1
|
Li L, Li J, Wang X, Ullah S, Lin S. Reponses of morphological and biochemical traits of bamboo trees under elevated atmospheric O 3 enrichment. ENVIRONMENTAL RESEARCH 2024; 252:119069. [PMID: 38735376 DOI: 10.1016/j.envres.2024.119069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Dwarf bamboo (Indocalamus decorus) is an O3-tolerant plant species. To identify the possible mechanism and response of leaf morphological, antioxidant, and anatomical characteristics to elevated atmospheric O3 (EO3) concentrations, we exposed three-year-old I. decorus seedlings to three O3 levels (low O3-LO: ambient air; medium O3-MO: Ambient air+70 ppb high O3-HO: Ambient air+140 ppb O3) over a growing season using open-top chambers. Leaf shape and stomatal characteristics, and leaf microscopic structure of I. decorus were examined. The results indicated that 1) the stomata O3 flux (Fst) of HO decreased more rapidly under EO3 as the exposure time increased. The foliar O3 injury of HO and MO occurred when AOT40 was 26.62 ppm h and 33.20 ppm h, respectively, 2) under EO3, leaf number, leaf mass per area, leaf area, and stomata length/width all decreased, while leaf thickness, stomatal density, width, and area increased compared to the control, 3) MDA and total soluble protein contents all showed significantly increase under HO (36.57% and 32.77%) and MO(31.91% and 19.52%) while proline contents only increased under HO(33.27%). 4) MO and HO increased bulliform cells numbers in the leaves by 6.28% and 23.01%, respectively. HO reduced the transverse area of bulliform cells by 13.73%, while MO treatments had no effect, and 5) the number of fusoid cells interspace, the transverse area of fusoid cells interspace, and mesophyll thickness of HO significantly increased by 11.16%, 28.58%, and 13.42%, respectively. In conclusion, I. decorus exhibits strong O3 tolerance characteristics, which stem from adaptions in the leaf's morphological, structural, antioxidant, and anatomical features. One critical attribute was the enlargement of the bulliform cell transverse area and the transverse area of fusoid cells interspace that drove this resistance to O3. Local bamboo species with high resistance to O3 pollution thus need to be promoted for sustained productivity and ecosystem services in areas with high O3 pollution.
Collapse
Affiliation(s)
- Li Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jinling Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Guangxi Eco-engineering Vocational and Technical College, Liuzhou, Guangxi, China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences & Birmingham Institute of Forest Research, University of Birmingham, UK.
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
2
|
Zhao Y, Guo B, Liu Z, Wang X, Xiao G, Bol R. A meta-analysis of elevated O3 effects on herbaceous plants antioxidant oxidase activity. PLoS One 2024; 19:e0305688. [PMID: 38917096 PMCID: PMC11198797 DOI: 10.1371/journal.pone.0305688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Increases in near-surface ozone (O3) concentrations is a global environmental problem. High-concentration O3 induces stress in plants, which can lead to visible damage to plants, reduced photosynthesis, accelerated aging, inhibited growth, and can even plant death. However, its impact has not been comprehensively evaluated because of the response differences between individual plant species, environmental O3 concentration, and duration of O3 stress in plants. We used a meta-analysis approach based on 31 studies 343 observations) to examine the effects of elevated O3 on malondialdehyde (MDA), superoxide dismutase (SOD), and peroxidase (POD) activities in herbaceous plants. Globally, important as they constitute the majority of the world's food crops. We partitioned the variation in effect size found in the meta-analysis according to the presence of plant species (ornamental herb, rice, and wheat), O3 concentration, and duration of O3 stress in plants. Our results showed that the effects of elevated O3 on plant membrane lipid peroxidation depending on plant species, O3 concentration, and duration of O3 stress in plants. The wheat SOD and POD activity was significantly lower compared to the herbs and rice (P<0.01). The SOD activity of all herbaceous plants increased by 34.6%, 10.5%, and 26.3% for exposure times to elevated O3 environments of 1-12, 13-30, and 31-60 days, respectively. When the exposure time was more than 60 days, SOD activity did not increase but significantly decreased by 12.1%. However, the POD activity of herbaceous plants increased by 30.4%, 57.3%, 21.9% and 5.81%, respectively, when exposure time of herbaceous plants in elevated O3 environment was 1-12, 13-30, 31-60 and more than 60 days. Our meta-analysis revealed that (1) rice is more resistant to elevated O3 than wheat and ornamental herbs likely because of the higher activity of antioxidant components (e.g., POD) in the symplasts, (2) exposure to elevated O3 concentrations for >60 days, may result in antioxidant SOD lose its regulatory ability, and the antioxidant component POD in the symplast is mainly used to resist O3 damage, and (3) the important factors affected the activity of SOD and POD in plants were not consistent: the duration of O3 stress in plants was more important than plant species and O3 concentration for SOD activity. However, for POD activity, plant species was the most important factor.
Collapse
Affiliation(s)
- Yi Zhao
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou, Liaoning, China
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bing Guo
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou, Liaoning, China
| | - Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, China
| | - Xiaohan Wang
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou, Liaoning, China
| | - Guangmin Xiao
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sci-ence/Hebei Fertilizer Technology Innovation Center, Shijiazhuang, China
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, United Kingdom
| |
Collapse
|
3
|
Tiwari PN, Tiwari S, Sapre S, Tripathi N, Payasi DK, Singh M, Thakur S, Sharma M, Tiwari S, Tripathi MK. Prioritization of Physio-Biochemical Selection Indices and Yield-Attributing Traits toward the Acquisition of Drought Tolerance in Chickpea ( Cicer arietinum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3175. [PMID: 37765339 PMCID: PMC10534892 DOI: 10.3390/plants12183175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Chickpea is widely grown in rainfed areas of developing countries because of its nutritional abundance and adaptability. To overcome the environmental effect of drought on yield, a characteristic-linked selection strategy is proved as well-thought-out and advantageous for the development of drought-tolerant cultivars. To precisely understand the contribution of various physio-biochemical and yield-attributing traits toward drought tolerance in chickpea (Cicer arietinum L.), forty chickpea genotypes were evaluated in the years 2020-2021 and 2021-2022 under normal irrigated as well as drought-stressed conditions. Among the studied genotypes, genotype ICC4958 retained the highest chl content (0.55 mg g-1 FW), minimal electrolyte leakage, and superoxide dismutase (1.48 U/mg FW) and peroxidase (2.21 µmol/min/g FW) activities while cultivar JG11 maintained the maximum relative water content and proline accumulation. The principal-component-based biplots prioritized the physio-biochemical and yield-accrediting characteristics based on their association significance and contribution to terminal drought tolerance. Under drought stress, grain yield per plant was depicted to have a strongly positive association with canopy temperature depression, catalase, superoxide dismutase, and peroxidase activities as well as total soluble sugar, proline, and chlorophyll content, along with the numbers of pods and biological yield per plant. These identified physio-biochemical and yield-attributing traits can be further deployed to select drought-tolerant chickpea genotypes for the breeding of climate-smart chickpea genotypes.
Collapse
Affiliation(s)
- Prakash N. Tiwari
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India; (P.N.T.); (S.S.); (M.S.)
| | - Sharad Tiwari
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India; (P.N.T.); (S.S.); (M.S.)
| | - Swapnil Sapre
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India; (P.N.T.); (S.S.); (M.S.)
| | - Niraj Tripathi
- Directorate of Research, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India;
| | | | - Mrinalini Singh
- Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India; (P.N.T.); (S.S.); (M.S.)
| | - Satyendra Thakur
- Department of Plant Physiology, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India;
| | - Mohini Sharma
- Department of Plant Molecular Biology and Biotechnology, Rajmata Vijyaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India; (M.S.); (S.T.)
| | - Sushma Tiwari
- Department of Plant Molecular Biology and Biotechnology, Rajmata Vijyaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India; (M.S.); (S.T.)
| | - Manoj Kumar Tripathi
- Department of Plant Molecular Biology and Biotechnology, Rajmata Vijyaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India; (M.S.); (S.T.)
| |
Collapse
|
4
|
Vargas VMF, da Silva Júnior FMR, Silva Pereira TD, Silva CSD, Coronas MV. A comprehensive overview of genotoxicity and mutagenicity associated with outdoor air pollution exposure in Brazil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:172-199. [PMID: 36775848 DOI: 10.1080/10937404.2023.2175092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This review examined the mutagenicity and genotoxicity associated with exposure to outdoor air pollutants in Brazil. A search was performed on the Web of Science database using a combination of keywords that resulted in 134 articles. After applying exclusion criteria, a total of 75 articles were obtained. The articles were classified into three categories: (1) studies with plants and animals, (2) in vitro studies, and (3) human biomonitoring. The investigations were conducted in 11 of 27 Brazilian states with the highest prevalence in the southeast and south regions. Only 5 investigations focused on the effects of burning biomass on the quality of outdoor air. Plants, especially Tradescantia pallida, were the main air pollution biomonitoring tool. When available, a significant association between levels of air pollutants and genetic damage was described. Among the in vitro studies, Salmonella/microsome is the most used test to evaluate mutagenesis of outdoor air in Brazil (n = 26). Human biomonitoring studies were the least frequent category (n = 18). Most of the investigations utilized micronucleus bioassay, in oral mucosa cells (n = 15) and lymphocytes (n = 5), and the comet assay (n = 6). The analysis in this study points to the existence of gaps in genotoxicity studies and our findings indicate that future studies need to address the variety of potential sources of pollution existing in Brazil. In addition to extent of the impacts, consideration should be given to the enormous Brazilian biodiversity, as well as the determination of the role of socioeconomic inequality of the population in the observed outcomes.
Collapse
Affiliation(s)
- Vera Maria Ferrão Vargas
- Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, Porto Alegre, RS, Brazil
| | | | - Tatiana da Silva Pereira
- Laboratório de Aquicultura de Peixes Ornamentais do Xingu, Universidade Federal do Pará (UFPA), Altamira, PA, Brazil
| | - Cristiane Silva da Silva
- Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS). Av. Bento Gonçalves, Porto Alegre, RS, Brazil
- Instituto Federal de Educação, Ciênciae Tecnologia do Rio Grande do Sul (IFRS), Canoas, RS, Brazil
| | - Mariana Vieira Coronas
- Coordenaç'ão Acad"êmica, Universidade Federal de Santa Maria (UFSM), Cachoeira do Sul, RS, Brazil
| |
Collapse
|
5
|
Wang Y, Xu S, Li B, Chen W, Li Y, He X, Wang N. Responses of spring leaf phenological and functional traits of two urban tree species to air warming and/or elevated ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:158-167. [PMID: 35358866 DOI: 10.1016/j.plaphy.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Climate warming and surface ozone (O3) pollution are important global environmental issues today. However, the combined impacts of air warming and O3 on phenology and its functional traits of urban trees are still poorly understood. Here, an experiment was performed to explore the variations of the spring phenological and functional traits in leaves of Populus alba 'Berolinensis' and Forsythia suspensa under ambient air (15.8 °C, 35.7 ppb), increased air temperature (IT, ambient air temperature + 2 °C, 17.9 °C), elevated O3 (EO, ambient air O3 concentrations + 40 ppb, 77.4 ppb), and their combined treatments (17.7 °C, 74.5 ppb). Our results showed that: IT advanced the beginning of leaf bud expansion phase of P. alba 'Berolinensis' and F. suspensa for 6 d and 5 d, respectively, increased leaf unfolding rate, leaf area and dry weight, and enhanced photosynthesis and antioxidative enzyme activities. EO delayed the beginning of leaf bud expansion phase of P. alba 'Berolinensis' for 5 d, decreased leaf area and biomass, and inhibited photosynthesis and caused oxidative damage of plant leaves. Compared to EO, the combined treatment advanced the spring phenophase, increased growth and induced the higher level of photosynthetic rate and antioxidative enzymes activities in plant leaves, which indicated that the positive effects of increased temperature (17.7 °C) alleviated the inhibition of growth and photosynthesis induced by ozone. Our findings can provide a theoretical reference for predicting the adaptation of functional traits of the two trees blossomed early under warming and O3 pollution at spring phenological stage.
Collapse
Affiliation(s)
- Yijing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Bo Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yan Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xingyuan He
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Nan Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Individual and Interactive Effects of Elevated Ozone and Temperature on Plant Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
From the preindustrial era to the present day, the tropospheric ozone (O3) concentration has increased dramatically in much of the industrialized world due to anthropogenic activities. O3 is the most harmful air pollutant to plants. Global surface temperatures are expected to increase with rising O3 concentration. Plants are directly affected by temperature and O3. Elevated O3 can impair physiological processes, as well as cause the accumulation of reactive oxygen species (ROS), leading to decreased plant growth. Temperature is another important factor influencing plant development. Here, we summarize how O3 and temperature elevation can affect plant physiological and biochemical characteristics, and discuss results from studies investigating plant responses to these factors. In this review, we focused on the interactions between elevated O3 and temperature on plant responses, because neither factor acts independently. Temperature has great potential to significantly influence stomatal movement and O3 uptake. For this reason, the combined influence of both factors can yield significantly different results than those of a single factor. Plant responses to the combined effects of elevated temperature and O3 are still controversial. We attribute the substantial uncertainty of these combined effects primarily to differences in methodological approaches.
Collapse
|
7
|
Jameel S, Hameed A, Shah TM. Investigation of Distinctive Morpho-Physio and Biochemical Alterations in Desi Chickpea at Seedling Stage Under Irrigation, Heat, and Combined Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:692745. [PMID: 34646281 PMCID: PMC8503603 DOI: 10.3389/fpls.2021.692745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/27/2021] [Indexed: 05/11/2023]
Abstract
Global climatic instabilities have become the main reason for drastic yield losses in chickpea. This shift in climate could be a great threat in the future for food security in developing countries. Chickpea production is badly hampered by heat stress coupled with drought stress, and these factors can reduce yields by 40-45%. To mitigate yield losses due these abiotic factors, irrigation supplementation could be the best strategy. The present study aimed to (i) investigate the tolerance response of 9 desi chickpea genotypes against heat stress (H), irrigation (I), and a combination of both (I+H) through morphophysiological and biochemical indices at early growth stage, and (ii) assess yield performance across multiple locations of the country. Results revealed that under irrigation treatment, all genotypes perform well, but the genotypes D-09027 and D-09013 showed best performance because, as compared to control, they retained root length, seedling fresh weight, root fresh weight, root dry weight, esterase activity, Malondialdehyde (MDA) content, total chlorophyll, and total carotenoids. Shoot length and total phenolic contents (TPC) increased in both genotypes. Superoxide dismutase (SOD) and peroxidase (POD) increased in D-09027 and retained in D-09013. Catalase activity increased in D-09013 and retained in D-09027. Protease activity, total water potential and osmotic potential decreased in both genotypes and depicted high yield potential with 27 and 30% increase in yield over Bhakhar-2011 (check), respectively. In case of heat stress, maximum tolerance was found in genotypes CH104/06 and D-09013 with no change in shoot and root length, seedling dry weight, shoot fresh and dry weight, root dry weight, relative water content, turgor water potential, catalase (CAT) activity, esterase activity, increased root fresh weight, peroxidase activity (POD), ascorbate peroxidase activity (APX), and lycopene with low accumulation of protease and Malondialdehyde content (MDA). Both genotypes depicted high yield potential with 30 and 43% increase in yield over check across multiple locations of the country. Under the combined treatment, most genotypes showed good performance, while CH104/06 was selected as best performer genotype because significant of its increased root fresh weight, lycopene content, chlorophyll b, total carotenoids, total chlorophyll, retained shoot length, root length, seedling fresh and dry weight, total water potential, osmotic potential, relative water content, peroxidase activity (POD), catalase, esterase, and its ascorbate peroxidase (APX) activity and total soluble proteins (TSP) showed highest yield potential with 43% increase over check. Identified best performing and tolerant genotypes can further be employed for breeding climate-smart chickpea genotypes for sustainable production under changing climate.
Collapse
Affiliation(s)
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | |
Collapse
|
8
|
Hu YB, Sperotto RA. Regulatory hubs in plant stress adaptation. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:3-6. [PMID: 34038601 DOI: 10.1111/plb.13263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 05/11/2023]
Affiliation(s)
- Y B Hu
- Northeast Forestry University, Harbin City, China
| | - R A Sperotto
- University of Taquari Valley - Univates, Lajeado, Brazil
| |
Collapse
|