythm, or low-temperature stresses were identified in the promoters of CpMAPKs. Notably, gene expression profiles demonstrated that CpMAPKs exhibited various responses to 2-chloroethylphosphonic acid (ethephon), 1-methylcyclopropene (1-MCP) and the combined ascorbic acid (AsA) and chitosan (CTS) treatments during papaya postharvest ripening. Among them, both CpMAPK9 and CpMAPK20 displayed significant induction in papaya flesh by ethephon treatment, and were pronounced inhibition after AsA and CTS treatments at 16 d compared to those of natural ripening control, suggesting that they potentially involve in fruit postharvest ripening through ethylene signaling pathway or modulating cell wall metabolism. CONCLUSION This study will provide some valuable insights into future functional characterization of CpMAPKs, and hold great potential for further understanding the molecular mechanisms underlying papaya fruit postharvest ripening.
Collapse
Affiliation(s)
- Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China.
| | - Yuxing Mo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Yuyao Yang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Shiqi Liang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Shuqi Xian
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Zixin Deng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Miaoyu Zhao
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Shuyi Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, People's Republic of China.
| |
Collapse
|
4
|
Wu Y, Li X, Zhang J, Zhao H, Tan S, Xu W, Pan J, Yang F, Pi E. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1042084. [PMID: 36531407 PMCID: PMC9748296 DOI: 10.3389/fpls.2022.1042084] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 06/09/2023]
Abstract
Ethylene Responsive Factor (ERF) subfamily comprise the largest number of proteins in the plant AP2/ERF superfamily, and have been most extensively studied on the biological functions. Members of this subfamily have been proven to regulate plant resistances to various abiotic stresses, such as drought, salinity, chilling and some other adversities. Under these stresses, ERFs are usually activated by mitogen-activated protein kinase induced phosphorylation or escape from ubiquitin-ligase enzymes, and then form complex with nucleic proteins before binding to cis-element in promoter regions of stress responsive genes. In this review, we will discuss the phylogenetic relationships among the ERF subfamily proteins, summarize molecular mechanism how the transcriptional activity of ERFs been regulated and how ERFs of different subgroup regulate the transcription of stress responsive genes, such as high-affinity K+ transporter gene PalHKT1;2, reactive oxygen species related genes LcLTP, LcPrx, and LcRP, flavonoids synthesis related genes FtF3H and LhMYBSPLATTER, etc. Though increasing researches demonstrate that ERFs are involved in various abiotic stresses, very few interact proteins and target genes of them have been comprehensively annotated. Hence, future research prospects are described on the mechanisms of how stress signals been transited to ERFs and how ERFs regulate the transcriptional expression of stress responsive genes.
Collapse
|
5
|
Xiang Y, Bian X, Wei T, Yan J, Sun X, Han T, Dong B, Zhang G, Li J, Zhang A. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. THE NEW PHYTOLOGIST 2021; 232:2400-2417. [PMID: 34618923 DOI: 10.1111/nph.17761] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/17/2021] [Indexed: 05/16/2023]
Abstract
Mitogen-activated protein kinase (MPK) is a critical regulator of the antioxidant defence system in response to various stimuli. However, how MPK directly and exactly regulates antioxidant enzyme activities is still unclear. Here, we demonstrated that a NAC transcription factor ZmNAC49 mediated the regulation of antioxidant enzyme activities by ZmMPK5. ZmNAC49 expression is induced by oxidative stress. ZmNAC49 enhances oxidative stress tolerance in maize, and it also reduces superoxide anion generation and increases superoxide dismutase (SOD) activity. A detailed study showed that ZmMPK5 directly interacts with and phosphorylates ZmNAC49 in vitro and in vivo. ZmMPK5 directly phosphorylates Thr-26 in NAC subdomain A of ZmNAC49. Mutation at Thr-26 of ZmNAC49 does not affect the interaction with ZmMPK5 and its subcellular localisation. Further analysis found that ZmNAC49 activates the ZmSOD3 expression by directly binding to its promoter. ZmMPK5-mediated ZmNAC49 phosphorylation improves its ability to bind to the ZmSOD3 promoter. Thr-26 of ZmNAC49 is essential for its transcriptional activity. In addition, ZmSOD3 enhances oxidative stress tolerance in maize. Our results show that phosphorylation of Thr-26 in ZmNAC49 by ZmMPK5 increased its DNA-binding activity to the ZmSOD3 promoter, enhanced SOD activity and thereby improved oxidative stress tolerance in maize.
Collapse
Affiliation(s)
- Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiangli Bian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tianhui Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiujuan Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tong Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Baicheng Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Gaofeng Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|