1
|
Ma J, Bodai B, Ma Z, Khalembek K, Xie J, Kadyken R, Baibatshanov M, Kazkhan O. Screening and identification of nanobody against inhibin α-subunit from a Camelus bactrianus phage display library. Heliyon 2024; 10:e36180. [PMID: 39281437 PMCID: PMC11402152 DOI: 10.1016/j.heliyon.2024.e36180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Inhibin is a member of the transforming growth factor family that influences reproduction in animals. Objective The purpose of this study was to obtain nanobodies from the phage antibody library constructed by us that can specifically bind to inhibin α-subunit. Methods In this study, camels were immunized with Kazakh sheep inhibin-α protein that expressed in BL21 E. coli, and the camel VHH nanobody phage display library was prepared using nested PCR. The nanobodies specifically binding to inhibin α-subunit in the library were screened by three rounds of immunoaffinity screening and phage enzyme-linked immunosorbent assay (phage ELISA). The functions of the selected nanobodies were identified using molecular simulation docking, ELISA affinity test, and sheep immunity test. Results A nanobody display library was successfully constructed with a capacity of 1.05 × 1012 CFU, and four inhibin-α-subunit-specific nanobodies with an overall similarity of 69.34 % were screened from the library, namely, Nb-4, Nb-15, Nb-26, and Nb-57. The results of molecular simulation docking revealed that four types of nanobodies were complexed with inhibin-α protein mainly through hydrophobic bonds. Immunity tests revealed that the nanobody Nb-4 could effectively inhibit sheep inhibin A/B and could significantly improve the FSH level in sheep. Conclusion Four inhibin α-subunit-specific nanobodies with biological functions were successfully screened. To the best of our knowledge, this is a new reproductive immunomodulatory pathway of inhibin α-subunit, which may change the secretion of FSH in the ovary, thus changing the estrous cycle of organisms.
Collapse
Affiliation(s)
- Jifu Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Bakhet Bodai
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Zhongmei Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Kezerbek Khalembek
- Agricultural Development Service Center of Kalabulegen Township, Fuyun County, Altay Region, Xinjiang, 836103, China
| | - Jingang Xie
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Rizabek Kadyken
- Department of Production Technology of Livestock Products, Kazakh National Agrarian Research University, Almaty Province, 050010, Kazakhstan
| | - Mukhtar Baibatshanov
- Department of Forest Resources and Hunting, Kazakh National Agrarian Research University, Almaty Province, 050010, Kazakhstan
| | - Oralhazi Kazkhan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China
| |
Collapse
|
2
|
Walton KL, Goney MP, Peppas Z, Stringer JM, Winship A, Hutt K, Goodchild G, Maskey S, Chan KL, Brûlé E, Bernard DJ, Stocker WA, Harrison CA. Inhibin Inactivation in Female Mice Leads to Elevated FSH Levels, Ovarian Overstimulation, and Pregnancy Loss. Endocrinology 2022; 163:6543938. [PMID: 35255139 PMCID: PMC9272799 DOI: 10.1210/endocr/bqac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/21/2022]
Abstract
Inhibins are members of the transforming growth factor-β family, composed of a common α-subunit disulfide-linked to 1 of 2 β-subunits (βA in inhibin A or βB in inhibin B). Gonadal-derived inhibin A and B act in an endocrine manner to suppress the synthesis of follicle-stimulating hormone (FSH) by pituitary gonadotrope cells. Roles for inhibins beyond the pituitary, however, have proven difficult to delineate because deletion of the inhibin α-subunit gene (Inha) results in unconstrained expression of activin A and activin B (homodimers of inhibin β-subunits), which contribute to gonadal tumorigenesis and lethal cachectic wasting. Here, we generated mice with a single point mutation (Arg233Ala) in Inha that prevents proteolytic processing and the formation of bioactive inhibin. In vitro, this mutation blocked inhibin maturation and bioactivity, without perturbing activin production. Serum FSH levels were elevated 2- to 3-fold in InhaR233A/R233A mice due to the loss of negative feedback from inhibins, but no pathological increase in circulating activins was observed. While inactivation of inhibin A and B had no discernible effect on male reproduction, female InhaR233A/R233A mice had increased FSH-dependent follicle development and enhanced natural ovulation rates. Nevertheless, inhibin inactivation resulted in significant embryo-fetal resorptions and severe subfertility and was associated with disrupted maternal ovarian function. Intriguingly, heterozygous Inha+/R233A females had significantly enhanced fecundity, relative to wild-type littermates. These studies have revealed novel effects of inhibins in the establishment and maintenance of pregnancy and demonstrated that partial inactivation of inhibin A/B is an attractive approach for enhancing female fertility.
Collapse
Affiliation(s)
- Kelly L Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- Correspondence: Kelly L Walton, PhD, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia 4072.
| | - Monica P Goney
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Zoe Peppas
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Jessica M Stringer
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Amy Winship
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Karla Hutt
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Georgia Goodchild
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Shreya Maskey
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Karen L Chan
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Daniel J Bernard
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Correspondence: Craig A Harrison, PhD, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia 3168.
| |
Collapse
|