1
|
Słowińska M, Paukszto Ł, Pardyak L, Jastrzębski JP, Liszewska E, Wiśniewska J, Kozłowski K, Jankowski J, Bilińska B, Ciereszko A. Transcriptome and Proteome Analysis Revealed Key Pathways Regulating Final Stage of Oocyte Maturation of the Turkey ( Meleagris gallopavo). Int J Mol Sci 2021; 22:ijms221910589. [PMID: 34638931 PMCID: PMC8508634 DOI: 10.3390/ijms221910589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
In birds, the zona pellucida (ZP) matrix that surrounds the ovulated oocyte—called the inner perivitelline layer—is involved in sperm–zona interaction and successful fertilization. To identify the important genes and proteins connected with the final step of egg development, next-generation sequencing and two-dimensional electrophoresis, combined with mass spectrometry, were used for the analysis of mature oocytes at the F1 developmental stage. A total of 8161 genes and 228 proteins were annotated. Six subfamilies of genes, with codes ZP, ZP1–4, ZPD, and ZPAX, were identified, with the dominant expression of ZPD. The main expression site for ZP1 was the liver; however, granulosa cells may also participate in local ZP1 secretion. A ubiquitination system was identified in mature oocytes, where ZP1 was found to be the main ubiquitinated protein. Analysis of transcripts classified in estrogen receptor (ESR) signaling indicated the presence of ESR1 and ESR2, as well as a set of estrogen-dependent genes involved in both genomic and nongenomic mechanisms for the regulation of gene expression by estrogen. Oxidative phosphorylation was found to be a possible source of adenosine triphosphate, and the nuclear factor erythroid 2-related factor 2 signaling pathway could be involved in the response against oxidative stress. Oocyte–granulosa cell communication by tight, adherens, and gap junctions seems to be essential for the final step of oocyte maturation.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
- Correspondence: ; Tel.: +48-89-539-3173
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland;
| | - Jan P. Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland;
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| |
Collapse
|
2
|
Wu Y, Li M, Yang M. Post-Translational Modifications in Oocyte Maturation and Embryo Development. Front Cell Dev Biol 2021; 9:645318. [PMID: 34150752 PMCID: PMC8206635 DOI: 10.3389/fcell.2021.645318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Mammalian oocyte maturation and embryo development are unique biological processes regulated by various modifications. Since de novo mRNA transcription is absent during oocyte meiosis, protein-level regulation, especially post-translational modification (PTM), is crucial. It is known that PTM plays key roles in diverse cellular events such as DNA damage response, chromosome condensation, and cytoskeletal organization during oocyte maturation and embryo development. However, most previous reviews on PTM in oocytes and embryos have only focused on studies of Xenopus laevis or Caenorhabditis elegans eggs. In this review, we will discuss the latest discoveries regarding PTM in mammalian oocytes maturation and embryo development, focusing on phosphorylation, ubiquitination, SUMOylation and Poly(ADP-ribosyl)ation (PARylation). Phosphorylation functions in chromosome condensation and spindle alignment by regulating histone H3, mitogen-activated protein kinases, and some other pathways during mammalian oocyte maturation. Ubiquitination is a three-step enzymatic cascade that facilitates the degradation of proteins, and numerous E3 ubiquitin ligases are involved in modifying substrates and thus regulating oocyte maturation, oocyte-sperm binding, and early embryo development. Through the reversible addition and removal of SUMO (small ubiquitin-related modifier) on lysine residues, SUMOylation affects the cell cycle and DNA damage response in oocytes. As an emerging PTM, PARlation has been shown to not only participate in DNA damage repair, but also mediate asymmetric division of oocyte meiosis. Each of these PTMs and external environments is versatile and contributes to distinct phases during oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Mo Yang
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ge C, Feng N, Hu C, Tang Y, Li X, Wang X. Transwell isolation and difference analysis of capacitated boar sperm proteins based on the iTRAQ technique. Theriogenology 2021; 168:13-24. [PMID: 33839467 DOI: 10.1016/j.theriogenology.2021.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
During capacitation, proteins in boar sperm are released to maintain the stability of their own state and membrane structure. No studies have analyzed the differences between retained proteins and released proteins during sperm capacitation. In the present study, a Transwell chamber and polycarbonate membrane were used to separate the proteins of boar sperm and their released proteins. Isotopically labeled relative and absolute quantification (iTRAQ) was used to analyze each compartment protein. A total of 108 differential proteins were identified in the upper and lower chambers of the Transwell, among which 27 were significantly upregulated (p-value≤0.05 and |log2 (fold change)|≥1) and 81 were significantly downregulated (p-value≤0.05 and |log2 (fold change)|≤1). These differential proteins were mainly involved in biological processes (e.g., the regulation of cysteine peptidase activity, transmembrane transportation, ion transportation and ATP synthesis) and major signaling pathways (e.g., glutathione/galactose metabolism, cellular adhesion and PI3K-Akt), and most of them interacted with each other to some extent. In conclusion, retained proteins and released proteins of capacitated sperm were effectively separated using a Transwell chamber, and differential proteins were successfully identified from among the proteins. Bioinformatics analysis suggested that these differential proteins affect sperm capacitation mainly by adjusting sperm energy metabolism, motion characteristics and acrosome membrane status.
Collapse
Affiliation(s)
- Chenling Ge
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Ni Feng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Yinsheng Tang
- Guangxi Work Station of Livestock & Poultry Breed Improvement, Nanning, 530001, China.
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Shi L, Wang L, Liu J, Deng T, Yan H, Zhang L, Liu X, Gao H, Hou X, Wang L, Zhao F. Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population. J Anim Sci Biotechnol 2020; 11:46. [PMID: 32355558 PMCID: PMC7187514 DOI: 10.1186/s40104-020-00447-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/12/2020] [Indexed: 01/24/2023] Open
Abstract
Background Runs of homozygosity (ROHs) are homozygous segments of the genome where the two haplotypes inherited from the parents are identical. The current availability of genotypes for a very large number of single nucleotide polymorphisms (SNPs) is leading to more accurate characterization of ROHs in the whole genome. Here, we investigated the occurrence and distribution of ROHs in 3,692 Large White pigs and compared estimates of inbreeding coefficients calculated based on ROHs (FROH), homozygosity (FHOM), genomic relationship matrix (FGRM) and pedigree (FPED). Furthermore, we identified genomic regions with high ROH frequencies and annotated their candidate genes. Results In total, 176,182 ROHs were identified from 3,569 animals, and all individuals displayed at least one ROH longer than 1 Mb. The ROHs identified were unevenly distributed on the autosomes. The highest and lowest coverages of Sus scrofa chromosomes (SSC) by ROH were on SSC14 and SSC13, respectively. The highest pairwise correlation among the different inbreeding coefficient estimates was 0.95 between FROH_total and FHOM, while the lowest was − 0.083 between FGRM and FPED. The correlations between FPED and FROH using four classes of ROH lengths ranged from 0.18 to 0.37 and increased with increasing ROH length, except for ROH > 10 Mb. Twelve ROH islands were located on four chromosomes (SSC1, 4, 6 and 14). These ROH islands harboured genes associated with reproduction, muscular development, fat deposition and adaptation, such as SIRT1, MYPN, SETDB1 and PSMD4. Conclusion FROH can be used to accurately assess individual inbreeding levels compared to other inbreeding coefficient estimators. In the absence of pedigree records, FROH can provide an alternative to inbreeding estimates. Our findings can be used not only to effectively increase the response to selection by appropriately managing the rate of inbreeding and minimizing the negative effects of inbreeding depression but also to help detect genomic regions with an effect on traits under selection.
Collapse
Affiliation(s)
- Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Ligang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiaxin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Tianyu Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hua Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Longchao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hongmei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xinhua Hou
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (poultry) of Ministry of Agricuture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
5
|
Bauersachs S, Mermillod P, Almiñana C. The Oviductal Extracellular Vesicles' RNA Cargo Regulates the Bovine Embryonic Transcriptome. Int J Mol Sci 2020; 21:ijms21041303. [PMID: 32075098 PMCID: PMC7072903 DOI: 10.3390/ijms21041303] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Oviductal extracellular vesicles (oEVs) are emerging as key players in the gamete/embryo–oviduct interactions that contribute to successful pregnancy. Various positive effects of oEVs on gametes and early embryos have been found in vitro. To determine whether these effects are associated with changes of embryonic gene expression, the transcriptomes of embryos supplemented with bovine fresh (FeEVs) or frozen (FoEVs) oEVs during in vitro culture compared to controls without oEVs were analyzed by low-input RNA sequencing. Analysis of RNA-seq data revealed 221 differentially expressed genes (DEGs) between FoEV treatment and control, 67 DEGs for FeEV and FoEV treatments, and minor differences between FeEV treatment and control (28 DEGs). An integrative analysis of mRNAs and miRNAs contained in oEVs obtained in a previous study with embryonic mRNA alterations pointed to direct effects of oEV cargo on embryos (1) by increasing the concentration of delivered transcripts; (2) by translating delivered mRNAs to proteins that regulate embryonic gene expression; and (3) by oEV-derived miRNAs which downregulate embryonic mRNAs or modify gene expression in other ways. Our study provided the first high-throughput analysis of the embryonic transcriptome regulated by oEVs, increasing our knowledge on the impact of oEVs on the embryo and revealing the oEV RNA components that potentially regulate embryonic development.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Genetics and Functional Genomics, VetSuisse Faculty Zurich, University of Zurich, 8315 Lindau (ZH), Switzerland;
| | - Pascal Mermillod
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France;
| | - Carmen Almiñana
- Genetics and Functional Genomics, VetSuisse Faculty Zurich, University of Zurich, 8315 Lindau (ZH), Switzerland;
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France;
- Correspondence:
| |
Collapse
|
6
|
Sun R, Sun Z, Chen Y, Zhu F, Li Y, Zhong G, Yi X. Comparative proteomic analysis of sex-biased proteins in ovary and testis at different stages of Spodoptera litura. J Proteomics 2019; 206:103439. [PMID: 31271900 DOI: 10.1016/j.jprot.2019.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Sex-biased protein is thought to be able to drive the phenotypic differences in males and females in insects. In this study, 1385 and 1727 proteins were identified as differentially accumulated proteins (DAPs) by comparing the protein abundances at pupae stage with those at adult stage in ovary and testis of S.litura, respectively. And among which, 548 DAPs were showed to be expressed in both ovary and testis, and 837 and 1179 proteins were considered as ovary-specific and testis-specific DAPs, respectively. To further identify DAPs related to gonad development and sex dimorphism, a total of 320 DAPs were selected and defined as "proteins of specific interest" based on several selecting criteria. Sex dimorphism is a complex and dynamic developmental progress, and these identified DAPs were suggested to be involved in multiple functions such as organonitrogen compound catabolic process, glycosylation, proteasome, N-Glycan biosynthesis and other reproduction-related processes. Overall, our results highlighted these sexual-biased, gonad development related and sexual dimorphism related DAPs, and their abundance variations along with development were also examined, which could provide important information for their functional analysis in reproduction and potential biomarkers for developing useful strategies against S. litura and other orthologous pests. BIOLOGICAL SIGNIFICANCE: Sex dimorphism entails the differentiation of two sexual functions, resulting in sexually phenotypic differences and leading to the development of female and male morphologies and behaviors. However, sex dimorphism related proteins remain to be identified in many non-model insects. In this study, iTRAQ-based proteomic analysis was applied to examine the variations of protein abundances at pupae stage and adult stage in ovary and testis of S.litura, respectively. Reproduction and sex dimorphism related proteins were further identified as "proteins of specific interest". These identified candidate proteins provided valuable information for their further functional analysis in reproduction and could serve as potential biomarkers for developing useful strategies against S. litura and other orthologous pests.
Collapse
Affiliation(s)
- Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Fuyu Zhu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yun Li
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|