1
|
Castell C, Díaz-Santos E, Heredia-Martínez LG, López-Maury L, Ortega JM, Navarro JA, Roncel M, Hervás M. Iron Deficiency Promotes the Lack of Photosynthetic Cytochrome c550 and Affects the Binding of the Luminal Extrinsic Subunits to Photosystem II in the Diatom Phaeodactylum tricornutum. Int J Mol Sci 2022; 23:ijms232012138. [PMID: 36292994 PMCID: PMC9603157 DOI: 10.3390/ijms232012138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 12/04/2022] Open
Abstract
In the diatom Phaeodactylum tricornutum, iron limitation promotes a decrease in the content of photosystem II, as determined by measurements of oxygen-evolving activity, thermoluminescence, chlorophyll fluorescence analyses and protein quantification methods. Thermoluminescence experiments also indicate that iron limitation induces subtle changes in the energetics of the recombination reaction between reduced QB and the S2/S3 states of the water-splitting machinery. However, electron transfer from QA to QB, involving non-heme iron, seems not to be significantly inhibited. Moreover, iron deficiency promotes a severe decrease in the content of the extrinsic PsbV/cytochrome c550 subunit of photosystem II, which appears in eukaryotic algae from the red photosynthetic lineage (including diatoms) but is absent in green algae and plants. The decline in the content of cytochrome c550 under iron-limiting conditions is accompanied by a decrease in the binding of this protein to photosystem II, and also of the extrinsic PsbO subunit. We propose that the lack of cytochrome c550, induced by iron deficiency, specifically affects the binding of other extrinsic subunits of photosystem II, as previously described in cyanobacterial PsbV mutants.
Collapse
|
2
|
Castell C, Bernal-Bayard P, Ortega JM, Roncel M, Hervás M, Navarro JA. The heterologous expression of a plastocyanin in the diatom Phaeodactylum tricornutum improves cell growth under iron-deficient conditions. PHYSIOLOGIA PLANTARUM 2021; 171:277-290. [PMID: 33247466 DOI: 10.1111/ppl.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
We have investigated if the heterologous expression of a functional green alga plastocyanin in the diatom Phaeodactylum tricornutum can improve photosynthetic activity and cell growth. Previous in vitro assays showed that a single-mutant of the plastocyanin from the green algae Chlamydomonas reinhardtii is effective in reducing P. tricornutum photosystem I. In this study, in vivo assays with P. tricornutum strains expressing this plastocyanin indicate that even the relatively low intracellular concentrations of holo-plastocyanin detected (≈4 μM) are enough to promote an increased growth (up to 60%) under iron-deficient conditions as compared with the WT strain, measured as higher cell densities, content in pigments and active photosystem I, global photosynthetic rates per cell, and even cell volume. In addition, the presence of plastocyanin as an additional photosynthetic electron carrier seems to decrease the over-reduction of the plastoquinone pool. Consequently, it promotes an improvement in the maximum quantum yield of both photosystem II and I, together with a decrease in the acceptor side photoinhibition of photosystem II-also associated to a reduced oxidative stress-a decrease in the peroxidation of membrane lipids in the choroplast, and a lower degree of limitation on the donor side of photosystem I. Thus the heterologous plastocyanin appears to act as a functional electron carrier, alternative to the native cytochrome c6 , under iron-limiting conditions.
Collapse
Affiliation(s)
- Carmen Castell
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - Pilar Bernal-Bayard
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla and CSIC, Seville, Spain
| |
Collapse
|
3
|
Kodru S, Sass L, Patil P, Szabó M, Vass I. Identification of the AG afterglow thermoluminescence band in the cyanobacterium Synechocystis PCC 6803. PHYSIOLOGIA PLANTARUM 2021; 171:291-300. [PMID: 33314124 DOI: 10.1111/ppl.13317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The so-called afterglow, AG, thermoluminescence (TL) band is a useful indicator of the presence of cyclic electron flow (CEF), which is mediated by the NADH dehydrogenase-like (NDH) complex in higher plants. Although NDH-dependent CEF occurs also in cyanobacteria, the AG band has previously not been found in these organisms. In the present study, we tested various experimental conditions and could identify a TL component with ca. +40°C peak temperature in Synechocystis PCC 6803 cells, which were illuminated by far-red (FR) light at around -10°C. The +40°C band could be observed when WT cells were grown under ambient air level CO2 , but was absent in the M55 mutant, which is deficient in the NDH-1 complex. These experimental observations match the characteristics of the AG band of higher plants. Therefore, we conclude that the newly identified +40°C TL component in Synechocystis PCC 6803 is the cyanobacterial counterpart of the plant AG band and originates from NDH-1-mediated CEF. The cyanobacterial AG band was most efficiently induced when FR illumination was applied at -10°C and its contribution to the total TL intensity declined when cells were illuminated above and below this temperature. Based on this phenomenon we also conclude that CEF is blocked by low temperatures at two different sites in Synechocystis PCC 6803: (1) Below -10°C at the level of NDH-1 and (2) below -30°C at the donor or acceptor side of Photosystem I.
Collapse
Affiliation(s)
- Sandeesha Kodru
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - László Sass
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Priyanka Patil
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Milán Szabó
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
4
|
Ortega JM, Roncel M. The afterglow photosynthetic luminescence. PHYSIOLOGIA PLANTARUM 2021; 171:268-276. [PMID: 33231323 DOI: 10.1111/ppl.13288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
The afterglow (AG) photosynthetic luminescence is a long-lived chlorophyll fluorescence emitted from PSII after the illumination of photosynthetic materials by FR or white light and placed in darkness. The AG emission corresponds to the fraction of PSII centers in the S2/3 QB non-radiative state immediately after pre-illumination, in which the arrival of an electron transferred from stroma along cyclic/chlororespiratory pathway(s) produces the S2/3 QB - radiative state that emits luminescence. This emission can be optimally recorded by a linear temperature gradient as sharp thermoluminescence (TL) band peaking at about 45°C. The AG emission recorded by TL technique has been proposed as a simple non-invasive tool to investigate the chloroplast energetic state and some of its metabolism processes as cyclic transport of electrons around PSI, chlororespiration or photorespiration. On the other hand, this emission has demonstrated to be a useful probe to study the effect of various stress conditions in photosynthetic materials.
Collapse
Affiliation(s)
- José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Seville, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
5
|
Janda T, Tajti J, Hamow KÁ, Marček T, Ivanovska B, Szalai G, Pál M, Zalewska ED, Darkó É. Acclimation of photosynthetic processes and metabolic responses to elevated temperatures in cereals. PHYSIOLOGIA PLANTARUM 2021; 171:217-231. [PMID: 32909668 DOI: 10.1111/ppl.13207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 05/14/2023]
Abstract
The aim of the present work was to better understand the molecular mechanisms of heat acclimation processes in cereals. A large number of winter and spring wheat, barley and oat varieties were grown under either control conditions (22/20°C) or under a mild heat stress (30°C) that induce the acclimation processes. The temperature dependence of chlorophyll a fluorescence induction and gas exchange parameters showed that heat acclimation increased the thermotolerance of the photosynthetic apparatus, but these changes did not differ sharply in the winter-spring type cereals. Similarly, to wheat, elevated temperature also led to increasing transpiration rate and reduced water use efficiency in barley and oat plants. A non-targeted metabolomic analysis focusing on polar metabolites in two selected barley (winter type Mv Initium and spring type Conchita) and in two oat varieties (winter type Mv Hópehely and spring type Mv Pehely) revealed substantial differences between both the two species and between the acclimated and non-acclimated plants. Several compounds, including sugars, organic acids, amino acids and alcohols could be separated and detected. The expression level of the CYP707, HSP90, galactinol synthase, raffinose synthase and α-galactosidase genes showed genotype-dependent changes after 1 day; however, the CYP707 was the only one, which was still upregulated in at least some of the genotypes. Results suggest that heat acclimation itself does not require general induction of primary metabolites. However, induction of specific routes, e.g. the induction of the raffinose family oligosaccharides, especially the synthesis of galactinol, may also contribute the improved heat tolerance in cereals.
Collapse
Affiliation(s)
- Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Judit Tajti
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Kamirán Á Hamow
- Institute of Plant Protection, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Tihana Marček
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Beti Ivanovska
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| | - Ewa D Zalewska
- Department of Vegetable and Herbs, University of Life Sciences in Lublin, Lublin, Poland
| | - Éva Darkó
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, H-2462, Martonvásár, Hungary
| |
Collapse
|
6
|
Roncel M, Krieger-Liszkay A, Ortega JM. A tribute to Jean-Marc Ducruet for his contribution to thermoluminescence and photosynthesis research. PHYSIOLOGIA PLANTARUM 2021; 171:179-182. [PMID: 33481287 DOI: 10.1111/ppl.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Seville, Spain
| | - Anja Krieger-Liszkay
- Université Paris-Saclay, Institute for Integrative Cell Biology (I2BC), CEA, CNRS, Gif-sur-Yvette, France
| | - José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|