1
|
Gobbi A, Antonelli A, Dellaca R, Pellegrino GM, Pellegrino R, Fredberg JJ, Solway J, Brusasco V. Effects of increasing tidal volume and end-expiratory lung volume on induced bronchoconstriction in healthy humans. Respir Res 2024; 25:298. [PMID: 39113017 PMCID: PMC11304934 DOI: 10.1186/s12931-024-02909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/07/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Increasing functional residual capacity (FRC) or tidal volume (VT) reduces airway resistance and attenuates the response to bronchoconstrictor stimuli in animals and humans. What is unknown is which one of the above mechanisms is more effective in modulating airway caliber and whether their combination yields additive or synergistic effects. To address this question, we investigated the effects of increased FRC and increased VT in attenuating the bronchoconstriction induced by inhaled methacholine (MCh) in healthy humans. METHODS Nineteen healthy volunteers were challenged with a single-dose of MCh and forced oscillation was used to measure inspiratory resistance at 5 and 19 Hz (R5 and R19), their difference (R5-19), and reactance at 5 Hz (X5) during spontaneous breathing and during imposed breathing patterns with increased FRC, or VT, or both. Importantly, in our experimental design we held the product of VT and breathing frequency (BF), i.e, minute ventilation (VE) fixed so as to better isolate the effects of changes in VT alone. RESULTS Tripling VT from baseline FRC significantly attenuated the effects of MCh on R5, R19, R5-19 and X5. Doubling VT while halving BF had insignificant effects. Increasing FRC by either one or two VT significantly attenuated the effects of MCh on R5, R19, R5-19 and X5. Increasing both VT and FRC had additive effects on R5, R19, R5-19 and X5, but the effect of increasing FRC was more consistent than increasing VT thus suggesting larger bronchodilation. When compared at iso-volume, there were no differences among breathing patterns with the exception of when VT was three times larger than during spontaneous breathing. CONCLUSIONS These data show that increasing FRC and VT can attenuate induced bronchoconstriction in healthy humans by additive effects that are mainly related to an increase of mean operational lung volume. We suggest that static stretching as with increasing FRC is more effective than tidal stretching at constant VE, possibly through a combination of effects on airway geometry and airway smooth muscle dynamics.
Collapse
Affiliation(s)
- Alessandro Gobbi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, 20133, Italy
- Restech Srl, Milano, 20124, Italy
| | - Andrea Antonelli
- Allergologia e Fisiopatologia Respiratoria, ASO S. Croce e Carle, 12100, Cuneo, Italy
| | - Raffaele Dellaca
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, 20133, Italy.
| | - Giulia M Pellegrino
- Casa di Cura del Policlinico, Dipartimento di Scienze Neuroriabilitative, Milano, Italy
| | | | - Jeffrey J Fredberg
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Vito Brusasco
- Dipartimento di Medicina Sperimentale, Università di Genova, 16132, Genova, Italy
| |
Collapse
|
2
|
Tan YH, Wang KCW, Chin IL, Sanderson RW, Li J, Kennedy BF, Noble PB, Choi YS. Stiffness Mediated-Mechanosensation of Airway Smooth Muscle Cells on Linear Stiffness Gradient Hydrogels. Adv Healthc Mater 2024; 13:e2304254. [PMID: 38593989 DOI: 10.1002/adhm.202304254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
In obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), the extracellular matrix (ECM) protein amount and composition of the airway smooth muscle (ASM) is often remodelled, likely altering tissue stiffness. The underlying mechanism of how human ASM cell (hASMC) mechanosenses the aberrant microenvironment is not well understood. Physiological stiffnesses of the ASM were measured by uniaxial compression tester using porcine ASM layers under 0, 5 and 10% longitudinal stretch above in situ length. Linear stiffness gradient hydrogels (230 kPa range) were fabricated and functionalized with ECM proteins, collagen I (ColI), fibronectin (Fn) and laminin (Ln), to recapitulate the above-measured range of stiffnesses. Overall, hASMC mechanosensation exhibited a clear correlation with the underlying hydrogel stiffness. Cell size, nuclear size and contractile marker alpha-smooth muscle actin (αSMA) expression showed a strong correlation to substrate stiffness. Mechanosensation, assessed by Lamin-A intensity and nuc/cyto YAP, exhibited stiffness-mediated behaviour only on ColI and Fn-coated hydrogels. Inhibition studies using blebbistatin or Y27632 attenuated most mechanotransduction-derived cell morphological responses, αSMA and Lamin-A expression and nuc/cyto YAP (blebbistatin only). This study highlights the interplay and complexities between stiffness and ECM protein type on hASMC mechanosensation, relevant to airway remodelling in obstructive airway diseases.
Collapse
Affiliation(s)
- Yong Hwee Tan
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Torun, 87-100, Poland
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Henry C, Boucher M, Boulay MÈ, Côté A, Boulet LP, Bossé Y. The cumulative effect of methacholine on large and small airways when deep inspirations are avoided. Respirology 2023; 28:226-235. [PMID: 36210352 DOI: 10.1111/resp.14387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/20/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The effect of serial incremental concentrations of methacholine is only slightly cumulative when assessed by spirometry. This limited cumulative effect may be attributed to the bronchodilator effect of deep inspirations that are required between concentrations to measure lung function. Using oscillometry, the response to methacholine can be measured without deep inspirations. Conveniently, oscillometry can also dissociate the contribution of large versus small airways. Herein, oscillometry was used to assess the cumulative effect of methacholine in the absence of deep inspirations on large and small airways. METHODS Healthy and asthmatic volunteers underwent a multiple-concentration methacholine challenge on visit 1 and a single-concentration challenge on visit 2 using the highest concentration of visit 1. The maximal response was compared between visits to assess the cumulative effect of methacholine. The lung volume was also measured after the final concentration to assess hyperinflation. RESULTS In both healthy and asthmatic subjects, increases in resistance at 19 Hz (Rrs19 ), reflecting large airway narrowing, did not differ between the multiple- and the single-concentration challenge. However, increases in resistance at 5 Hz (Rrs5 ) minus Rrs19 , reflecting small airway narrowing, were 117 and 270% greater in the multiple- than the single-concentration challenge in healthy (p = 0.006) and asthmatic (p < 0.0001) subjects, respectively. Hyperinflation occurred with both challenges and was greater in the multiple- than the single-concentration challenge in both groups. CONCLUSION Without deep inspirations, the effect of methacholine is cumulative on small airways but not on large airways. Lung hyperinflation and derecruitment may partially explain these different responses.
Collapse
Affiliation(s)
- Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Marie-Ève Boulay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | | | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| |
Collapse
|
4
|
Looi K, Kicic A, Noble PB, Wang KCW. Intrauterine growth restriction predisposes to airway inflammation without disruption of epithelial integrity in postnatal male mice. J Dev Orig Health Dis 2021; 12:496-504. [PMID: 32799948 DOI: 10.1017/s2040174420000744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Evidence from animal models demonstrate that intrauterine growth restriction (IUGR) alters airway structure and function which may affect susceptibility to disease. Airway inflammation and dysregulated epithelial barrier properties are features of asthma which have not been examined in the context of IUGR. This study used a maternal hypoxia-induced IUGR mouse model to assess lung-specific and systemic inflammation and airway epithelial tight junctions (TJs) protein expression. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to 17.5 (IUGR group; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A Control group was housed under normoxic conditions throughout pregnancy. Offspring weights were recorded at 2 and 8 weeks of age and euthanized for bronchoalveolar lavage (BAL) and peritoneal cavity fluid collection for inflammatory cells counts. From a separate group of mice, right lungs were collected for Western blotting of TJs proteins. IUGR offspring had greater inflammatory cells in the BAL fluid but not in peritoneal fluid compared with Controls. At 8 weeks of age, interleukin (IL)-2, IL-13, and eotaxin concentrations were higher in male IUGR compared with male Control offspring but not in females. IUGR had no effect on TJs protein expression. Maternal hypoxia-induced IUGR increases inflammatory cells in the BAL fluid of IUGR offspring with no difference in TJs protein expression. Increased cytokine release, specific to the lungs of IUGR male offspring, indicates that both IUGR and sex can influence susceptibility to airway disease.
Collapse
Affiliation(s)
- Kevin Looi
- Telethon Kids Institute, The University of Western Australia, Crawley, WA6009, Australia
- School of Public Health, Curtin University, Bentley, WA6102, Australia
| | - Anthony Kicic
- Telethon Kids Institute, The University of Western Australia, Crawley, WA6009, Australia
- School of Public Health, Curtin University, Bentley, WA6102, Australia
- Faculty of Health and Medical Science, The University of Western Australia, Crawley, WA6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Crawley, WA6009, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, WA6009, Australia
| | - Kimberley C W Wang
- Telethon Kids Institute, The University of Western Australia, Crawley, WA6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA6009, Australia
| |
Collapse
|
5
|
|
6
|
Jiang S, Mohammadtursun N, Qiu J, Li Q, Sun J, Dong J. Recent advances on animal models related to chronic obstructive pulmonary disease. TRADITIONAL MEDICINE AND MODERN MEDICINE 2019. [DOI: 10.1142/s2575900019300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become an important public health problem in the world. According to reports, COPD ranks fourth in the global cause of death, causing a serious economic burden on society. The pathogenesis of COPD is complex, making it difficult to simulate the pathological changes and clinical features of COPD. Moreover, the COPD animal model has an irreplaceable role in the study of etiology, pathology and treatment. It is worth noting that the risk factors for chronic obstructive pulmonary disease persist, and the economic burden of global chronic obstructive pulmonary disease is expected to continue to increase in the coming decades. Establishing a standardized, a clinically realistic COPD animal model has always been a research direction that scholars are keen on. Therefore, it is essential to establish an economical animal model. The establishment of a suitable animal model can accurately simulate the pathological features of human chronic obstructive pulmonary disease and help to develop effective interventions and treatments in a short period of time. This review integrates the experimental animal species selected in the animal models used in COPD studies. Subsequently, different methods and mechanisms for establishing animal models were summarized according to different modeling factors. Finally, the criteria for evaluating existing animal models are discussed. It is hoped that the summary of this paper will guide the establishment of relevant animal models for future COPD research.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Nabjian Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
- College of Xinjiang Uyghur Medicine, Hotan, Xinjiang, P. R. China
| | - Jian Qiu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
7
|
Noble PB, Kowlessur D, Larcombe AN, Donovan GM, Wang KCW. Mechanical Abnormalities of the Airway Wall in Adult Mice After Intrauterine Growth Restriction. Front Physiol 2019; 10:1073. [PMID: 31507442 PMCID: PMC6716216 DOI: 10.3389/fphys.2019.01073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022] Open
Abstract
Developmental abnormalities of airways may impact susceptibility to asthma in later life. We used a maternal hypoxia-induced mouse model of intrauterine growth restriction (IUGR) to examine changes in mechanical properties of the airway wall. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to GD 17.5 (IUGR; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A control group of pregnant mice were housed under normoxic conditions throughout pregnancy. At 8 weeks postnatal age, offspring were euthanized and a tracheasectomy performed. Tracheal segments were studied in organ baths to measure active airway smooth muscle (ASM) stress to carbachol and assess passive mechanical properties (stiffness) from stress-strain curves. In a separate group of anesthetized offspring, the forced oscillation technique was used to examine airway mechanics from relative changes in airway conductance during slow inflation and deflation between 0 and 20 cmH2O transrespiratory pressure. From predicted radius-pressure loops, storage and loss moduli and hysteresivity were calculated. IUGR offspring were lighter at birth (p < 0.05) and remained lighter at 8 weeks of age (p < 0.05) compared with Controls. Maximal stress was reduced in male IUGR offspring compared with Controls (p < 0.05), but not in females. Sensitivity to contractile agonist was not affected by IUGR or sex. Compared with the Control group, airways from IUGR animals were stiffer in vitro (p < 0.05). In vivo, airway hysteresivity (p < 0.05) was increased in the IUGR group, but there was no difference in storage or loss moduli between groups. In summary, the effects of IUGR persist to the mature airway wall, where there are clear abnormalities to ASM contractile properties and passive wall mechanics. We propose that mechanical abnormalities of the airway wall acquired through disrupted fetal growth impact susceptibility to disease.
Collapse
Affiliation(s)
- Peter B Noble
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Darshinee Kowlessur
- School of Human Sciences, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,School of Public Health, Curtin University, Perth, WA, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C W Wang
- School of Human Sciences, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Noble PB, Kowlessur D, Larcombe AN, Donovan GM, Wang KCW. Mechanical Abnormalities of the Airway Wall in Adult Mice After Intrauterine Growth Restriction. Front Physiol 2019. [PMID: 31507442 PMCID: PMC6716216 DOI: 10.3389/fphys.2019.01073,+10.3389/fpls.2019.01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Developmental abnormalities of airways may impact susceptibility to asthma in later life. We used a maternal hypoxia-induced mouse model of intrauterine growth restriction (IUGR) to examine changes in mechanical properties of the airway wall. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to GD 17.5 (IUGR; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A control group of pregnant mice were housed under normoxic conditions throughout pregnancy. At 8 weeks postnatal age, offspring were euthanized and a tracheasectomy performed. Tracheal segments were studied in organ baths to measure active airway smooth muscle (ASM) stress to carbachol and assess passive mechanical properties (stiffness) from stress-strain curves. In a separate group of anesthetized offspring, the forced oscillation technique was used to examine airway mechanics from relative changes in airway conductance during slow inflation and deflation between 0 and 20 cmH2O transrespiratory pressure. From predicted radius-pressure loops, storage and loss moduli and hysteresivity were calculated. IUGR offspring were lighter at birth (p < 0.05) and remained lighter at 8 weeks of age (p < 0.05) compared with Controls. Maximal stress was reduced in male IUGR offspring compared with Controls (p < 0.05), but not in females. Sensitivity to contractile agonist was not affected by IUGR or sex. Compared with the Control group, airways from IUGR animals were stiffer in vitro (p < 0.05). In vivo, airway hysteresivity (p < 0.05) was increased in the IUGR group, but there was no difference in storage or loss moduli between groups. In summary, the effects of IUGR persist to the mature airway wall, where there are clear abnormalities to ASM contractile properties and passive wall mechanics. We propose that mechanical abnormalities of the airway wall acquired through disrupted fetal growth impact susceptibility to disease.
Collapse
Affiliation(s)
- Peter B. Noble
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Darshinee Kowlessur
- School of Human Sciences, University of Western Australia, Perth, WA, Australia,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Alexander N. Larcombe
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia,School of Public Health, Curtin University, Perth, WA, Australia
| | - Graham M. Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C. W. Wang
- School of Human Sciences, University of Western Australia, Perth, WA, Australia,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia,*Correspondence: Kimberley C. W. Wang,
| |
Collapse
|
9
|
Noble PB, Kowlessur D, Larcombe AN, Donovan GM, Wang KCW. Mechanical Abnormalities of the Airway Wall in Adult Mice After Intrauterine Growth Restriction. Front Physiol 2019. [PMID: 31507442 DOI: 10.3389/fphys.2019.01073, 10.3389/fpls.2019.01073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental abnormalities of airways may impact susceptibility to asthma in later life. We used a maternal hypoxia-induced mouse model of intrauterine growth restriction (IUGR) to examine changes in mechanical properties of the airway wall. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to GD 17.5 (IUGR; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A control group of pregnant mice were housed under normoxic conditions throughout pregnancy. At 8 weeks postnatal age, offspring were euthanized and a tracheasectomy performed. Tracheal segments were studied in organ baths to measure active airway smooth muscle (ASM) stress to carbachol and assess passive mechanical properties (stiffness) from stress-strain curves. In a separate group of anesthetized offspring, the forced oscillation technique was used to examine airway mechanics from relative changes in airway conductance during slow inflation and deflation between 0 and 20 cmH2O transrespiratory pressure. From predicted radius-pressure loops, storage and loss moduli and hysteresivity were calculated. IUGR offspring were lighter at birth (p < 0.05) and remained lighter at 8 weeks of age (p < 0.05) compared with Controls. Maximal stress was reduced in male IUGR offspring compared with Controls (p < 0.05), but not in females. Sensitivity to contractile agonist was not affected by IUGR or sex. Compared with the Control group, airways from IUGR animals were stiffer in vitro (p < 0.05). In vivo, airway hysteresivity (p < 0.05) was increased in the IUGR group, but there was no difference in storage or loss moduli between groups. In summary, the effects of IUGR persist to the mature airway wall, where there are clear abnormalities to ASM contractile properties and passive wall mechanics. We propose that mechanical abnormalities of the airway wall acquired through disrupted fetal growth impact susceptibility to disease.
Collapse
Affiliation(s)
- Peter B Noble
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Darshinee Kowlessur
- School of Human Sciences, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,School of Public Health, Curtin University, Perth, WA, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C W Wang
- School of Human Sciences, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Upham JW. Contemporary Concise Review 2018: Asthma and chronic obstructive pulmonary disease. Respirology 2019; 24:693-699. [PMID: 30945412 DOI: 10.1111/resp.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 11/29/2022]
Affiliation(s)
- John W Upham
- Princess Alexandra Hospital, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Bossé Y. The Strain on Airway Smooth Muscle During a Deep Inspiration to Total Lung Capacity. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2019; 2:0108021-1080221. [PMID: 32328568 PMCID: PMC7164505 DOI: 10.1115/1.4042309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Indexed: 02/05/2023]
Abstract
The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.
Collapse
Affiliation(s)
- Ynuk Bossé
- Université Laval, Faculty of Medicine, Department of Medicine, IUCPQ, M2694, Pavillon Mallet, Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada e-mail:
| |
Collapse
|
12
|
Mailhot-Larouche S, Bossé Y. Interval between simulated deep inspirations on the dynamics of airway smooth muscle contraction in guinea pig bronchi. Respir Physiol Neurobiol 2018; 259:136-142. [PMID: 30217723 DOI: 10.1016/j.resp.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/26/2022]
Abstract
A certain amount of time is required to achieve a maximal contraction from airway smooth muscle (ASM) and stretches of substantial magnitude, such as the ones imparted by deep inspirations (DIs), interfere with contraction. The duration of ASM contraction without interference may thus affect its shortening, its mechanical response to DIs and the overall toll it exerts on the respiratory system. In this study, the effect of changing the interval between DIs on the dynamics of ASM was examined in vitro. Isolated bronchi derived from guinea pigs were held isotonically and stimulated to both contract and relax, in a randomized order, in response to 10-5 M of methacholine and 10-6 M of isoproterenol, respectively. Interference to ASM was inflicted after 2, 5, 10 and 30 min in a randomized order, by imposing a stretch that simulated a DI. The shortening before the stretch, the stiffness before and during the stretch, the post-stretch elongation of ASM and the ensuing re-shortening were measured. These experiments were also performed in the presence of simulated tidal breathing achieved through force fluctuations. The results demonstrate that, with or without force fluctuations, increasing the interval between simulated DIs increased shortening and post-stretch elongation, but not stiffness and re-shortening. These time-dependent effects were not observed when ASM was held in the relaxed state. These findings may help understand to which extent ASM shortening and the regulatory effect of DI are affected by changing the interval between DIs. The potential consequences of these findings on airway narrowing are also discussed.
Collapse
|
13
|
Affiliation(s)
- Jason H.T. Bates
- Department of Medicine, Larner College of Medicine; University of Vermont; Burlington VT USA
| |
Collapse
|