1
|
Lu X, Zhao W, Wang J, He Y, Yang S, Sun H. A comprehensive review on the heterotrophic production of bioactive compounds by microalgae. World J Microbiol Biotechnol 2024; 40:210. [PMID: 38773011 DOI: 10.1007/s11274-024-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/09/2024] [Indexed: 05/23/2024]
Abstract
Bioactive compounds derived from microalgae have garnered considerable attention as valuable resources for drugs, functional foods, and cosmetics. Among these compounds, photosynthetic pigments and polyunsaturated fatty acids (PUFAs) have gained increasing interest due to their numerous beneficial properties, including anti-oxidant, anti-viral, anti-bacterial, anti-fungal, anti-inflammatory, and anti-tumor effects. Several microalgae species have been identified as rich sources of bioactive compounds, including the Chlorophyceae Dunaliella and Haematococcus, the Bacillariophyta Phaeodactylum and Nitzschia, and the dinoflagellate Crypthecodinium cohnii. However, most of the reported microalgae species primarily grow through autotrophic mechanisms, resulting in low yields and high production costs of bioactive compounds. Consequently, the utilization of heterotrophic microalgae, such as Chromochloris zofingiensis and Nitzschia laevis, has shown significant advantages in the production of astaxanthin and eicosapentaenoic acid (EPA), respectively. These heterotrophic microalgae exhibit superior capabilities in synthesizing target compounds. This comprehensive review provides a thorough examination of the heterotrophic production of bioactive compounds by microalgae. It covers key aspects, including the metabolic pathways involved, the impact of cultivation conditions, and the practical applications of these compounds. The review discusses how heterotrophic cultivation strategies can be optimized to enhance bioactive compound yields, shedding light on the potential of microalgae as a valuable resource for high-value product development.
Collapse
Affiliation(s)
- Xue Lu
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Weixuan Zhao
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Li A, Liu J, Qiu J, Wang G, Zheng X, Ji Y, Yan G, Zhao P, Wu X, Yan W, Zhang L, Li M, Fu Y. Cell cycle of microalga Isochrysis galbana arrested by neurotoxin β-N-methylamino-l-alanine and corresponding molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162445. [PMID: 36848993 DOI: 10.1016/j.scitotenv.2023.162445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The phycotoxin β-N-methylamino-l-alanine (BMAA) has attracted attention due to its risks to marine organisms and human health. In this study, approximately 85 % of synchronized cells of the marine microalga Isochrysis galbana were arrested at the cell cycle G1 phase by BMAA at 6.5 μM for a 24-h exposure. The concentration of chlorophyll a (Chl a) gradually decreased, while the maximum quantum yield of PSII (Fv/Fm), the maximum relative electron transport rate (rETRmax), light utilization efficiency (α) and half-saturated light irradiance (Ik) reduced early and recovered gradually in I. galbana exposed to BMAA in 96-h batch cultures. Transcriptional expression of I. galbana analyzed at 10, 12, and 16 h disclosed multiple mechanisms of BMAA to suppress the microalgal growth. Production of ammonia and glutamate was limited by the down-regulation of nitrate transporters, glutamate synthase, glutamine synthetase, cyanate hydrolase, and formamidase. Diverse extrinsic proteins related to PSII, PSI, cytochrome b6f complex, and ATPase were influenced by BMAA at transcriptional level. Suppression of the DNA replication and mismatch repair pathways increased the accumulation of misfolded proteins, which was reflected by the up-regulated expression of proteasome to accelerate proteolysis. This study improves our understanding of the chemical ecology impacts of BMAA in marine ecosystems.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jianwei Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peng Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xizhen Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenhui Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lei Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yilei Fu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Gene expression during the formation of resting spores induced by nitrogen starvation in the marine diatom Chaetoceros socialis. BMC Genomics 2023; 24:106. [PMID: 36899305 PMCID: PMC9999646 DOI: 10.1186/s12864-023-09175-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Dormancy is widespread in both multicellular and unicellular organisms. Among diatoms, unicellular microalgae at the base of all aquatic food webs, several species produce dormant cells (spores or resting cells) that can withstand long periods of adverse environmental conditions. RESULTS We present the first gene expression study during the process of spore formation induced by nitrogen depletion in the marine planktonic diatom Chaetoceros socialis. In this condition, genes related to photosynthesis and nitrate assimilation, including high-affinity nitrate transporters (NTRs), were downregulated. While the former result is a common reaction among diatoms under nitrogen stress, the latter seems to be exclusive of the spore-former C. socialis. The upregulation of catabolic pathways, such as tricarboxylic acid cycle, glyoxylate cycle and fatty acid beta-oxidation, suggests that this diatom could use lipids as a source of energy during the process of spore formation. Furthermore, the upregulation of a lipoxygenase and several aldehyde dehydrogenases (ALDHs) advocates the presence of oxylipin-mediated signaling, while the upregulation of genes involved in dormancy-related pathways conserved in other organisms (e.g. serine/threonine-protein kinases TOR and its inhibitor GATOR) provides interesting avenues for future explorations. CONCLUSIONS Our results demonstrate that the transition from an active growth phase to a resting one is characterized by marked metabolic changes and provides evidence for the presence of signaling pathways related to intercellular communication.
Collapse
|
4
|
|
5
|
Zhao P, Lin Z, Wang Y, Chai H, Li Y, He L, Zhou J. Facilitating effects of plant hormones on biomass production and nutrients removal by Tetraselmis cordiformis for advanced sewage treatment and its mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133650. [PMID: 31377356 DOI: 10.1016/j.scitotenv.2019.133650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Advanced sewage treatment by microalgae is regarded as a promising method for addressing eutrophication. To improve sewage treatment, three kinds of plant hormones including auxin (indole-3-acetic acid, IAA), cytokinin (Zeatin), and brassinosteroid, were chosen to measure the influence of plant hormones on nitrogen and phosphorus removal by Tetraselmis cordiformis and to analyze their mechanisms, including photosynthesis, nutrient metabolism, and gene transcription. The results indicated that the maximal removal efficiencies of total nitrogen and phosphate by T. cordiformis were elevated by the plant hormones by 184.3% and 53.2%, respectively. The chlorophyll a content was increased by 1.1 times by the plant hormones in comparison with the control. Moreover, after being stimulated by plant hormones, the activities of nitrate reductase (NR) and glutamine synthetase (GS) increased by 90.4% and 82.1%, respectively, in comparison with the control. Supplementation with plant hormones also significantly elevated the mRNA expression level of GS-related gene by 30.9%. This study demonstrated that plant hormones could significantly promote the nutrient removal of microalgae for sewage treatment in artificial laboratory conditions and provided theoretical support for its further practical full-scale application under variable conditions.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yancheng Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
6
|
Kang LK, Rynearson TA. Identification and Expression Analyses of the Nitrate Transporter Gene (NRT2) Family Among Skeletonema species (Bacillariophyceae). JOURNAL OF PHYCOLOGY 2019; 55:1115-1125. [PMID: 31233616 DOI: 10.1111/jpy.12896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
High-affinity nitrate transporters are considered to be the major transporter system for nitrate uptake in diatoms. In the diatom genus Skeletonema, three forms of genes encoding high-affinity nitrate transporters (NRT2) were newly identified from transcriptomes generated as part of the marine microbial eukaryote transcriptome sequencing project. To examine the expression of each form of NRT2 under different nitrogen environments, laboratory experiments were conducted under nitrate-sufficient, ammonium-sufficient, and nitrate-limited conditions using three ecologically important Skeletonema species: S. dohrnii, S. menzelii, and S. marinoi. Primers were developed for each NRT2 form and species and Q-RT-PCR was performed. For each NRT2 form, the three Skeletonema species had similar transcriptional patterns. The transcript levels of NRT2:1 were significantly elevated under nitrogen-limited conditions, but strongly repressed in the presence of ammonium. The transcript levels of NRT2:2 were also repressed by ammonium, but increased 5- to 10-fold under nitrate-sufficient and nitrogen-limited conditions. Finally, the transcript levels of NRT2:3 did not vary significantly under various nitrogen conditions, and behaved more like a constitutively expressed gene. Based on the observed transcript variation among NRT2 forms, we propose a revised model describing nitrate uptake kinetics regulated by multiple forms of nitrate transporter genes in response to various nitrogen conditions in Skeletonema. The differential NRT2 transcriptional responses among species suggest that species-specific adaptive strategies exist within this genus to cope with environmental changes.
Collapse
Affiliation(s)
- Lee-Kuo Kang
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, 02882, USA
| |
Collapse
|
7
|
Nef C, Jung S, Mairet F, Kaas R, Grizeau D, Garnier M. How haptophytes microalgae mitigate vitamin B 12 limitation. Sci Rep 2019; 9:8417. [PMID: 31182768 PMCID: PMC6557843 DOI: 10.1038/s41598-019-44797-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/13/2019] [Indexed: 12/05/2022] Open
Abstract
Vitamin B12 (cobalamin) can control phytoplankton development and community composition, with around half of microalgal species requiring this vitamin for growth. B12 dependency is determined by the absence of cobalamin-independent methionine synthase and is unrelated across lineages. Despite their important role in carbon and sulphur biogeochemistry, little is known about haptophytes utilization of vitamin B12 and their ability to cope with its limitation. Here we report the first evaluation of B12 auxotrophy among this lineage based on molecular data of 19 species from 9 families. We assume that all species encode only a B12-dependent methionine synthase, suggesting ubiquitous B12 auxotrophy in this phylum. We further address the effect of different B12 limitations on the molecular physiology of the model haptophyte Tisochrysis lutea. By coupling growth assays in batch and chemostat to cobalamin quantification and expression analyses, we propose that haptophytes use three strategies to cope with B12 limitation. Haptophytes may assimilate dissolved methionine, finely regulate genes involved in methionine cycle and B12 transport and/or limit B12 transport to the mitochondrion. Taken together, these results provide better understanding of B12 metabolism in haptophytes and represent valuable data for deciphering how B12-producing bacteria shape the structure and dynamics of this important phytoplankton community.
Collapse
Affiliation(s)
- Charlotte Nef
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France.
| | - Sébastien Jung
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Francis Mairet
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Raymond Kaas
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | | | - Matthieu Garnier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| |
Collapse
|
8
|
Berthelier J, Casse N, Daccord N, Jamilloux V, Saint-Jean B, Carrier G. A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea. BMC Genomics 2018. [PMID: 29783941 DOI: 10.17882/52231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) are mobile DNA sequences known as drivers of genome evolution. Their impacts have been widely studied in animals, plants and insects, but little is known about them in microalgae. In a previous study, we compared the genetic polymorphisms between strains of the haptophyte microalga Tisochrysis lutea and suggested the involvement of active autonomous TEs in their genome evolution. RESULTS To identify potentially autonomous TEs, we designed a pipeline named PiRATE (Pipeline to Retrieve and Annotate Transposable Elements, download: https://doi.org/10.17882/51795 ), and conducted an accurate TE annotation on a new genome assembly of T. lutea. PiRATE is composed of detection, classification and annotation steps. Its detection step combines multiple, existing analysis packages representing all major approaches for TE detection and its classification step was optimized for microalgal genomes. The efficiency of the detection and classification steps was evaluated with data on the model species Arabidopsis thaliana. PiRATE detected 81% of the TE families of A. thaliana and correctly classified 75% of them. We applied PiRATE to T. lutea genomic data and established that its genome contains 15.89% Class I and 4.95% Class II TEs. In these, 3.79 and 17.05% correspond to potentially autonomous and non-autonomous TEs, respectively. Annotation data was combined with transcriptomic and proteomic data to identify potentially active autonomous TEs. We identified 17 expressed TE families and, among these, a TIR/Mariner and a TIR/hAT family were able to synthesize their transposase. Both these TE families were among the three highest expressed genes in a previous transcriptomic study and are composed of highly similar copies throughout the genome of T. lutea. This sum of evidence reveals that both these TE families could be capable of transposing or triggering the transposition of potential related MITE elements. CONCLUSION This manuscript provides an example of a de novo transposable element annotation of a non-model organism characterized by a fragmented genome assembly and belonging to a poorly studied phylum at genomic level. Integration of multi-omics data enabled the discovery of potential mobile TEs and opens the way for new discoveries on the role of these repeated elements in genomic evolution of microalgae.
Collapse
Affiliation(s)
- Jérémy Berthelier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France.
- Mer Molécules Santé, EA 2160 IUML - FR 3473 CNRS, Le Mans University, Le Mans, France.
| | - Nathalie Casse
- Mer Molécules Santé, EA 2160 IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Nicolas Daccord
- Institut de Recherche en Horticulture et Semences, INRA of Angers, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d'Angers, Angers, France
- Université Bretagne Loire, Angers, France
| | | | - Bruno Saint-Jean
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Grégory Carrier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| |
Collapse
|
9
|
Berthelier J, Casse N, Daccord N, Jamilloux V, Saint-Jean B, Carrier G. A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea. BMC Genomics 2018; 19:378. [PMID: 29783941 PMCID: PMC5963040 DOI: 10.1186/s12864-018-4763-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/07/2018] [Indexed: 01/01/2023] Open
Abstract
Background Transposable elements (TEs) are mobile DNA sequences known as drivers of genome evolution. Their impacts have been widely studied in animals, plants and insects, but little is known about them in microalgae. In a previous study, we compared the genetic polymorphisms between strains of the haptophyte microalga Tisochrysis lutea and suggested the involvement of active autonomous TEs in their genome evolution. Results To identify potentially autonomous TEs, we designed a pipeline named PiRATE (Pipeline to Retrieve and Annotate Transposable Elements, download: 10.17882/51795), and conducted an accurate TE annotation on a new genome assembly of T. lutea. PiRATE is composed of detection, classification and annotation steps. Its detection step combines multiple, existing analysis packages representing all major approaches for TE detection and its classification step was optimized for microalgal genomes. The efficiency of the detection and classification steps was evaluated with data on the model species Arabidopsis thaliana. PiRATE detected 81% of the TE families of A. thaliana and correctly classified 75% of them. We applied PiRATE to T. lutea genomic data and established that its genome contains 15.89% Class I and 4.95% Class II TEs. In these, 3.79 and 17.05% correspond to potentially autonomous and non-autonomous TEs, respectively. Annotation data was combined with transcriptomic and proteomic data to identify potentially active autonomous TEs. We identified 17 expressed TE families and, among these, a TIR/Mariner and a TIR/hAT family were able to synthesize their transposase. Both these TE families were among the three highest expressed genes in a previous transcriptomic study and are composed of highly similar copies throughout the genome of T. lutea. This sum of evidence reveals that both these TE families could be capable of transposing or triggering the transposition of potential related MITE elements. Conclusion This manuscript provides an example of a de novo transposable element annotation of a non-model organism characterized by a fragmented genome assembly and belonging to a poorly studied phylum at genomic level. Integration of multi-omics data enabled the discovery of potential mobile TEs and opens the way for new discoveries on the role of these repeated elements in genomic evolution of microalgae. Electronic supplementary material The online version of this article (10.1186/s12864-018-4763-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérémy Berthelier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France. .,Mer Molécules Santé, EA 2160 IUML - FR 3473 CNRS, Le Mans University, Le Mans, France.
| | - Nathalie Casse
- Mer Molécules Santé, EA 2160 IUML - FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Nicolas Daccord
- Institut de Recherche en Horticulture et Semences, INRA of Angers, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d'Angers, Angers, France.,Université Bretagne Loire, Angers, France
| | | | - Bruno Saint-Jean
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| | - Grégory Carrier
- IFREMER, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311, Nantes, France
| |
Collapse
|
10
|
Thiriet-Rupert S, Carrier G, Trottier C, Eveillard D, Schoefs B, Bougaran G, Cadoret JP, Chénais B, Saint-Jean B. Identification of transcription factors involved in the phenotype of a domesticated oleaginous microalgae strain of Tisochrysis lutea. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Garnier M, Bougaran G, Pavlovic M, Berard JB, Carrier G, Charrier A, Le Grand F, Lukomska E, Rouxel C, Schreiber N, Cadoret JP, Rogniaux H, Saint-Jean B. Use of a lipid rich strain reveals mechanisms of nitrogen limitation and carbon partitioning in the haptophyte Tisochrysis lutea. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|