1
|
Ji J, Zhang J, Wang X, Song W, Ma B, Wang R, Li T, Wang G, Guan C, Gao X. The alleviation of salt stress on rice through increasing photosynthetic capacity, maintaining redox homeostasis and regulating soil enzyme activities by Enterobacter sp. JIV1 assisted with putrescine. Microbiol Res 2024; 280:127590. [PMID: 38142517 DOI: 10.1016/j.micres.2023.127590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The detrimental impact of soil salinization on crop productivity and agricultural economy has garnered significant attention. A rhizosphere bacterium with favorable salt tolerance and plant growth-promoting (PGP) functions was isolated in this work. The bacterium was identified as Enterobacter through 16 S rDNA sequencing analysis and designated as Enterobacter sp. JIV1. Interestingly, the presence of putrescine (Put), which had been shown to contribute in reducing abiotic stress damage to plants, significantly promoted strain JIV1 to generate 1-aminocyclopropane-1-carboxylic (ACC) deaminase, dissolve phosphorus and secrete indole-3-acetic acid (IAA). However, the synergy of plant growth promoting rhizobacteria (PGPR) and Put in improving plant salt resistance has not been extensively studied. In this study, strain JIV1 and exogenous Put effectively mitigated the inhibitory impact of salt stress simulated by 200 mM NaCl on rice (Oryza sativa L.) growth. The chlorophyll accumulation, photosynthetic efficiency and antioxidant capacity of rice were also significantly strengthened. Notably, the combined application of strain JIV1 and Put outperformed individual treatments. Moreover, the co-addition of strain JIV1 and Put increased soil protease and urease activities by 451.97% and 51.70% compared to that of salt treatment group. In general, Put-assisted PGPR JIV1 provides a new perspective on alleviating the salt-induced negative impacts on plants.
Collapse
Affiliation(s)
- Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xinya Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenju Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Baoying Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Runzhong Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiange Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaoping Gao
- Fuzhou Planning Design Research Institute, Fuzhou 350108, China.
| |
Collapse
|
2
|
Feng L, Li Q, Zhou D, Jia M, Liu Z, Hou Z, Ren Q, Ji S, Sang S, Lu S, Yu J. B. subtilis CNBG-PGPR-1 induces methionine to regulate ethylene pathway and ROS scavenging for improving salt tolerance of tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:193-211. [PMID: 37812678 DOI: 10.1111/tpj.16489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Soil salinity severely threatens plant growth and crop yields. The utilization of PGPR is an effective strategy for enhancing plant salt tolerance, but the mechanisms involved in this process have rarely been reported. In this study, we investigated the effects of Bacillus subtilis CNBG-PGPR-1 on improving plant salt tolerance and elucidated the molecular pathways involved. The results showed that CNBG-PGPR-1 significantly improved the cellular homeostasis and photosynthetic efficiency of leaves and reduced ion toxicity and osmotic stress caused by salt in tomato. Transcriptome analysis uncovered that CNBG-PGPR-1 enhanced plant salt tolerance through the activation of complex molecular pathways, with plant hormone signal transduction playing an important role. Comparative analysis and pharmacological experiments confirmed that the ethylene pathway was closely related to the beneficial effect of CNBG-PGPR-1 on improving plant salt tolerance. Furthermore, we found that methionine, a precursor of ethylene synthesis, significantly accumulated in response to CNBG-PGPR-1 in tomato. Exogenous L-methionine largely mimicked the beneficial effects of CNBG-PGPR-1 and activated the expression of ethylene pathway-related genes, indicating CNBG-PGPR-1 induces methionine accumulation to regulate the ethylene pathway in tomato. Finally, CNBG-PGPR-1 reduced salt-induced ROS by activating ROS scavenger-encoding genes, mainly involved in GSH metabolism and POD-related genes, which were also closely linked to methionine metabolism. Overall, our studies demonstrate that CNBG-PGPR-1-induced methionine is a key regulator in enhancing plant salt tolerance through the ethylene pathway and ROS scavenging, providing a novel understanding of the mechanism by which beneficial microbes improve plant salt tolerance.
Collapse
Affiliation(s)
- Liuchun Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Dongqin Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Mingyun Jia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhuangzhuang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhaoqi Hou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Quanjin Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Shengdong Ji
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shifei Sang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shipeng Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| |
Collapse
|
3
|
Chen SM, Zhang CM, Peng H, Qin YY, Li L, Li CG, Xing K, Liu LL, Qin S. Exopolysaccharides from endophytic Glutamicibacter halophytocota KLBMP 5180 functions as bio-stimulants to improve tomato plants growth and salt stress tolerance. Int J Biol Macromol 2023; 253:126717. [PMID: 37673153 DOI: 10.1016/j.ijbiomac.2023.126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/06/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Microbial exopolysaccharides (EPSs) can promote plants growth and protect them against various abiotic stresses, but the role of actinobacteria-produced EPSs in plant growth promoting is still less known. Here, we aim to explore the effect of EPSs from an endophyte Glutamicibacter halophytocota KLBMP 5180 on tomato seeds germination and seedlings growth under salt stress. Our study revealed that 2.0 g/L EPSs resulted in increased seed germination rate by 23.5 % and 11.0 %, respectively, under 0 and 200 mM NaCl stress conditions. Further pot experiment demonstrated that EPSs significantly promoted seedlings growth under salt stress, with increased height, root length and fibrous roots number. Plant physiological traits revealed that EPSs increased chlorophyll content, enhanced the activity of antioxidant enzymes, soluble sugar, and K+ concentration in seedlings; malondialdehyde and Na+ contents were reduced. Additionally, auxin, abscisic acid, jasmonic acid, and salicylic acid were accumulated significantly in seedlings after EPSs treatment. Furthermore, we identified 1233 differentially expressed genes, and they were significantly enriched in phytohormone signal transmission, phenylpropanoid biosynthesis, and protein processing in endogenous reticulum pathways, etc. Our results suggest that KLBMP 5180-produced EPSs effectively ameliorated NaCl stress in tomato plants by triggering complex regulation mechanism, and showed application potentiality in agriculture.
Collapse
Affiliation(s)
- Shu-Mei Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Chun-Mei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Hao Peng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Yue-Ying Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Li Li
- Jiangsu Runzhong Agricultural Technology Co., Ltd, Xinyi 221424, Jiangsu, PR China
| | - Cheng-Guo Li
- Xuzhou Kuaibang Biotechnology Development Co., Ltd, Xuzhou, Jiangsu, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Lu-Lu Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China.
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China.
| |
Collapse
|
4
|
Guo L, Zhang X, Zhao J, Zhang A, Pang Q. Enhancement of sulfur metabolism and antioxidant machinery confers Bacillus sp. Jrh14-10-induced alkaline stress tolerance in plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108063. [PMID: 37827044 DOI: 10.1016/j.plaphy.2023.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/11/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Alkaline stress is a major environmental challenge that restricts plant growth and agricultural productivity worldwide. Plant growth-promoting rhizobacteria (PGPR) can be used to effectively enhance plant abiotic stress in an environment-friendly manner. However, PGPR that can enhance alkalinity tolerance are not well-studied and the mechanisms by which they exert beneficial effects remain elusive. In this study, we isolated Jrh14-10 from the rhizosphere soil of halophyte Halerpestes cymbalaria (Pursh) Green and found that it can produce indole-3-acetic acid (IAA) and siderophore. By 16S rRNA gene sequencing, it was classified as Bacillus licheniformis. Inoculation Arabidopsis seedlings with Jrh14-10 significantly increased the total fresh weight (by 148.1%), primary root elongation (by 1121.7%), and lateral root number (by 108.8%) under alkaline stress. RNA-Seq analysis showed that 3389 genes were up-regulated by inoculation under alkaline stress and they were associated with sulfur metabolism, photosynthetic system, and oxidative stress response. Significantly, the levels of Cys and GSH were increased by 144.3% and 48.7%, respectively, in the inoculation group compared to the control under alkaline stress. Furthermore, Jrh14-10 markedly enhanced the activities of antioxidant enzymes, resulting in lower levels of O2•-, H2O2, and MDA as well as higher levels of Fv/Fm in alkaline-treated seedlings. In summary, Jrh14-10 can improve alkaline stress resistance in seedlings which was accompanied by an increase in sulfur metabolism-mediated GSH synthesis and antioxidant enzyme activities. These results provide a mechanistic understanding of the interactions between a beneficial bacterial strain and plants under alkaline stress.
Collapse
Affiliation(s)
- Lifeng Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Xuchen Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Life Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| |
Collapse
|
5
|
Li J, Guo X, Cai D, Xu Y, Wang Y. Bacillus amyloliquefaciens 11B91 inoculation enhances the growth of quinoa ( Chenopodium quinoa Willd.) under salt stress. PeerJ 2023; 11:e15925. [PMID: 37641595 PMCID: PMC10460562 DOI: 10.7717/peerj.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a highly nutritious food product with a comprehensive development prospect. Here, we discussed the effect of Bacillus amyloliquefaciens 11B91 on the growth, development and salt tolerance (salt concentrations: 0, 150, 300 mmol·L-1) of quinoa and highlighted a positive role for the application of plant growth-promoting rhizobacteria bacteria in quinoa. In this artical, the growth-promoting effect of Bacillus amyloliquefaciens 11B91 on quinoa (Longli No.1) and the changes in biomass, chlorophyll content, root activity and total phosphorus content under salt stress were measured. The results revealed that plants inoculated with 11B91 exhibited increased maximum shoot fresh weight (73.95%), root fresh weight (75.36%), root dry weight (136%), chlorophyll a (65.32%) contents and chlorophyll b (58.5%) contents, root activity (54.44%) and total phosphorus content (16.66%). Additionally, plants inoculated with 11B91 under salt stress plants showed significantly improved, fresh weight (107%), dry weight (133%), chlorophyll a (162%) contents and chlorophyll b (76.37%) contents, root activity (33.07%), and total phosphorus content (42.73%).
Collapse
Affiliation(s)
- Jing Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaonong Guo
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Deyu Cai
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ying Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yaling Wang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|