1
|
Egan S, Seidel A, Weber C, Ghio M, Bellebaum C. Fifty Percent of the Time, Tones Come Every Time: Stronger Prediction Error Effects on Neurophysiological Sensory Attenuation for Self-generated Tones. J Cogn Neurosci 2024; 36:2067-2083. [PMID: 39023362 DOI: 10.1162/jocn_a_02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The N1/P2 amplitude reduction for self-generated tones in comparison to external tones in EEG, which has recently also been described for action observation, is an example of the so-called sensory attenuation. Whether this effect is dependent on motor-based or general predictive mechanisms is unclear. Using a paradigm, in which actions (button presses) elicited tones in only half the trials, this study examined how the processing of the tones is modulated by the prediction error in each trial in a self-performed action compared with action observation. In addition, we considered the effect of temporal predictability by adding a third condition, in which visual cues were followed by external tones in half the trials. The attenuation result patterns differed for N1 and P2 amplitudes, but neither showed an attenuation effect beyond temporal predictability. Interestingly, we found that both N1 and P2 amplitudes reflected prediction errors derived from a reinforcement learning model, in that larger errors coincided with larger amplitudes. This effect was stronger for tones following button presses compared with cued external tones, but only for self-performed and not for observed actions. Taken together, our results suggest that attenuation effects are partially driven by general predictive mechanisms irrespective of self-performed actions. However, the stronger prediction-error effects for self-generated tones suggest that distinct motor-related factors beyond temporal predictability, potentially linked to reinforcement learning, play a role in the underlying mechanisms. Further research is needed to validate these initial findings as the calculation of the prediction errors was limited by the design of the experiment.
Collapse
Affiliation(s)
- Sophie Egan
- Heinrich Heine University, Faculty of Mathematics and Natural Sciences, Düsseldorf
| | - Alexander Seidel
- Heinrich Heine University, Faculty of Mathematics and Natural Sciences, Düsseldorf
- MSH Medical School Hamburg
| | - Constanze Weber
- Heinrich Heine University, Faculty of Mathematics and Natural Sciences, Düsseldorf
| | - Marta Ghio
- Heinrich Heine University, Faculty of Mathematics and Natural Sciences, Düsseldorf
| | - Christian Bellebaum
- Heinrich Heine University, Faculty of Mathematics and Natural Sciences, Düsseldorf
| |
Collapse
|
2
|
Feder S, Miksch J, Grimm S, Krems JF, Bendixen A. Using event-related brain potentials to evaluate motor-auditory latencies in virtual reality. FRONTIERS IN NEUROERGONOMICS 2023; 4:1196507. [PMID: 38234486 PMCID: PMC10790907 DOI: 10.3389/fnrgo.2023.1196507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/14/2023] [Indexed: 01/19/2024]
Abstract
Actions in the real world have immediate sensory consequences. Mimicking these in digital environments is within reach, but technical constraints usually impose a certain latency (delay) between user actions and system responses. It is important to assess the impact of this latency on the users, ideally with measurement techniques that do not interfere with their digital experience. One such unobtrusive technique is electroencephalography (EEG), which can capture the users' brain activity associated with motor responses and sensory events by extracting event-related potentials (ERPs) from the continuous EEG recording. Here we exploit the fact that the amplitude of sensory ERP components (specifically, N1 and P2) reflects the degree to which the sensory event was perceived as an expected consequence of an own action (self-generation effect). Participants (N = 24) elicit auditory events in a virtual-reality (VR) setting by entering codes on virtual keypads to open doors. In a within-participant design, the delay between user input and sound presentation is manipulated across blocks. Occasionally, the virtual keypad is operated by a simulated robot instead, yielding a control condition with externally generated sounds. Results show that N1 (but not P2) amplitude is reduced for self-generated relative to externally generated sounds, and P2 (but not N1) amplitude is modulated by delay of sound presentation in a graded manner. This dissociation between N1 and P2 effects maps back to basic research on self-generation of sounds. We suggest P2 amplitude as a candidate read-out to assess the quality and immersiveness of digital environments with respect to system latency.
Collapse
Affiliation(s)
- Sascha Feder
- Cognitive Systems Lab, Institute of Physics, Faculty of Natural Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Jochen Miksch
- Cognitive Systems Lab, Institute of Physics, Faculty of Natural Sciences, Chemnitz University of Technology, Chemnitz, Germany
- Physics of Cognition Group, Institute of Physics, Faculty of Natural Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Sabine Grimm
- Cognitive Systems Lab, Institute of Physics, Faculty of Natural Sciences, Chemnitz University of Technology, Chemnitz, Germany
- Physics of Cognition Group, Institute of Physics, Faculty of Natural Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Josef F. Krems
- Research Group Cognitive and Engineering Psychology, Institute of Psychology, Faculty of Behavioural and Social Sciences, Chemnitz University of Technology, Chemnitz, Germany
| | - Alexandra Bendixen
- Cognitive Systems Lab, Institute of Physics, Faculty of Natural Sciences, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
3
|
Egan S, Ghio M, Bellebaum C. Auditory N1 and P2 Attenuation in Action Observation: An Event-Related Potential Study Considering Effects of Temporal Predictability and Individualism. Biol Psychol 2023; 180:108575. [PMID: 37156324 DOI: 10.1016/j.biopsycho.2023.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Tones that are generated by self-performed actions elicit attenuated N1 and P2 amplitudes, as measured by electroencephalography (EEG), compared to identical external tones, which is referred to as neurophysiological sensory attenuation (SA). At the same time, self-generated tones are perceived as less loud compared to external tones (perceptual SA). Action observation led in part to a similar neurophysiological and perceptual SA. The perceptual SA in observers was found in comparison to tones that were temporally predictable, and one study suggested that perceptual SA in observers might depend on the cultural dimension of individualism. In this study, we examined neurophysiological SA for tones elicited by self-performed and observed actions during simultaneous EEG acquisitions in two participants, extending the paradigm with a visual cue condition controlling for effects of temporal predictability. Moreover, we investigated the effect of individualism on neurophysiological SA in action observation. Relative to un-cued external tones, the N1 was only descriptively reduced for tones that were elicited by self-performed or observed actions and significantly attenuated for cued external tones. A P2 attenuation effect relative to un-cued external tones was found in all three conditions, with stronger effects for self- and other-generated tones than for cued external tones. We found no evidence for an effect of individualism. These findings add to previous evidence for neurophysiological SA in action performance and observation with a paradigm well-controlled for the effect of predictability and individualism, showing differential effects of the former on the N1 and P2 components, and no effect of the latter.
Collapse
Affiliation(s)
- Sophie Egan
- Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany.
| | - Marta Ghio
- Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany.
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
4
|
Seidel A, Weber C, Ghio M, Bellebaum C. My view on your actions: Dynamic changes in viewpoint-dependent auditory ERP attenuation during action observation. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01083-7. [PMID: 36949276 PMCID: PMC10400693 DOI: 10.3758/s13415-023-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
It has been suggested that during action observation, a sensory representation of the observed action is mapped onto one's own motor system. However, it is largely unexplored what this may imply for the early processing of the action's sensory consequences, whether the observational viewpoint exerts influence on this and how such a modulatory effect might change over time. We tested whether the event-related potential of auditory effects of actions observed from a first- versus third-person perspective show amplitude reductions compared with externally generated sounds, as revealed for self-generated sounds. Multilevel modeling on trial-level data showed distinct dynamic patterns for the two viewpoints on reductions of the N1, P2, and N2 components. For both viewpoints, an N1 reduction for sounds generated by observed actions versus externally generated sounds was observed. However, only during first-person observation, we found a temporal dynamic within experimental runs (i.e., the N1 reduction only emerged with increasing trial number), indicating time-variant, viewpoint-dependent processes involved in sensorimotor prediction during action observation. For the P2, only a viewpoint-independent reduction was found for sounds elicited by observed actions, which disappeared in the second half of the experiment. The opposite pattern was found in an exploratory analysis concerning the N2, revealing a reduction that increased in the second half of the experiment, and, moreover, a temporal dynamic within experimental runs for the first-person perspective, possibly reflecting an agency-related process. Overall, these results suggested that the processing of auditory outcomes of observed actions is dynamically modulated by the viewpoint over time.
Collapse
Affiliation(s)
- Alexander Seidel
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| | - Constanze Weber
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany.
| | - Marta Ghio
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| |
Collapse
|
5
|
Kutlikova HH, Geniole SN, Eisenegger C, Lamm C, Jocham G, Studer B. Not giving up: Testosterone promotes persistence against a stronger opponent. Psychoneuroendocrinology 2021; 128:105214. [PMID: 33836382 DOI: 10.1016/j.psyneuen.2021.105214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023]
Abstract
Recent research suggests that when we lack a sense of control, we are prone to motivational failures and early quitting in competitions. Testosterone, on the other hand, is thought to boost competitiveness. Here we investigate the interaction between these factors, testing the testosterone's potential to enhance persistence in a competition against a stronger opponent, depending on experimentally manipulated perceived control. Healthy participants were administered a single dose of testosterone or placebo. They first underwent a task designed to either induce low or high perceived control and then entered a costly competition against a progressively stronger opponent that they could quit at any time. In the placebo group, men with low perceived control quitted twice as early as those with high perceived control. Testosterone countered this effect, making individuals with low control persist in the competition for as long as those with high perceived control, and did so also despite raising participants' explicit awareness of the opponents' advantage. This psychoendocrinological effect was not modulated by basal cortisol levels, CAG repeat polymorphism of the androgen receptor gene, or trait dominance. Our results provide the first causal evidence that testosterone promotes competitive persistence in humans and demonstrate that this effect depends on the psychological state elicited prior to the competition, broadening our understanding of the complex relationships between testosterone and social behaviors.
Collapse
Affiliation(s)
- Hana H Kutlikova
- Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Behavioural Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia.
| | - Shawn N Geniole
- Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychology, University of the Fraser Valley, 33844 King Road, Abbotsford V2S 7M8, Canada.
| | - Christoph Eisenegger
- Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Claus Lamm
- Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| | - Gerhard Jocham
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Bettina Studer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Universitätsstraße 1, 140225 Düsseldorf, Germany; Mauritius Hospital Meerbusch, Strümper Straße 111, 40670 Meerbusch, Germany.
| |
Collapse
|