1
|
Ma R, Cui Y, Yu SJ, Pan YY, He JF, Wang YY, Zhao L, Bai XF, Yang SS. Whole transcriptome sequencing revealed the gene regulatory network of hypoxic response in yak Sertoli cells. Sci Rep 2024; 14:19903. [PMID: 39191828 DOI: 10.1038/s41598-024-69458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Yaks live in the Qinghai-Tibet Plateau for a long time where oxygen is scarce, but can ensure the smooth development of testis and spermatogenesis. The key lies in the functional regulation of the Sertoli cells under hypoxia. In this study, we sequenced yak Sertoli cells cultured in normal oxygen concentration (Normoxia) and treated with low oxygen concentration (Hypoxia) by whole transcriptomics, and screened out 194 differentially expressed mRNAs (DEmRNAs), 934 differentially expressed LncRNAs (DELncRNAs) and 129 differentially expressed miRNAs (DEmiRNAs). GO and KEGG analysis showed that these differential genes were mainly concentrated in PI3K-AKT, MAPK, RAS, and other signaling pathways, and were associated with glucose metabolism, tight junction, steroid hormone synthesis, cell fusion, and immunity of yak Sertoli cells. We constructed the gene interaction network of yak Sertoli cells in hypoxia and screened out the relationship pairs related to glucose metabolism and tight junction. The results suggested that the changes in energy metabolism, tight junction, and immune regulation of yak Sertoli cells under hypoxia might provide favorable conditions for spermatogenesis. This study provides data for further study on the role of non-coding RNA in testis development and spermatogenesis of yak.
Collapse
Affiliation(s)
- Rui Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China.
| | - Si-Jiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China.
| | - Yang-Yang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Jun-Feng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Ya-Ying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Xue-Feng Bai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Shan-Shan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| |
Collapse
|
2
|
Zhao L, Yang H, Li M, Xiao M, Li X, Cheng L, Cheng W, Chen M, Zhao Y. Global gene expression profiling of perirenal brown adipose tissue whitening in goat kids reveals novel genes linked to adipose remodeling. J Anim Sci Biotechnol 2024; 15:47. [PMID: 38481287 PMCID: PMC10938744 DOI: 10.1186/s40104-024-00994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is known to be capable of non-shivering thermogenesis under cold stimulation, which is related to the mortality of animals. In the previous study, we observed that goat BAT is mainly located around the kidney at birth, and changes to white adipose tissue (WAT) in the perirenal adipose tissue of goats within one month after birth. However, the regulatory factors underlying this change is remain unclear. In this study, we systematically studied the perirenal adipose tissue of goat kids in histological, cytological, and accompanying molecular level changes from 0 to 28 d after birth. RESULTS Our study found a higher mortality rate in winter-born goat kids, with goat birthing data statistics. Then we used thermal imaging revealing high temperature in goat hips at postnatal 0 d and gradually decrease during 28 d. This is consistent with the region of perirenal BAT deposition and highlights its critical role in energy expenditure and body temperature regulation in goat kids. Additionally, we found a series of changes of BAT during the first 28 d after birth, such as whitening, larger lipid droplets, decreased mitochondrial numbers, and down-regulation of key thermogenesis-related genes (UCP1, DIO2, UCP2, CIDEA, PPARGC1a, C/EBPb, and C/EBPa). Then, we used RNA-seq found specific marker genes for goat adipose tissue and identified 12 new marker genes for BAT and 10 new marker genes for WAT of goats. Furthermore, 12 candidate genes were found to potentially regulate goat BAT thermogenesis. The mechanism of the change of this biological phenomenon does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes. While apoptosis may play a limited role, it is largely not critical in this transition process. CONCLUSIONS We concluded that perirenal BAT plays a crucial role in thermoregulation in newborn goat kids, with notable species differences in the expression of adipose tissue marker genes, and we highlighted some potential marker genes for goat BAT and WAT. Additionally, the change from BAT to WAT does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.
Collapse
Affiliation(s)
- Le Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Haili Yang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Minhao Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Min Xiao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Xingchun Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Lei Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Wenqiang Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Meixi Chen
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
3
|
Zhong T, Zhao J, Zhan S, Wang L, Cao J, Dai D, Guo J, Li L, Zhang H, Niu L. LncRNA-mRNA modules involved in goat rumen development: Insights from genome-wide transcriptome profiling. Front Physiol 2022; 13:979121. [PMID: 36091364 PMCID: PMC9449361 DOI: 10.3389/fphys.2022.979121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
The rumen is an essential digestive and absorption organ of ruminants. During fetal life, lactation, and post-weaning period, goat rumen undergoes drastic morphological and metabolic-functional changes triggered by potential regulated genes and non-coding RNA molecules. As the essential regulatory factors, long non-coding RNAs (lncRNAs) have vital functions in various biological activities. However, their roles during rumen development are still poorly explored in ruminants. To explore the genome-wide expression profiles of lncRNAs and mRNAs in the goat rumens, we generated 5,007 lncRNAs and 19,738 mRNAs identified during the fetal and prepubertal stages by the high-throughput RNA sequencing. Notably, 365 lncRNAs and 2,877 mRNAs were considered to be differentially expressed. The weighted gene co-expression network analysis and functional analysis were performed to explore the regulatory roles of those differentially expressed molecules. The cis-and trans-target genes of differently expressed lncRNAs were enriched for pathways related to focal adhesion, cGMP-PKG signaling pathway, alpha-linolenic acid metabolism, arachidonic acid metabolism, and fat digestion and absorption. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses showed that the differently expressed genes mainly participated in mitotic cytokinesis, desmosome, fatty acid degradation, cell adhesion molecules, and fatty acid metabolism. The prediction of lncRNA-mRNA interaction networks further revealed transcripts potentially involved in rumen development. The present study profiles a global overview of lncRNAs and mRNAs during rumen development. Our findings provide valuable resources for genetic regulation and molecular mechanisms of rumen development in ruminants.
Collapse
|
4
|
Long Noncoding RNAs: Recent Insights into Their Role in Male Infertility and Their Potential as Biomarkers and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222413579. [PMID: 34948376 PMCID: PMC8708977 DOI: 10.3390/ijms222413579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are composed of nucleotides located in the nucleus and cytoplasm; these are transcribed by RNA polymerase II and are greater than 200 nt in length. LncRNAs fulfill important functions in a variety of biological processes, including genome imprinting, cell differentiation, apoptosis, stem cell pluripotency, X chromosome inactivation and nuclear transport. As high throughput sequencing technology develops, a substantial number of lncRNAs have been found to be related to a variety of biological processes, such as development of the testes, maintaining the self-renewal and differentiation of spermatogonial stem cells, and regulating spermatocyte meiosis. These indicate that lncRNAs can be used as biomarkers and potential therapeutic targets for male infertility. However, only a few comprehensive reviews have described the role of lncRNAs in male reproduction. In this paper, we summarize recent findings relating to the role of lncRNAs in spermatogenesis, their potential as biomarkers for male infertility and the relationship between reproductive arrest and transgenerational effects. Finally, we suggest specific targets for the treatment of male infertility from the perspective of lncRNAs.
Collapse
|
5
|
Ma H, Yu J, Xie J, Liu D, Zhang Z, Wang Z, Wang C. Genome-wide identification and functional analysis of long non-coding RNAs and mRNAs in male mice testes at the onset of puberty after low dose lead exposure. Toxicol Appl Pharmacol 2021; 422:115556. [PMID: 33932463 DOI: 10.1016/j.taap.2021.115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/25/2023]
Abstract
Many researchers have studied the relationship between lead (Pb) and testis injury, but the underlying mechanisms are still unknown. The participation of long non-coding RNAs (lncRNAs) in biological processes has been proposed. To comprehensively gain insight into the molecular toxicity of Pb, expression patterns are analysed through RNA sequencing (RNA-seq) in male mice treated with 200 mg/L of Pb through the drinking water for 90 days at the onset of puberty. A total of 614 differentially expressed (DE) lncRNAs were included (p ≤ 0.05 and fold change ≥2), of which 288 were up-regulated, and 326 were down-regulated. A total of 2295 DE mRNAs (p ≤ 0.05 and fold change ≥2), including 1202 up-regulated and 1093 down-regulated ones, were found in the testes of Pb-exposed group. Functional analysis results showed that several lncRNAs might be implicated in the bio-pathway of mitogen-activated protein kinase (MAPK) signaling pathway. Finally, seven pairs of lncRNA-mRNA co-expression were established in mice testes and confirmed by RT-qPCR. Moreover, the DE genes were also altered in Sertoli cells. Therefore, our research might be helpful for future exploring the effects of Pb exposure on lncRNA in testis, as well as its function.
Collapse
Affiliation(s)
- Haitao Ma
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Jun Yu
- Department of Preventive Medicine, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, Hubei Province, China
| | - Jie Xie
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Duanya Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Zhaoyu Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Ziqiong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Chunhong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
6
|
Ascorbic acid promotes the reproductive function of porcine immature Sertoli cells through transcriptome reprogramming. Theriogenology 2020; 158:309-320. [PMID: 33007716 PMCID: PMC7524525 DOI: 10.1016/j.theriogenology.2020.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Vitamin C (ascorbic acid, AA) can regulate antioxidation and affect many cellular processes. However, the effect of AA on the reproduction of male animals remains less explored. Here, we showed that by supplementing exogenous AA to porcine immature Sertoli cells (iSCs), AA could promote the proliferation, suppress apoptosis, and decrease the global nucleic acid methylation (5 mC and m6A) levels of iSCs. After we profiled mRNA and long non-coding RNA (lncRNA) expression by transcriptome sequencing on iSCs (treated by 250 μM AA for 36 h), 1232 mRNAs and 937 lncRNAs were identified to be differentially expressed (DE). Gene enrichment analysis found multiple significantly enriched biological pathways, including oxidoreductase activity, cell proliferation and apoptosis, regulation of hormone level, regulation of catalytic activity, developmental process, ATP metabolism and reproductive process. Specifically, for the reproductive process, 49 up- and 36 down-regulated DE mRNAs (including highly expressed genes, such as Tfcp2l1, Hmgcs1, Mmp7, Fndc3a, and Zfp36l1) are involved. Moreover, AA supplementation could promote the secretion of anti-müllerian hormone, inhibin B and lactate, and enhance the activity of lactate dehydrogenase as well. Taken together, AA could promote the reproductive function of pig iSCs, potentially through reprogramming the global transcriptome, and elevating hormone secretion and metabolite production. AA could promote the proliferation, suppress apoptosis, and decrease the global nucleic acid mthylation levels of iSCs. AA treatment changed mRNA and lncRNA profiles of iSCs. AA treatment significantly disturbed the expression of mRNAs (such as Tfcp2l1, Hmgcs1, Mmp7, Fndc3a, and Zfp36l1) involved in reproductive process. AA supplement could promote the secretion of anti-mullerian hormone, inhibin B and lactate, and the activity of lactate dehydrogenase as well.
Collapse
|