1
|
Chen YR, Yin WW, Jin YR, Lv PP, Jin M, Feng C. Current status and hotspots of in vitro oocyte maturation: a bibliometric study of the past two decades. J Assist Reprod Genet 2024:10.1007/s10815-024-03272-w. [PMID: 39317914 DOI: 10.1007/s10815-024-03272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE In vitro maturation (IVM) of oocytes is a promising technique among assisted reproductive technologies. Although IVM has been used for many years, its efficiency is still relatively low compared to that of traditional in vitro fertilization (IVF) procedures. Therefore, we aimed to explore the hotspots and frontiers of IVM research over the past two decades and provide direction for IVM advancement. METHODS The articles and reviews related to IVM in the Web of Science Core Collection (WoSCC) were retrieved on June 03, 2024. Three bibliometric tools, VOSviewer 1.6.18 (2010), CiteSpace 6.1. R6 (2006), and Bibliometrix R package 4.1.0 (2017), were used to generate network maps and explore knowledge frontiers and trends. To uncover the latest research advancements and frontiers in the IVM field, we conducted an analysis of the entire IVM field, including all species. Given our focus on human IVM developments, we identified the leading countries, institutions, authors, and journals driving progress in human IVM. RESULTS A total of 5150 publications about IVM and 1534 publications in the specific context of human IVM were retrieved from the WoSCC. The number of publications on both overall IVM and human IVM fields has increased steadily. In human IVM, the United States (USA) and McGill University were the most prolific country and institution, respectively. Human Reproduction was both the most published in and the most cited journal in human IVM. Seang Lin, Tan was the most productive author, and Ri-Cheng, Chian's papers were the most cited in human IVM. Furthermore, five hotspot topics were summarized, namely, culture system, supplementation, cooperation in the ovarian follicle, gene expression, and oocyte cryopreservation. CONCLUSIONS Further studies could concentrate on the following topics: (1) the mechanisms involved in oocyte maturation in vivo and in vitro, especially in energy metabolism and intercellular communications; (2) the establishment of IVM culture systems, including standardization of the biphasic IVM culture system and supplementation; (3) the genetic differences between oocytes matured in vivo and in vitro; and (4) the mechanism of cryopreservation-inflicted damage and solutions to this challenge. For human IVM, it is necessary to precisely assess the developmental stages of oocytes and adjust the IVM process accordingly to develop tailored culture media. Concurrently, clinical trials are essential for evaluating the effectiveness and safety of IVM.
Collapse
Affiliation(s)
- Yi-Ru Chen
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Wei-Wei Yin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yi-Ru Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ping-Ping Lv
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Chun Feng
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
2
|
Bernstein LR, Mackenzie ACL, Chaffin CL, Lee SJ, Kraemer DC, Merchenthaler I. Gonadotropin elevation is ootoxic to ovulatory oocytes and inhibits oocyte maturation, and activin decoy receptor ActRIIB:Fc therapeutically restores maturation. Reprod Biol Endocrinol 2024; 22:52. [PMID: 38711160 PMCID: PMC11071334 DOI: 10.1186/s12958-024-01224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/01/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Elevated FSH often occurs in women of advanced maternal age (AMA, age ≥ 35) and in infertility patients undergoing controlled ovarian stimulation (COS). There is controversy on whether high endogenous FSH contributes to infertility and whether high exogenous FSH adversely impacts patient pregnancy rates. METHODS The senescence-accelerated mouse-prone-8 (SAMP8) model of female reproductive aging was employed to assess the separate impacts of age and high FSH activity on the percentages (%) of viable and mature ovulated oocytes recovered after gonadotropin treatment. Young and midlife mice were treated with the FSH analog equine chorionic gonadotropin (eCG) to model both endogenous FSH elevation and exogenous FSH elevation. Previously we showed the activin inhibitor ActRIIB:Fc increases oocyte quality by preventing chromosome and spindle misalignments. Therefore, ActRIIB:Fc treatment was performed in an effort to increase % oocyte viability and % oocyte maturation. RESULTS The high FSH activity of eCG is ootoxic to ovulatory oocytes, with greater decreases in % viable oocytes in midlife than young mice. High FSH activity of eCG potently inhibits oocyte maturation, decreasing the % of mature oocytes to similar degrees in young and midlife mice. ActRIIB:Fc treatment does not prevent eCG ootoxicity, but it restores most oocyte maturation impeded by eCG. CONCLUSIONS FSH ootoxicity to ovulatory oocytes and FSH maturation inhibition pose a paradox given the well-known pro-growth and pro-maturation activities of FSH in the earlier stages of oocyte growth. We propose the FOOT Hypothesis ("FSH OoToxicity Hypothesis), that FSH ootoxicity to ovulatory oocytes comprises a new driver of infertility and low pregnancy success rates in DOR women attempting spontaneous pregnancy and in COS/IUI patients, especially AMA women. We speculate that endogenous FSH elevation also contributes to reduced fecundity in these DOR and COS/IUI patients. Restoration of oocyte maturation by ActRIB:Fc suggests that activin suppresses oocyte maturation in vivo. This contrasts with prior studies showing activin A promotes oocyte maturation in vitro. Improved oocyte maturation with agents that decrease endogenous activin activity with high specificity may have therapeutic benefit for COS/IVF patients, COS/IUI patients, and DOR patients attempting spontaneous pregnancies.
Collapse
Affiliation(s)
- Lori R Bernstein
- Pregmama, LLC, Gaithersburg, MD, 20886, USA.
- Department of Cell Biology and Genetics, Texas A & M School of Medicine, College Station, TX, 77843, USA.
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Veterinary Integrative Biosciences, Texas A&M School of Veterinary Medicine, College Station, TX, 77843, USA.
| | - Amelia C L Mackenzie
- Department of Cell Biology and Genetics, Texas A & M School of Medicine, College Station, TX, 77843, USA
- FHI 360, Durham, NC, 27701, USA
| | - Charles L Chaffin
- Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Se-Jin Lee
- University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Duane C Kraemer
- Department of Veterinary Physiology and Pharmacology, Texas A & M School of Veterinary Medicine, College Station, TX, 77843, USA
| | - Istvan Merchenthaler
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
3
|
Jiao Y, Bei C, Wang Y, Liao A, Guo J, Li X, Jiang T, Liu X, Chen Y, Cong P, He Z. Bone morphogenetic protein 15 gene disruption affects the in vitro maturation of porcine oocytes by impairing spindle assembly and organelle function. Int J Biol Macromol 2024; 267:131417. [PMID: 38582457 DOI: 10.1016/j.ijbiomac.2024.131417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes. Editing BMP15 impaired the IVM of porcine oocytes, as indicated by the significantly increased abnormal spindle assembly and reduced first polar body (PB1) extrusion. The editing also impaired cytoplasmic maturation of porcine oocytes, as reflected by reduced abundant of Golgi apparatus and impaired functions of mitochondria. The impaired IVM of porcine oocytes by editing BMP15 possibly was associated with the attenuated SMAD1/5 and EGFR-ERK1/2 signaling in the cumulus granulosa cells (CGCs) and the inhibited MOS/ERK1/2 signaling in oocytes. The attenuated MOS/ERK1/2 signaling may contribute to the inactivation of maturation promoting factor (MPF) and the increased abnormal spindle assembly, leading to reduced PB1 extrusion. It also may contribute to reduced Golgi apparatus formation, and impaired functions of mitochondria. These findings expand our understanding of the regulatory role of BMP15 in the IVM of porcine oocytes and provide a basis for manipulation of porcine reproductive performance.
Collapse
Affiliation(s)
- Yafei Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Chang Bei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yixian Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Alian Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jinming Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xinran Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tiantuan Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China.
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
4
|
Ho TCT, Kawate N, Koyama K. Predicting nuclear maturation speed of oocytes from Japanese Black beef heifers through non-invasive observations during IVM: An attempt using machine learning algorithms. Theriogenology 2023; 209:235-242. [PMID: 37453399 DOI: 10.1016/j.theriogenology.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Nuclear maturation is an essential process in which oocytes acquire the competence to develop further. However, the time required for nuclear maturation during IVM varies among oocytes. Therefore, predicting nuclear maturation speed (NMS) could help identify the optimal timing for IVF and maximize the developmental competence of each oocyte. This study aimed to establish machine learning-based prediction models for NMS using non-invasive indicators during the individual IVM of Japanese Black (JB) beef heifer oocytes. We collected ovaries from abattoirs and aspirated cumulus-oocyte complexes (COCs) from follicles with diameters ranging between 2 and 8 mm. The COCs were matured individually for 18 h, and photographs of each COC were taken at the beginning and every 3 h from 12 h to the end of maturation. After IVM culture, we denuded COCs and stained oocytes to confirm the progression of meiosis. Only oocytes that reached the metaphase II (MII) stage were considered to have a fast NMS. Morphological features, including COC area, cumulus expansion ratio, expansion rate per hour, and expansion pattern, were extracted from the recorded photos and applied to develop prediction models for NMS using machine learning algorithms. The MII rates of oocytes with fast- and slow-predicted NMS differed when the decision tree (DT) and random forest (RF) models were employed (P < 0.05). To evaluate the relationship between predicted NMS by DT and RF models and fertilization dynamics during individual IVF, sperm penetration and pronuclear formation were evaluated at 3, 6, 9, and 12 h after IVF start, following 24 h of IVM. The association between predicted NMS and embryo development was investigated by performing IVC for seven days using microwell culture dishes after 24 h of IVM and 6 h of IVF. Predicted NMS did not show a significant association with fertilization dynamics. However, oocytes with fast-predicted NMS by the RF model exhibited a tendency towards a higher cleavage rate 48 h after IVF start (P = 0.08); no other relationship was found between predicted NMS and embryo development. These findings demonstrate the feasibility of using non-invasive indicators during IVM to develop prediction models for NMS of JB beef heifer oocytes. Although the effect of predicted NMS on embryo development remains unclear, customized treatments based on NMS predictions have the potential to improve the efficiency of in vitro embryo production following individual IVM culture.
Collapse
Affiliation(s)
- Thomas Chia-Tang Ho
- Laboratory of Theriogenology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, 598-8531, Osaka, Japan
| | - Noritoshi Kawate
- Laboratory of Theriogenology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, 598-8531, Osaka, Japan
| | - Keisuke Koyama
- Laboratory of Theriogenology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, 598-8531, Osaka, Japan.
| |
Collapse
|
5
|
Assessment of sperm motility in livestock: Perspectives based on sperm swimming conditions in vivo. Anim Reprod Sci 2022; 246:106849. [PMID: 34556397 DOI: 10.1016/j.anireprosci.2021.106849] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Evaluation of sperm motility is well-established in farm animals for quickly selecting ejaculates for semen processing into insemination doses and for evaluating the quality of preserved semen. Likewise, sperm motility is a fundamental parameter used by spermatologists in basic and applied science. Motility is commonly assessed using computer-assisted semen analysis (CASA). Recent increases in computational power, as well as utilization of mobile CASA systems and open-source CASA programs, broaden the possibilities for motility evaluation. Despite this technological progress, the potential of computer-generated motility data to assess male fertility remains challenging and may be limited. Relevance for fertility assessment could be improved if measurement conditions would more closely mimic the in vivo situation. Hence, this review is focused on the current trends of automated semen assessment in livestock and explores perspectives for future use with respect to the physiological and physical conditions encountered by sperm in the female reproductive tract. Validation of current CASA systems with more complex, microfluidic-based devices mimicking the female reproductive tract environment could improve the value of sperm kinematic data for assessing the fertilizing capacity of semen samples, not only for application in livestock but also for use in conducting assisted reproduction techniques in other species.
Collapse
|
6
|
Zhu X, Zhao S, Xu S, Zhang D, Zhu M, Pan Q, Huang J. Granulosa Cells Improved Mare Oocyte Cytoplasmic Maturation by Providing Collagens. Front Cell Dev Biol 2022; 10:914735. [PMID: 35846364 PMCID: PMC9280134 DOI: 10.3389/fcell.2022.914735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Assisted reproductive technology has important clinical applications and commercial values in the horse industry. However, this approach is limited largely by the low efficiency of oocyte in vitro maturation (IVM), especially cytoplasmic maturation. To improve the efficiency of mare oocyte IVM, we evaluated the effects of co-culture with cumulus–oocyte complexes (COCs) and granulosa cells (GCs) from follicles with small (<15 mm) and large diameters (>35 mm). Our results showed that oocyte nucleus maturation was not significantly improved by co-culturing with GCs. Interestingly, the cytoplasmic maturation of oocytes, defined by the distribution of cortical granules and mitochondria, as well as reactive oxygen species (ROS) levels, improved dramatically by co-culture with GCs, especially those derived from small follicles. Moreover, GCs promoted cumulus cell expansion by upregulating the expression of BMP15 in oocytes. To determine the mechanism underlying the effects of GCs, the transcriptomes of GCs from large and small follicles were compared. Expression levels of COL1A2, COL6A1, and COL6A2 were significantly higher in GCs from small follicles than in those from large follicles. These three genes were enriched in the extracellular matrix proteins-receptor interaction pathway and were involved in the regulation of collagens. Taken together, our results suggest that co-culture with GCs is beneficial to oocyte cytoplasmic maturation, and the increased expression of COL1A2, COL6A1, and COL6A2 improve the mare oocyte IVM system via the regulation of collagen.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingjie Pan
- *Correspondence: Qingjie Pan, ; Jiaojiao Huang,
| | | |
Collapse
|
7
|
Haas CS, Oliveira FC, Rovani MT, Ferst JG, Vargas SF, Vieira AD, Mondadori RG, Pegoraro LM, Gonçalves PB, Bordignon V, Ferreira R, Gasperin BG. Bone morphogenetic protein 15 intrafollicular injection inhibits ovulation in cattle. Theriogenology 2022; 182:148-154. [DOI: 10.1016/j.theriogenology.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|