1
|
Shen Q, Ranathunge K, de Tombeur F, Finnegan PM, Lambers H. Growing in phosphorus-impoverished habitats in south-western Australia: How general are phosphorus-acquisition and -allocation strategies among Proteaceae, Fabaceae and Myrtaceae species? PLANT, CELL & ENVIRONMENT 2024; 47:4683-4701. [PMID: 39072729 DOI: 10.1111/pce.15038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Numerous phosphorus (P)-acquisition and -utilisation strategies have evolved in plants growing in severely P-impoverished environments. Although these strategies have been well characterised for certain taxa, like Proteaceae, P-poor habitats are characterised by a high biodiversity, and we know little about how species in other families cope with P scarcity. We compared the P-acquisition and leaf P-allocation strategies of Fabaceae and Myrtaceae with those of Proteaceae growing in the same severely P-impoverished habitat. Myrtaceae and Fabaceae exhibited multiple P-acquisition strategies: P-mining by carboxylates or phosphatases, P uptake facilitated by carboxylate-releasing neighbours, and dependence on the elevated soil P availability after fire. Surprisingly, not all species showed high photosynthetic P-use efficiency (PPUE). Highly P-efficient species showed positive correlations between PPUE and the proportion of metabolite P (enzyme substrates), and negative correlations between PPUE and phospholipids (cellular membranes) and nucleic acid P (mostly ribosomal RNA), while we found no correlations in less P-efficient species. Overall, we found that Myrtaceae and Fabaceae used a wider range of strategies than Proteaceae to cope with P scarcity, at both the rhizosphere and leaf level. This knowledge is pivotal to better understand the mechanisms underlying plant survival in severely nutrient-impoverished biodiverse ecosystems.
Collapse
Affiliation(s)
- Qi Shen
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Félix de Tombeur
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Patrick M Finnegan
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Zhang L, Luo X, Zhang G, Zang X, Wen D. Nitrogen and phosphorus addition promote invasion success of invasive species via increased growth and nutrient accumulation under elevated CO2. TREE PHYSIOLOGY 2024; 44:tpad150. [PMID: 38102760 DOI: 10.1093/treephys/tpad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the context of the resource allocation hypothesis regarding the trade-off between growth and defence, compared with native species, invasive species generally allocate more energy to growth and less energy to defence. However, it remains unclear how global change and nutrient enrichment will influence the competition between invasive species and co-occurring native species. Here, we tested whether nitrogen (N) and phosphorus (P) addition under elevated CO2 causes invasive species (Mikania micrantha and Chromolaena odorata) to produce greater biomass, higher growth-related compounds and lower defence-related compounds than native plants (Paederia scandens and Eupatorium chinense). We grew these native and invasive species with similar morphology with the addition of N and P under elevated CO2 in open-top chambers. The addition of N alone increased the relative growth rate (RGR) by 5.4% in invasive species, and its combination with P addition or elevated CO2 significantly increased the RGR of invasive species by 7.5 or 8.1%, respectively, and to a level higher than that of native species (by 14.4%, P < 0.01). Combined N + P addition under elevated CO2 decreased the amount of defence-related compounds in the leaf, including lipids (by 17.7%) and total structural carbohydrates (by 29.0%), whereas it increased the growth-related compounds in the leaf, including proteins (by 75.7%), minerals (by 9.6%) and total non-structural carbohydrates (by 8.5%). The increased concentrations of growth-related compounds were possibly associated with the increase in ribulose 1,5-bisphosphate carboxylase oxygenase content and mineral nutrition (magnesium, iron and calcium), all of which were higher in the invasive species than in the native species. These results suggest that rising atmospheric CO2 concentration and N deposition combined with nutrient enrichment will increase the growth of invasive species more than that of native species. Our result also suggests that invasive species respond more readily to produce growth-related compounds under an increased soil nutrient availability and elevated CO2.
Collapse
Affiliation(s)
- Lingling Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Xianzhen Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Guihua Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Xiaowei Zang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Dazhi Wen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No.723, Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
3
|
Hu D, Khan IU, Wang J, Shi X, Jiang X, Qi S, Dai Z, Mao H, Du D. Invasive Wedelia trilobata Performs Better Than Its Native Congener in Various Forms of Phosphorous in Different Growth Stages. PLANTS (BASEL, SWITZERLAND) 2023; 12:3051. [PMID: 37687298 PMCID: PMC10490449 DOI: 10.3390/plants12173051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
At present, many hypotheses have been proposed to explain the mechanism of alien plants' successful invasion; the resource fluctuations hypothesis indicates that nutrient availability is a main abiotic factor driving the invasion of alien plants. Higher phosphorus utilization and absorption efficiency might be one of the important reasons for alien plants successful invasion. Wedelia trilobata, one of the notorious invasive weeds in China, possesses a strong ability to continue their development under infertile habitats. In this study, firstly, W. trilobata and its native congener, W. chinensis, were grown in various phosphorus forms to test their absorption efficiency of phosphorus. Secondly, the different responses of W. trilobata and W. chinensis to the insoluble phosphorus in three growth stages (at 30, 60, and 150 days cultivation) were also tested. The results showed that the growth rate, root morphology, and phosphorus absorption efficiency of W. trilobata under various insoluble, organic, or low phosphorus conditions were significantly higher than that of W. chinensis. During the short-term cultivation period (30 d), the growth of W. trilobata under insoluble and low phosphorus treatments had no significant difference, and the growth of W. trilobata in insoluble phosphorus treatment also had no significant effect in long-term cultivation (60 and 150 d). However, the growth of W. chinensis in each period under the conditions of insoluble and low phosphorus was significantly inhibited throughout these three growth stages. Therefore, invasive W. trilobata had a higher phosphorus utilization efficiency than its native congener. This study could explain how invasive W. trilobata performs under nutrient-poor habitats, while also providing favorable evidence for the resource fluctuations hypothesis.
Collapse
Affiliation(s)
- Die Hu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Irfan Ullah Khan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (I.U.K.); (X.S.); (Z.D.); (D.D.)
| | - Jiahao Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Xinning Shi
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (I.U.K.); (X.S.); (Z.D.); (D.D.)
| | - Xinqi Jiang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Shanshan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Zhicong Dai
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (I.U.K.); (X.S.); (Z.D.); (D.D.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (D.H.); (J.W.); (X.J.); (H.M.)
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (I.U.K.); (X.S.); (Z.D.); (D.D.)
| |
Collapse
|
4
|
Yan J, Ye X, Song Y, Ren T, Wang C, Li X, Cong R, Lu Z, Lu J. Sufficient potassium improves inorganic phosphate-limited photosynthesis in Brassica napus by enhancing metabolic phosphorus fractions and Rubisco activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:416-429. [PMID: 36479950 DOI: 10.1111/tpj.16057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Crop photosynthesis (A) and productivity are often limited by a combination of nutrient stresses, such that changes in the availability of one nutrient may affect the availability of another nutrient, in turn influencing A. In this study, we examined the synergistic effects of phosphorus (P) and potassium (K) on leaf A in a nutrient amendment experiment, in which P and K were added individually or in combination to Brassica napus grown under P and K co-limitation. The data revealed that the addition of P gradually removed the dominant limiting factor (i.e. the limited availability of P) and improved leaf A. Strikingly, the addition of K synergistically improved the overall uptake of P, mainly by boosting plant growth, and compensated for the physiological demand for P by prioritizing investment in metabolic pools of P (P-containing metabolites and inorganic phosphate, Pi). The enlarged pool of metabolically active P was partially associated with the upregulation of Pi regeneration through release from triose phosphates rather than replacement of P-containing lipids. This process mitigated P restrictions on A by maintaining the ATP/NADPH and NADPH/NADP+ ratios and increasing the content and activity of Rubisco. Our findings demonstrate that sufficient K increased Pi-limited A by enhancing metabolic P fractions and Rubisco activity. Thus, ionic synergism may be exploited to mitigate nutrient-limiting factors to improve crop productivity.
Collapse
Affiliation(s)
- Jinyao Yan
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaolei Ye
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Yi Song
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Chongming Wang
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaokun Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| |
Collapse
|