1
|
Basini G, Grasselli F. Role of Melatonin in Ovarian Function. Animals (Basel) 2024; 14:644. [PMID: 38396612 PMCID: PMC10885985 DOI: 10.3390/ani14040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin is a hormone mainly produced by the pineal gland in the absence of light stimuli. The light, in fact, hits the retina, which sends a signal to the suprachiasmatic nucleus, which inhibits the synthesis of the hormone by the epiphysis. Mostly by interacting with MT1/MT2 membrane receptors, melatonin performs various physiological actions, among which are its regulation of the sleep-wake cycle and its control of the immune system. One of its best known functions is its non-enzymatic antioxidant action, which is independent from binding with receptors and occurs by electron donation. The hormone is also an indicator of the photoperiod in seasonally reproducing mammals, which are divided into long-day and short-day breeders according to the time of year in which they are sexually active and fertile. It is known that melatonin acts at the hypothalamic-pituitary-gonadal axis level in many species. In particular, it inhibits the hypothalamic release of GnRH, with a consequent alteration of FSH and LH levels. The present paper mainly aims to review the ovarian effect of melatonin.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, 43126 Parma, Italy;
| | | |
Collapse
|
2
|
Duan H, Yang S, Xiao L, Yang S, Yan Z, Wang F, Ma X, Zhang L, Zhang Y, Hu J, Zhao X. Melatonin promotes progesterone secretion in sheep luteal cells by regulating autophagy via the AMPK/mTOR pathway. Theriogenology 2024; 214:342-351. [PMID: 37976799 DOI: 10.1016/j.theriogenology.2023.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The corpus luteum is primarily responsible for the production and secretion of progesterone. Melatonin has been established to regulate autophagy and induce progesterone secretion in luteal cell. However, whether melatonin affects progesterone secretion by interfering with autophagy is yet to be reported. In the present study, the expression levels of melatonin receptors (MT1 and MT2), autophagy-related protein Beclin1 (Bec1), microtubule-associated protein light chain 3 B (LC3B), progesterone and steroidogenic acute regulatory protein (StAR), and cytochrome P450scc (CYP11A1) were analyzed in the corpus luteum of sheep at different stages (early, middle, and late); specifically, enzyme-linked immunosorbent assays, immunohistochemical staining, and western blotting were utilized for this expression analysis. In addition, to determine whether melatonin regulated progesterone secretion via the regulation of autophagy, luteal cells were cultured before being exposed to different concentrations of melatonin (0.01-100 nM) and the autophagy inhibitor chloroquine (50 μM). Next, luteal cells were treated with the melatonin receptor inhibitors 4-phenyl-2-propionamidotetralin (1 μM) and luzindole (1 μM) before detecting Bec1, LC3B2, AMPK/mTOR, and progesterone secretion levels to ascertain whether the effect of melatonin on autophagy and progesterone secretion is mediated by its corresponding receptors in luteal cells. Finally, to determine the significance of the AMPK/mTOR pathway in this process, an AMPK inhibitor, Compound C (10 μM), was added to luteal cells. Overall, the highest expression of melatonin receptors, autophagy and progesterone secretion was observed in the middle-phase corpus luteum; additionally, melatonin promoted autophagy, at least partially, through its receptor-mediated AMPK/mTOR pathway, which thereby promoting progesterone secretion in luteal cells in vitro. Ultimately, this study is the first to clarify the important role of autophagy in the melatonin-mediated regulation of progesterone secretion in the corpus luteum of sheep; it also lays a foundation for further exploration into the role of melatonin in regulating sheep's ovarian function.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Fang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
3
|
Ding Z, Duan H, Ge W, Lv J, Zeng J, Wang W, Niu T, Hu J, Zhang Y, Zhao X. Regulation of progesterone during follicular development by FSH and LH in sheep. Anim Reprod 2022; 19:e20220027. [PMID: 35847559 PMCID: PMC9276014 DOI: 10.1590/1984-3143-ar2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022] Open
Abstract
Progesterone (P4) can participate in the development of female mammalian antral follicles through nuclear receptor (PGR). In this experiment, the differences of P4 synthesis and PGR expression in different developmental stages of sheep antral follicles (large > 5mm, medium 2-5mm, small < 2mm) were detected by enzyme-linked immunosorbent assay, immunohistochemistry, qRT-PCR and Western blotting. Secondly, sheep follicular granulosa cells were cultured in vitro. The effects of different concentrations of FSH and LH on P4 synthesis and PGR expression were studied. The results showed that acute steroid regulatory protein (StAR), cholesterol side chain lyase (P450scc) and 3β Hydroxysteroid dehydrogenase (3β-HSD) and PGR were expressed in antral follicles, and with the development of antral follicles in sheep, StAR, P450scc and the expression of 3β-HSD and PGR increased significantly. In vitro experiments showed that FSH and LH alone or together treatment could regulate P4 secretion and PGR expression in sheep follicular granulosa cells to varying degrees, hint P4 and PGR by FSH and LH, and LH was the main factor. Our results supplement the effects of FSH and LH on the regulation of P4 synthesis during follicular development, which provides new data for further study of steroid synthesis and function in follicular development.
Collapse
Affiliation(s)
- Ziqiang Ding
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Hongwei Duan
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Wenbo Ge
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, China
| | - Jianshu Lv
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Jianlin Zeng
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Wenjuan Wang
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Tian Niu
- Gansu Agricultural University, China
| | - Junjie Hu
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Yong Zhang
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Xingxu Zhao
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| |
Collapse
|
4
|
Wang W, Lv J, Duan H, Ding Z, Zeng J, Lv C, Hu J, Zhang Y, Zhao X. Regulatory role of melatonin on epidermal growth factor receptor, Type I collagen α1 chain, and caveolin 1 in granulosa cells of sheep antral follicles. Anim Sci J 2022; 93:e13760. [PMID: 35932205 DOI: 10.1111/asj.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/17/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
We investigated the expression of epidermal growth factor receptor (EGFR), Type I collagen α1 chain (COL1A1), and caveolin 1 (CAV1) during follicular development and examined the regulatory role of melatonin (MLT) on EGFR, COL1A1, and CAV1 in sheep antral ovaries. The expression was detected in granulosa and theca cells by immunohistochemistry. Quantitative real-time polymerase chain reaction and Western blotting were used to examine the expression levels of EGFR, COL1A1, and CAV1 in small (≤2 mm), medium (2-5 mm), and large (≥5 mm) follicles. The mRNA and protein levels of EGFR, COL1A1, and CAV1 were found to be the highest in large follicles. Furthermore, cultured granulosa cells were treated with MLT (10-7 -10-11 M), luzindole (nonselective MT1 and MT2 receptor antagonist, 10-7 M), and 4-phenyl-2-propanamide tetraldehyde (4P-PDOT, MT2 selective antagonist, 10-7 M) to detect the regulatory role of MLT on EGFR, COL1A1, and CAV1. Results indicated COL1A1 and CAV1 were at least partially regulated by MLT through MT1 and MT2 pathways, whereas EGFR was not. This study provided a reference for further studies on MLT regulatory role on EGFR, COL1A1, and CAV1 during sheep follicular development and elucidated the physiological mechanism of MLT regulator production.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Chen Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
5
|
Expression of arylalkylamine n-acetyltransferase (AANAT) and acetylserotonin o-methyltransferase (ASMT) in the corpus luteum of pregnant sows and synthesis of melatonin in luteal cells. Cell Tissue Res 2021; 388:167-179. [PMID: 34816281 DOI: 10.1007/s00441-021-03556-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
In vertebrates, melatonin is mainly synthesized from serotonin in the pineal gland. Many reports have documented that melatonin is also synthesized in the extra-pineal tissues, but the synthesis of melatonin in the corpus luteum (CL) of pregnant sows has never been studied. The objectives of this study were to evaluate the expression of melatonin-synthesizing enzymes, arylalkylamine N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT), in the CL of sows during pregnancy and to investigate the synthesis of melatonin in luteal cells. Results showed that AANAT and ASMT were both expressed in the CL of sows during pregnancy, higher levels were observed in the early- and mid-stage CL, and the lowest abundance was found in the regressing CL (later-stage). The immunostaining for AANAT and ASMT was predominantly localized in the large luteal cells of porcine CL during pregnancy. Furthermore, melatonin was synthesized in luteal cells from serotonin in a dose- and time-dependent manner. And the expressions of AANAT and ASMT were upregulated by serotonin in luteal cells. In addition, progesterone (P4) secretion and cell viability were promoted in luteal cells treated with serotonin, and the stimulatory effects were blocked by luzindole (a non-selective MT1 and MT2 antagonist). Finally, the expressions of MT1 and MT2 were augmented by serotonin in luteal cells. In conclusion, this study demonstrates for the first time the developmental expression of AANAT and ASMT in the CL and a local synthesis of melatonin in luteal cells of pregnant sows, and suggests a paracrine and/or autocrine role for melatonin in luteal function.
Collapse
|
6
|
Elmi A, Govoni N, Zannoni A, Bertocchi M, Bernardini C, Forni M, Ventrella D, Bacci ML. Testicular Melatonin and Its Pathway in Roe Deer Bucks ( Capreolus capreolus) during Pre- and Post-Rut Periods: Correlation with Testicular Involution. Animals (Basel) 2021; 11:ani11071874. [PMID: 34201764 PMCID: PMC8300110 DOI: 10.3390/ani11071874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The roe deer is a small wild ruminant, very common in Europe and Asia; adult specimens are sexually active only during summer, in very short timeframes. Peculiarly, males, also known as bucks, produce spermatozoa only in this period, with a subsequent morph-functional testicular involution. In seasonal breeders, melatonin plays a pivotal role by converting light information and controlling the testicular hormonal function and, recently, its local production within testes has been described in other species. The aim of the present work was to study testicular melatonin and its synthesis pathway in roe deer during the pre-rut (June–July) and post-rut (August–September) periods, and correlate it with morph-functional testicular changes. Samples were opportunistically obtained from hunted specimens according to the local hunting calendar. The results also seem to suggest a local melatonin production in this species, but no correlations with testicular involution parameters were highlighted, probably due to the very short sampling timeframe. More studies are necessary to understand the role of melatonin in the testicular cycle and provide more information regarding the interesting reproductive physiology of this species. Abstract Roe deer are seasonal breeders with a complete yearly testicular cycle. The peak in reproductive activity is recorded during summer, the rutting period, with the highest levels of androgens and testicular weight. Melatonin plays a pivotal role in seasonal breeders by stimulating the hypothalamus–pituitary–gonads axis and acting locally; in different species, its synthesis within testes has been reported. The aim of this study was to evaluate the physiological melatonin pattern within roe deer testes by comparing data obtained from animals sampled during pre- and post-rut periods. Melatonin was quantified in testicular parenchyma, along with the genetic expression of enzymes involved in its local synthesis (AANAT and ASMT) and function (UCP1). Melatonin receptors, MT1-2, were quantified both at protein and gene expression levels. Finally, to assess changes in reproductive hormonal profiles, testicular dehydroepiandrosterone (DHEA) was quantified and used for a correlation analysis. Melatonin and AANAT were detected in all samples, without significant differences between pre- and post-rut periods. Despite DHEA levels confirming testicular involution during the post-rut period, no correlations appeared between such involution and melatonin pathways. This study represents the first report regarding melatonin synthesis in roe deer testes, opening the way for future prospective studies in the physiology of this species.
Collapse
|
7
|
Progesterone Receptor Membrane Components: Key Regulators of Fetal Membrane Integrity†. Biol Reprod 2020; 104:430-444. [PMID: 33048109 DOI: 10.1093/biolre/ioaa190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/03/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Pro-pregnancy hormone progesterone (P4) helps to maintain a quiescent status of uterine tissues during gestation. However, P4's functional role in maintaining fetal membrane (amniochorion) integrity remains unclear. P4 functions through its membrane receptors (PGRMCs) as fetal membrane cells lack nuclear receptors. This study screened the differential expression of PGRMCs in the fetal membranes and tested P4-PGRMC interactions under normal and oxidative stress (OS) conditions expected that can disrupt P4-PGRMC interactions impacting fetal membrane stability resulting in parturition. Human fetal membranes were collected from term and preterm deliveries (N = 5). Immunohistochemistry and western blot localized and determined differential expression of P4 receptors. Primary amnion epithelial (AEC), mesenchymal (AMCs), and chorion cell were treated with P4 alone or cotreat (P4 + OS induced by cigarette smoke extract [CSE]). Proximity ligation assay (PLA) documented P4-receptor binding, while P4 ELISA documented culture supernatant levels. Immunohistology confirmed lack of nuclear PRs; however, confirmed expressions of PGRMC 1 and 2. Term labor (P = 0.01) and preterm rupture (P = 0.01) are associated with significant downregulation of PGRMC2. OS induced differential downregulation of PGRMCs in both amnion and chorion cells (all P < 0.05) and downregulates P4 release (AMCs; P = 0.01). The PLA showed preferential receptor-ligand binding in amnion and chorion cells. Co-treatment of P4 + CSE did not reverse CSE-induced effects. In conclusion, P4-PGRMCs interaction maintains fetal membranes' functional integrity throughout pregnancy. Increased OS reduces endogenous P4 production and cell type-dependent downregulation of PGRMCs. These changes can lead to fetal membrane-specific 'functional progesterone withdrawal', contributing to the dysfunctional fetal membrane status seen at term and preterm conditions.
Collapse
|
8
|
D'Occhio MJ, Ghuman SS, Neglia G, Della Valle G, Baruselli PS, Zicarelli L, Visintin JA, Sarkar M, Campanile G. Exogenous and endogenous factors in seasonality of reproduction in buffalo: A review. Theriogenology 2020; 150:186-192. [PMID: 32000994 DOI: 10.1016/j.theriogenology.2020.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/29/2022]
Abstract
Seasonal breeding in buffalo is influenced by exogenous (photoperiod, climate, nutrition, management) and endogenous (hormones, genotype) factors. Buffalo are negatively photoperiodic and show a natural increase in fertility during decreasing day length. The hormone melatonin is produced by the pineal gland and has a fundamental role in photoperiodic time measurement within the brain. This drives annual cycles of gonadotropin secretion and gonadal function in buffaloes. Some melatonin is released into the systemic circulation and, together with peripherally produced melatonin, acts at somatic tissues. In the ovaries and testes of buffalo, melatonin acts as an antioxidant and scavenges oxygen free radicals to reduce both oxidative stress and apoptosis. This has beneficial effects on gametogenesis and steroidogenesis. Female buffalo treated with melatonin show an improved response to estrus synchronization protocols in out-of-season breeding. Melatonin acts through melatonin receptors MT1 and MT2 and the gene for MT1 (MTNR1A) is polymorphic in buffaloes. Single nucleotide polymorphisms (SNPs) in gene MTNR1A have been associated with fertility in female buffalo. The knowledge and tools are available to lift the reproductive performance of buffalo. This is highly important as the global demand for nutritious buffalo food products has undergone a sharp rise, and continues to grow. Buffalo can make an important contribution to affordable, nutritious animal protein. This will help address global nutritional security.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarvpreet S Ghuman
- Department of Teaching Veterinary Clinical Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Giovanni Della Valle
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Mihir Sarkar
- Physiology and Climatology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Song L, Cui Y, Xiao L, Yu S, He J. DHT and E2 synthesis-related proteins and receptors expression in male yak skin during different hair follicle stages. Gen Comp Endocrinol 2020; 286:113245. [PMID: 31415730 DOI: 10.1016/j.ygcen.2019.113245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 12/21/2022]
Abstract
Dihydrotestosterone (DHT) and 17β-estradiol (E2) are sex hormones that regulate human hair follicle (HF) growth and are produced by peripheral reduction and aromatization of testosterone. However, the expression patterns of DHT and E2 synthesis-related proteins and their receptors in male yak skin during different HF stages (telogen, anagen, and catagen) are unknown. In this study, we found that both 5α-red and androgen receptor (AR) were expressed in epithelial cells and AR was expressed in the dermal papilla. Additionally, the transcription level of 5α-red1 at different HF stages was significantly higher than that of 5α-red2 mRNA at the same stage; 5α-red1 and 5α-red2 proteins peaked during the anagen and telogen periods of HF, respectively. However, AR protein was only expressed in the skin during the anagen phase of HF. Aromatase and estrogen receptors (ERα and ERβ) were expressed in cutaneous epithelial cells, whereas ERα and ERβ were expressed in the dermal papilla; the transcription level of ERα in HFs at each stage was much higher than that of ERβ. From the catagen to telogen phase, aromatase protein expression was down-regulated, while ERα protein expression was up-regulated. Based on our results, we speculate that 5α-red1 is essential for the synthesis of DHT in male yak skin epithelial cells and promotes the growth of HFs through AR. E2 synthesized by male yak skin epithelial cells may inhibit the growth of male yak skin HFs by ERα. These results provide a foundation for further study on the mechanism of hormone-regulated male yak skin HFs.
Collapse
Affiliation(s)
- Liangli Song
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| | - Longfei Xiao
- Laboratory of Veterinary Obstetrics, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Song LL, Cui Y, Yu SJ, Liu PG, He JF. TGF-β and HSP70 profiles during transformation of yak hair follicles from the anagen to catagen stage. J Cell Physiol 2019; 234:15638-15646. [PMID: 30723905 DOI: 10.1002/jcp.28212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Transforming growth factor-β (TGF-β) and heat shock protein 70 (HSP70) are important for the hair follicle (HF) cycle, but it is unclear whether they participate in HF regression in yak skin. In this study, we investigated the role of TGF-β, TGF-βRII, and HSP70 in the transition from anagen to catagen of HFs. The results showed that TGF-β2 transcription was significantly higher than that of TGF-β1 and TGF-β3 in the same periods. Meanwhile, the expressions of TGF-β2, TGF-βRII, and caspase-3 were higher in the catagen phase than that in mid-anagen, and some TGF-βRII-positive HF cells were terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-positive. Moreover, the HSP70 protein levels in mid-anagen were higher than those in late-anagen and catagen. These results suggested that TGF-β2 plays a major role in catagen induction in yak HFs, which might be achieved via TGF-βRII-mediated apoptosis in HF epithelial cells. In contrast, HSP70 might protect epithelial cells from apoptosis and ultimately inhibit HF regression. In conclusion, TGF-β2 has positive effects, whereas HSP70 has negative effects, on catagen induction.
Collapse
Affiliation(s)
- Liang-Li Song
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Si-Jiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng-Gang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jun-Feng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Duan H, Xiao L, Hu J, Zhang Y, Zhao X, Ge W, Jiang Y, Song L, Yang S, Luo W. Expression of oestrogen receptor, androgen receptor and progesterone nuclear receptor in sheep uterus during the oestrous cycle. Reprod Domest Anim 2019; 54:1305-1312. [PMID: 31188500 DOI: 10.1111/rda.13489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
Oestrogen, androgen and progesterone are involved in the regulation of uterine physiological functions, with the participation of the following proteins: oestrogen receptor (ER), androgen receptor (AR) and progesterone nuclear receptor (PGR). In this study, we used immunohistochemistry to detect the localization of ERα, ERβ, AR and PGR in sheep uterus. Additionally, we used real-time polymerase chain reaction (RT-qPCR) and Western blot technique to analyse their expression profiles at different stages of sheep oestrous cycle in the endometrium and myometrium. Immunohistochemical analysis showed that ERα, ERβ, AR and PGR were present in sheep uterus in oestrus, mainly in the uterine luminal epithelium, stroma, gland and myometrium. Real-time polymerase chain reaction results showed that in the endometrium, ERα expression level was highest in oestrus. ERβ and PGR, instead, were highly expressed in pro-oestrus. In the myometrium, ERα was highly expressed in both oestrus and pro-oestrus, and ERβ was highly expressed in oestrus and dioestrus. Progesterone nuclear receptor expression was highest in oestrus, followed by metoestrus. In the endometrium, both receptors ERα and ERβ were abundant in pro-oestrus, while the maximum AR protein content was found in oestrus. At this stage of the oestrous cycle, PGR protein concentration in the myometrium was significantly lower than those observed in other stages. These results suggest that these receptors are important for sheep reproductive function, as their expression at mRNA and protein levels exhibits particular time- and tissue-specific profiles along the oestrous cycle.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuting Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Liangli Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wenze Luo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|