1
|
Jiang Y, Wang X, Jiang Q, Chen H, Yang L, Wang W, Weng J, Wu M, Zhou T, Yao Y, Guo S, Xiong J, Lu X, Zhu R, Weng X. Restoration of IFN-γ-Producing MAIT Cell Correlates to Beneficial Allergen Immunotherapy in Allergic Rhinitis Patients. Clin Exp Allergy 2025; 55:403-412. [PMID: 40171760 DOI: 10.1111/cea.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Mucosal-associated invariant T cells (MAIT) are emerging as important regulators at mucosal surfaces. While these cells have been linked to a Th1-biased immune response and support for B cells, their roles in allergic diseases characterised by type 2 inflammation remain elusive. The study seeks to characterise MAIT cells in house dust mite (HDM)-induced allergic rhinitis (AR) and subsequent allergen immunotherapy (AIT), aiming to elucidate their clinical significance in AR and potential to enhance AIT effectiveness. METHODS MAIT cells were assessed in patients with AR and individuals undergoing AIT. The ratio and cytokine-producing capacity of these cells were analysed to explore their correlations with AR progression and their responsiveness to HDM extracts and MAIT cell-specific agonists. RESULTS In AR patients, there was an increase in the ratios of circulating MAIT cells and tonsil follicular T helper-like MAIT cells, alongside a decrease in the IFN-γ-producing MAIT cells. AIT restored their IFN-γ producing capacity, which was further boosted by T cell receptor (TCR) activation using MAIT cell-specific agonist-loaded artificial antigen-presenting cells (aAPCs). Synergistic effects of aAPCs and HDM enhance MAIT cell activation and IFN-γ production while reducing HDM-induced IgE levels in PBMC cocultures. Moreover, higher ratios of MAIT cells and IFN-γ-producing MAIT cells correlated with decreased IgE and increased IgG4 and improved clinical outcomes during AIT. CONCLUSIONS These findings underscore the compromised IFN-γ-producing MAIT cells in AR and their restoration following AIT and TCR stimulation, highlighting the cell's therapeutic potential and predictive value for clinical outcomes in AR and AIT.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Jiang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Chen
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Yang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Junmei Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyan Guo
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Xiong
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wu Z, Chen X, Han F, Leeansyah E. MAIT cell homing in intestinal homeostasis and inflammation. SCIENCE ADVANCES 2025; 11:eadu4172. [PMID: 39919191 PMCID: PMC11804934 DOI: 10.1126/sciadv.adu4172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Mucosa-associated invariant T (MAIT) cells are a large population of unconventional T cells widely distributed in the human gastrointestinal tract. Their homing to the gut is central to maintaining mucosal homeostasis and immunity. This review discusses the potential mechanisms that guide MAIT cells to the intestinal mucosa during homeostasis and inflammation, emphasizing the roles of chemokines, chemokine receptors, and tissue adhesion molecules. The potential influence of the gut microbiota on MAIT cell homing to different regions of the human gut is also discussed. Last, we introduce how organoid technology offers a potentially valuable approach to advance our understanding of MAIT cell tissue homing by providing a more physiologically relevant model that mimics the human gut tissue. These models may enable a detailed investigation of the gut-specific homing mechanisms of MAIT cells. By understanding the regulation of MAIT cell homing to the human gut, potential avenues for therapeutic interventions targeting gut inflammatory conditions such as inflammatory bowel diseases (IBD) may emerge.
Collapse
Affiliation(s)
- Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
3
|
Sugimoto C, Wakao H. The Role of Mucosal-Associated Invariant T Cells in Viral Infections and Their Function in Vaccine Development. Vaccines (Basel) 2025; 13:155. [PMID: 40006702 PMCID: PMC11860804 DOI: 10.3390/vaccines13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Mucosal-Associated Invariant T (MAIT) cells, which bridge innate and adaptive immunity, have emerged as an important player in viral infections despite their inability to directly recognize viral antigens. This review provides a comprehensive analysis of MAIT cell responses across different viral infections, revealing consistent patterns in their behavior and function. We discuss the dynamics of MAIT cells during various viral infections, including changes in their frequency, activation status, and functional characteristics. Particular attention is given to emerging strategies for MAIT-cell-targeted vaccine development, including the use of MR1 ligands as mucosal adjuvants and the activation of MAIT cells through viral vectors and mRNA vaccines. Current knowledge of MAIT cell biology in viral infections provides promising approaches for harnessing their functions in vaccine development.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu 321-0293, Japan;
| | | |
Collapse
|
4
|
Li Y, Ong JWX, See YM, Yee JY, Tang C, Zheng S, Ng BT, Lee BTK, Rotzschke O, Andiappan AK, Lee J. Immunophenotyping schizophrenia subtypes stratified by antipsychotic response. Brain Behav Immun 2025; 123:656-671. [PMID: 39414177 DOI: 10.1016/j.bbi.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Immune dysfunction has been proposed to play a role in the pathophysiology behind the development and persistence of psychosis. Current immunophenotyping studies are limited by small sample sizes and the number of immune markers investigated. Pharmacological subtypes in schizophrenia based on antipsychotic response have been proposed, but few studies have investigated immunophenotypes in treatment-resistant schizophrenia. In this study, we perform comprehensive immunophenotyping on 196 subjects comprising 147 schizophrenia patients stratified by antipsychotic response (49 antipsychotic-responsive, 70 clozapine-responsive, 28 clozapine-resistant) and 49 healthy controls. We aim to identify significant immune cell populations associated with schizophrenia and increasing treatment resistance, as potential modulators of underlying psychosis and/or treatment response. Patients with schizophrenia were recruited and assessed on the Clinical Global Impression - Schizophrenia (CGI-SCH). Treatment response was defined as a rating of three (mild severity) or less on the CGI-SCH positive symptom item after at least 8 weeks of adequate antipsychotic or clozapine treatment. Peripheral blood mononuclear cells were collected and flow cytometry was performed to identify 66 immune cell populations. Differences in cell population proportions were compared between schizophrenia cases and controls, and across all 4 groups, with post-hoc pairwise comparisons. Mucosal-associated invariant T (MAIT) cells (specifically CD8 + and DN double-negative subsets), total, exhausted and memory CD8 + T cells, VD1 + ϒδ T cells, plasmablasts, IgG + B cells and conventional dendritic cells 2 (cDC2) were among the top cell populations downregulated in schizophrenia. We observed increased downregulation with increasing treatment resistance. Conversely, naïve and exhausted CD4 + T cells, CD4/CD8 ratio and CCR5 + CCR2 + HLA DR + Myeloid cells were found to be upregulated in schizophrenia - we observed increased upregulation with increasing treatment resistance. We show significant immunophenotypic differences between schizophrenia cases and healthy controls, and consistent trend differences across varying degrees of antipsychotic resistance. We also examined immune cell populations not previously reported in schizophrenia. Future studies may explore immune markers identified as potential biomarkers of treatment resistance, and clarify on the relationship between immunological changes and pharmacological subtypes in schizophrenia.
Collapse
Affiliation(s)
- Yanhui Li
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Jocelyn Wen Xin Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove Level 3 & 4. Immunos Building Singapore 138648, Singapore
| | - Yuen Mei See
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Jie Yin Yee
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Charmaine Tang
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Shushan Zheng
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Boon Tat Ng
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Bernett Teck Kwong Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore. 1 Mandalay Rd, Singapore 308232, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove Level 3 & 4. Immunos Building Singapore 138648, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove Level 3 & 4. Immunos Building Singapore 138648, Singapore
| | - Jimmy Lee
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore. 1 Mandalay Rd, Singapore 308232, Singapore.
| |
Collapse
|
5
|
Yang Z, Luo B, Li M, He Z, Ren C, Chen X, Kang X, Chen H, Xu E, Guan W, Xia X. The effector function of mucosal associated invariant T cells alters with aging and is regulated by RORγt. Front Immunol 2024; 15:1504806. [PMID: 39669566 PMCID: PMC11634854 DOI: 10.3389/fimmu.2024.1504806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Mucosal-associated invariant T (MAIT) cells are a predominant subset of innate-like T cells in humans, characterized by diverse gene expression profiles and functional capabilities. However, the factors influencing the transcriptomes and effector functions of MAIT cells, particularly at mucosal barriers, remain largely unclear. Methods In this study, we employed single-cell RNA sequencing (scRNA-seq) and functional assays to investigate the transcriptomic and functional characteristics of intestinal MAIT cells in mouse models during aging. We also extended scRNA-seq analysis to human intestinal MAIT cells to compare their gene expression patterns with those observed in aged mice. Results Our findings demonstrated that the transcriptomes and functional capabilities of intestinal MAIT cells shifted from MAIT17 to MAIT1 profiles with aging in mouse models, with notable changes in the production of cytotoxic molecules. Further scRNA-seq analysis of human intestinal MAIT cells revealed a segregation into MAIT1 and MAIT17 subsets, displaying gene expression patterns that mirrored those seen in aged mouse models. The transcription factor RORγt was expressed in both MAIT1 and MAIT17 cells, acting to repress IFNγ production while promoting IL17 expression. Moreover, reduced expression of RORC and Il17A was correlated with poorer survival outcomes in colorectal cancer patients. Discussion These results suggest that aging induces a functional shift between MAIT1 and MAIT17 cells, which may be influenced by transcriptional regulators like RORγt. The observed alterations in MAIT cell activity could potentially impact disease prognosis, particularly in colorectal cancer. This study provides new insights into the dynamics of MAIT cell responses at mucosal barriers, highlighting possible therapeutic targets for modulating MAIT cell functions in aging and disease.
Collapse
Affiliation(s)
- Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Banxin Luo
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Minhuan Li
- Department of Andrology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Ziyun He
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuanfu Ren
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xin Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hong Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - En Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Taikang Xianlin DrumTower Hospital, The Affiliated Hospital of Wuhan University Medical School, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Taikang Xianlin DrumTower Hospital, The Affiliated Hospital of Wuhan University Medical School, Nanjing, China
| |
Collapse
|
6
|
Kammann T, Cai C, Sekine T, Mouchtaridi E, Boulouis C, Nilsén V, Ballesteros OR, Müller TR, Gao Y, Raineri EJM, Mily A, Adamo S, Constantz C, Niessl J, Weigel W, Kokkinou E, Stamper C, Marchalot A, Bassett J, Ferreira S, Rødahl I, Wild N, Brownlie D, Tibbitt C, Mak JYW, Fairlie DP, Leeansyah E, Michaelsson J, Marquardt N, Mjösberg J, Jorns C, Buggert M, Sandberg JK. MAIT cell heterogeneity across paired human tissues reveals specialization of distinct regulatory and enhanced effector profiles. Sci Immunol 2024; 9:eadn2362. [PMID: 39241054 DOI: 10.1126/sciimmunol.adn2362] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 09/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize microbial riboflavin pathway metabolites presented by evolutionarily conserved MR1 molecules. We explored the human MAIT cell compartment across organ donor-matched blood, barrier, and lymphoid tissues. MAIT cell population size was donor dependent with distinct tissue compartmentalization patterns and adaptations: Intestinal CD103+ resident MAIT cells presented an immunoregulatory CD39highCD27low profile, whereas MAIT cells expressing NCAM1/CD56 dominated in the liver and exhibited enhanced effector capacity with elevated response magnitude and polyfunctionality. Both intestinal CD39high and hepatic CD56+ adaptations accumulated with donor age. CD56+ MAIT cells displayed limited T cell receptor-repertoire breadth, elevated MR1 binding, and a transcriptional profile skewed toward innate activation pathways. Furthermore, CD56 was dynamically up-regulated to a persistent steady-state equilibrium after exposure to antigen or IL-7. In summary, we demonstrate functional heterogeneity and tissue site adaptation in resident MAIT cells across human barrier tissues with distinct regulatory and effector signatures.
Collapse
Affiliation(s)
- Tobias Kammann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elli Mouchtaridi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vera Nilsén
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera Ballesteros
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Thomas R Müller
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elisa J M Raineri
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Adamo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christian Constantz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne Marchalot
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - John Bassett
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Ferreira
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inga Rødahl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wild
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Demi Brownlie
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Chris Tibbitt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jakob Michaelsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- ME Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Karlova Zubata I, Smetanova Brozova J, Karel T, Bacova B, Novak J. High pre-transplant Mucosal Associated Invariant T Cell (MAIT) count predicts favorable course of myeloid aplasia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2024; 168:139-146. [PMID: 36896825 DOI: 10.5507/bp.2023.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
AIMS Mucosal Associated Invariant T (MAIT) cells are unconventional T cells with anti-infective potential. MAIT cells detect and fight against microbes on mucosal surfaces and in peripheral tissues. Previous works suggested that MAIT cells survive exposure to cytotoxic drugs in these locations. We sought to determine if they maintain their anti-infective functions after myeloablative chemotherapy. METHODS We correlated the amount of MAIT cells (measured by flow cytometry) in the peripheral blood of 100 adult patients before the start of myeloablative conditioning plus autologous stem cell transplantation with the clinical and laboratory outcomes of aplasia. RESULTS The amount of MAIT cells negatively correlated with peak C-reactive protein level and the amount of red blood cell transfusion units resulting in earlier discharge of patients with the highest amount of MAIT cells. CONCLUSION This work suggests the anti-infectious potential of MAIT cells is maintained during myeloid aplasia.
Collapse
Affiliation(s)
| | - Jitka Smetanova Brozova
- Central Laboratories of the Faculty Hospital Kralovske Vinohrady, Srobarova 50, 100 34, Prague 10, Czech Republic
| | - Tomas Karel
- Department of Statistics and Probability, Faculty of Informatics and Statistics, University of Economics and Business in Prague, Namesti W. Churchilla 1938/4, 130 67, Prague 3, Czech Republic
| | - Barbora Bacova
- Central Laboratories of the Faculty Hospital Kralovske Vinohrady, Srobarova 50, 100 34, Prague 10, Czech Republic
- Department of Immunology, 3rd Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague 10, Czech Republic
| | - Jan Novak
- Department of Haematology, 3
- Department of Immunology, 3rd Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague 10, Czech Republic
| |
Collapse
|
8
|
Smits HH, Jochems SP. Diverging patterns in innate immunity against respiratory viruses during a lifetime: lessons from the young and the old. Eur Respir Rev 2024; 33:230266. [PMID: 39009407 PMCID: PMC11262623 DOI: 10.1183/16000617.0266-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 07/17/2024] Open
Abstract
Respiratory viral infections frequently lead to severe respiratory disease, particularly in vulnerable populations such as young children, individuals with chronic lung conditions and older adults, resulting in hospitalisation and, in some cases, fatalities. The innate immune system plays a crucial role in monitoring for, and initiating responses to, viruses, maintaining a state of preparedness through the constant expression of antimicrobial defence molecules. Throughout the course of infection, innate immunity remains actively involved, contributing to viral clearance and damage control, with pivotal contributions from airway epithelial cells and resident and newly recruited immune cells. In instances where viral infections persist or are not effectively eliminated, innate immune components prominently contribute to the resulting pathophysiological consequences. Even though both young children and older adults are susceptible to severe respiratory disease caused by various respiratory viruses, the underlying mechanisms may differ significantly. Children face the challenge of developing and maturing their immunity, while older adults contend with issues such as immune senescence and inflammaging. This review aims to compare the innate immune responses in respiratory viral infections across both age groups, identifying common central hubs that could serve as promising targets for innovative therapeutic and preventive strategies, despite the apparent differences in underlying mechanisms.
Collapse
Affiliation(s)
- Hermelijn H Smits
- Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Jochems
- Leiden University Center of Infectious Disease (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Li J, Zhao H, Lv G, Aimulajiang K, Li L, Lin R, Aji T. Phenotype and function of MAIT cells in patients with alveolar echinococcosis. Front Immunol 2024; 15:1343567. [PMID: 38550591 PMCID: PMC10973110 DOI: 10.3389/fimmu.2024.1343567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of unconventional T cells widely involved in chronic liver diseases. However, the potential role and regulating factors of MAIT cells in alveolar echinococcosis (AE), a zoonotic parasitic disease by Echinococcus multilocularis (E. multilocularis) larvae chronically parasitizing liver organs, has not yet been studied. Blood samples (n=29) and liver specimens (n=10) from AE patients were enrolled. The frequency, phenotype, and function of MAIT cells in peripheral blood and liver tissues of AE patients were detected by flow cytometry. The morphology and fibrosis of liver tissue were examined by histopathology and immunohistochemistry. The correlation between peripheral MAIT cell frequency and serologic markers was assessed by collecting clinicopathologic characteristics of AE patients. And the effect of in vitro stimulation with E. multilocularis antigen (Emp) on MAIT cells. In this study, MAIT cells are decreased in peripheral blood and increased in the close-to-lesion liver tissues, especially in areas of fibrosis. Circulating MAIT exhibited activation and exhaustion phenotypes, and intrahepatic MAIT cells showed increased activation phenotypes with increased IFN-γ and IL-17A, and high expression of CXCR5 chemokine receptor. Furthermore, the frequency of circulating MAIT cells was correlated with the size of the lesions and liver function in patients with AE. After excision of the lesion site, circulating MAIT cells returned to normal levels, and the serum cytokines IL-8, IL-12, and IL-18, associated with MAIT cell activation and apoptosis, were altered. Our results demonstrate the status of MAIT cell distribution, functional phenotype, and migration in peripheral blood and tissues of AE patients, highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jintian Li
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hanyue Zhao
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guodong Lv
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
10
|
Lesturgie-Talarek M, Gonzalez V, Beaudoin L, Frantz C, Sénot N, Gouda Z, Rousseau C, Avouac J, Lehuen A, Allanore Y. Deficiency and altered phenotype of mucosal-associated invariant T cells in systemic sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:67-78. [PMID: 38333523 PMCID: PMC10848929 DOI: 10.1177/23971983231209807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/28/2023] [Indexed: 02/10/2024]
Abstract
Objective Systemic sclerosis is an autoimmune disease characterized by fibrosis of the skin and internal organs including the lung. Mucosal-associated invariant T cells are innate-like T lymphocytes able to produce various cytokines and cytotoxic mediators such as granzyme B. A large body of evidence supports a role of mucosal-associated invariant T cells in autoimmune disease but more recent reports suggest also a potential role in fibrotic conditions. Therefore, we herein addressed the question as whether mucosal-associated invariant T cells may have an altered profile in systemic sclerosis. Methods Mucosal-associated invariant T cell frequency was analyzed by flow cytometry, using fresh peripheral blood from 74 consecutive systemic sclerosis patients who were compared to 44 healthy donors. In addition, in-depth mucosal-associated invariant T cell phenotype and function were analyzed in unselected 29 women with systemic sclerosis who were compared to 23 healthy women donors. Results Proportion of circulating mucosal-associated invariant T cells was significantly reduced by 68% in systemic sclerosis compared to healthy donors (0.78% in systemic sclerosis vs 2.5%, p < 0.0001). Within systemic sclerosis subsets, mucosal-associated invariant T cells were reduced in patients with interstitial lung disease (systemic sclerosis-interstitial lung disease) (0.56% vs 0.96% in patients without interstitial lung disease, p = 0.04). Moreover, in systemic sclerosis patients, mucosal-associated invariant T cells displayed an activated phenotype indicated by markedly increased CD69+ mucosal-associated invariant T cell frequency (20% mucosal-associated invariant T cell CD69+ compared to 9.4% in healthy donors, p = 0.0014). Interestingly, mucosal-associated invariant T cells from systemic sclerosis-interstitial lung disease patients had a more pronounced altered phenotype compared to systemic sclerosis without interstitial lung disease with a correlation between mucosal-associated invariant T cells expressing CCR6+ and mucosal-associated invariant T cell frequency (r = 0.8, p = 0.006). Conclusion Circulating mucosal-associated invariant T cells were reduced and exhibited an activated phenotype in systemic sclerosis patients. This peripheral mucosal-associated invariant T cell deficiency may be related to enhanced apoptosis and/or homing in inflamed tissue, particularly in systemic sclerosis-interstitial lung disease patients.
Collapse
Affiliation(s)
| | | | | | | | - Noémie Sénot
- Institut Cochin, INSERM U1016, UMR 8104, Paris, France
| | | | | | - Jérôme Avouac
- Rheumatology A Department, Cochin Hospital, APHP, Université Paris Cité, Paris, France
| | - Agnès Lehuen
- Institut Cochin, INSERM U1016, UMR 8104, Paris, France
| | - Yannick Allanore
- Rheumatology A Department, Cochin Hospital, APHP, Université Paris Cité, Paris, France
| |
Collapse
|
11
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
12
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
14
|
Rashu R, Ninkov M, Wardell CM, Benoit JM, Wang NI, Meilleur CE, D'Agostino MR, Zhang A, Feng E, Saeedian N, Bell GI, Vahedi F, Hess DA, Barr SD, Troyer RM, Kang CY, Ashkar AA, Miller MS, Haeryfar SMM. Targeting the MR1-MAIT cell axis improves vaccine efficacy and affords protection against viral pathogens. PLoS Pathog 2023; 19:e1011485. [PMID: 37384813 DOI: 10.1371/journal.ppat.1011485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are MR1-restricted, innate-like T lymphocytes with tremendous antibacterial and immunomodulatory functions. Additionally, MAIT cells sense and respond to viral infections in an MR1-independent fashion. However, whether they can be directly targeted in immunization strategies against viral pathogens is unclear. We addressed this question in multiple wild-type and genetically altered but clinically relevant mouse strains using several vaccine platforms against influenza viruses, poxviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), a riboflavin-based MR1 ligand of bacterial origin, can synergize with viral vaccines to expand MAIT cells in multiple tissues, reprogram them towards a pro-inflammatory MAIT1 phenotype, license them to bolster virus-specific CD8+ T cell responses, and potentiate heterosubtypic anti-influenza protection. Repeated 5-OP-RU administration did not render MAIT cells anergic, thus allowing for its inclusion in prime-boost immunization protocols. Mechanistically, tissue MAIT cell accumulation was due to their robust proliferation, as opposed to altered migratory behavior, and required viral vaccine replication competency and Toll-like receptor 3 and type I interferon receptor signaling. The observed phenomenon was reproducible in female and male mice, and in both young and old animals. It could also be recapitulated in a human cell culture system in which peripheral blood mononuclear cells were exposed to replicating virions and 5-OP-RU. In conclusion, although viruses and virus-based vaccines are devoid of the riboflavin biosynthesis machinery that supplies MR1 ligands, targeting MR1 enhances the efficacy of vaccine-elicited antiviral immunity. We propose 5-OP-RU as a non-classic but potent and versatile vaccine adjuvant against respiratory viruses.
Collapse
Affiliation(s)
- Rasheduzzaman Rashu
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Christine M Wardell
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jenna M Benoit
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ali Zhang
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Emily Feng
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Nasrin Saeedian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Gillian I Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - David A Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Ryan M Troyer
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
15
|
van der Meer RG, Spoorenberg A, Brouwer E, Doornbos-van der Meer B, Boots AMH, Arends S, Abdulahad WH. Mucosal-associated invariant T cells in patients with axial spondyloarthritis. Front Immunol 2023; 14:1128270. [PMID: 36969157 PMCID: PMC10038212 DOI: 10.3389/fimmu.2023.1128270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundSeveral studies implicate Th17-cells and its cytokine (IL-17) in disease pathogenesis of spondyloarthritis (SpA), with available evidence supporting a pathogenic role of CD8+ T-cells. However, data on the involvement of CD8+ mucosal-associated invariant T-cells (MAIT) and their phenotypic characterization and inflammatory function including IL-17 and Granzyme A production in a homogenous population of SpA-patients with primarily axial disease (axSpA) are lacking.ObjectivesQuantify and characterize the phenotype and function of circulating CD8+MAIT-cells in axSpA-patients with primarily axial disease.MethodsBlood samples were obtained from 41 axSpA-patients and 30 age- and sex-matched healthy controls (HC). Numbers and percentages of MAIT-cells (defined as CD3+CD8+CD161highTCRVα7.2+) were determined, and production of IL-17 and Granzyme A (GrzA) by MAIT-cells were examined by flow cytometry upon in vitro stimulation. Serum IgG specific for CMV was measured by ELISA.ResultsNo significant differences in numbers and percentages of circulating MAIT-cells were found between axSpA-patients and HCr zijn meer resultaten de centrale memory CD8 T cellen. cellen van patirculating MAIT cells.. Further phenotypic analysis revealed a significant decrease in numbers of central memory MAIT-cells of axSpA-patients compared to HC. The decrease in central memory MAIT-cells in axSpA patients was not attributed to an alteration in CD8 T-cell numbers, but correlated inversely with serum CMV-IgG titers. Production of IL-17 by MAIT-cells was comparable between axSpA-patients and HC, whereas a significant decrease in the production of GrzA by MAIT-cells from axSpA-patients was observed.ConclusionsThe decrease in cytotoxic capability of circulating MAIT-cells in axSpA-patients might implicate that these cell types migrate to the inflamed tissue and therefore associate with the axial disease pathogenesis.
Collapse
Affiliation(s)
- Rienk Gerben van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Rienk Gerben van der Meer,
| | - Anneke Spoorenberg
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Jiang X, Zhao Q, Huang Z, Ma F, Chen K, Li Z. Relevant mechanisms of MAIT cells involved in the pathogenesis of periodontitis. Front Cell Infect Microbiol 2023; 13:1104932. [PMID: 36896188 PMCID: PMC9988952 DOI: 10.3389/fcimb.2023.1104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a group of unconventional T cells that are abundant in the human body, recognize microbial-derived vitamin B metabolites presented by MHC class I-related protein 1 (MR1), and rapidly produce proinflammatory cytokines, which are widely involved in the immune response to various infectious diseases. In the oral mucosa, MAIT cells tend to accumulate near the mucosal basal lamina and are more inclined to secrete IL-17 when activated. Periodontitis is a group of diseases that manifests mainly as inflammation of the gums and resorption of the alveolar bone due to periodontal tissue invasion by plaque bacteria on the dental surface. The course of periodontitis is often accompanied by a T-cell-mediated immune response. This paper discussed the pathogenesis of periodontitis and the potential contribution of MAIT cells to periodontitis.
Collapse
Affiliation(s)
- Xinrong Jiang
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, Guangdong, China
| | - Zhanyu Huang
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Fengyu Ma
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Kexiao Chen
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, Guangdong, China
- *Correspondence: Zejian Li,
| |
Collapse
|
17
|
Treiner E. Mucosal-associated invariant T cells in hematological malignancies: Current knowledge, pending questions. Front Immunol 2023; 14:1160943. [PMID: 37020559 PMCID: PMC10067713 DOI: 10.3389/fimmu.2023.1160943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Non-classical HLA restricted T cell subsets such as γδ T and NK-T cells are showing promises for immune-based therapy of hematological malignancies. Mucosal-Associated Invariant T cells (MAIT) belong to this family of innate-like T cell subsets and are the focus of many studies on infectious diseases, owing to their unusual recognition of bacterial/fungal metabolites. Their ability to produce type 1 cytokines (IFNγ, TNFα) as well as cytotoxic effector molecules endows them with potential anti-tumor functions. However, their contribution to tumor surveillance in solid cancers is unclear, and only few studies have specifically focused on MAIT cells in blood cancers. In this review, we wish to recapitulate our current knowledge on MAIT cells biology in hematological neoplasms, at diagnosis and/or during treatment, as well as tentative approaches to target them as therapeutic tools. We also wish to take this opportunity to briefly elaborate on what we think are important question to address in this field, as well as potential limitations to overcome in order to make MAIT cells the basis of future, novel therapies for hematological cancers.
Collapse
Affiliation(s)
- Emmanuel Treiner
- Infinity, Inserm UMR1291, Toulouse, France
- University Toulouse 3, Toulouse, France
- Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
- *Correspondence: Emmanuel Treiner,
| |
Collapse
|
18
|
Labuz DR, Lewis G, Fleming ID, Thompson CM, Zhai Y, Firpo MA, Leung DT. Targeted multi-omic analysis of human skin tissue identifies alterations of conventional and unconventional T cells associated with burn injury. eLife 2023; 12:82626. [PMID: 36790939 PMCID: PMC9931389 DOI: 10.7554/elife.82626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Burn injuries are a leading cause of unintentional injury, associated with a dysfunctional immune response and an increased risk of infections. Despite this, little is known about the role of T cells in human burn injury. In this study, we compared the activation and function of conventional T cells and unconventional T cell subsets in skin tissue from acute burn (within 7 days from initial injury), late phase burn (beyond 7 days from initial injury), and non-burn patients. We compared T cell functionality by a combination of flow cytometry and a multi-omic single-cell approach with targeted transcriptomics and protein expression. We found a significantly lower proportion of CD8+ T cells in burn skin compared to non-burn skin, with CD4+ T cells making up the bulk of the T cell population. Both conventional and unconventional burn tissue T cells show significantly higher IFN-γ and TNF-α levels after stimulation than non-burn skin T cells. In sorted T cells, clustering showed that burn tissue had significantly higher expression of homing receptors CCR7, S1PR1, and SELL compared to non-burn skin. In unconventional T cells, including mucosal-associated invariant T (MAIT) and γδ T cells, we see significantly higher expression of cytotoxic molecules GZMB, PRF1, and GZMK. Multi-omics analysis of conventional T cells suggests a shift from tissue-resident T cells in non-burn tissue to a circulating T cell phenotype in burn tissue. In conclusion, by examining skin tissue from burn patients, our results suggest that T cells in burn tissue have a pro-inflammatory rather than a homeostatic tissue-resident phenotype, and that unconventional T cells have a higher cytotoxic capacity. Our findings have the potential to inform the development of novel treatment strategies for burns.
Collapse
Affiliation(s)
- Daniel R Labuz
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| | - Giavonni Lewis
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Irma D Fleming
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Callie M Thompson
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Yan Zhai
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Matthew A Firpo
- Department of Surgery, School of Medicine, University of UtahSalt Lake CityUnited States
| | - Daniel T Leung
- Division of Infectious Disease, Department of Internal Medicine, University of UtahSalt Lake CityUnited States,Division of Microbiology & Immunology, Department of Pathology, University of UtahSalt Lake CityUnited States
| |
Collapse
|
19
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
20
|
Howson LJ, Bryant VL. Insights into mucosal associated invariant T cell biology from human inborn errors of immunity. Front Immunol 2022; 13:1107609. [PMID: 36618406 PMCID: PMC9813737 DOI: 10.3389/fimmu.2022.1107609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lauren J. Howson
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Lauren J. Howson,
| | - Vanessa L. Bryant
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Singh P, Szaraz‐Szeles M, Mezei Z, Barath S, Hevessy Z. Gender-dependent frequency of unconventional T cells in a healthy adult Caucasian population: A combinational study of invariant NKT cells, γδ T cells, and mucosa-associated invariant T cells. J Leukoc Biol 2022; 112:1155-1165. [PMID: 35587609 PMCID: PMC9790664 DOI: 10.1002/jlb.5a1121-583rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/27/2022] [Indexed: 12/30/2022] Open
Abstract
This study tested the hypothesis of gender bias in frequency of unconventional T cells. Unconventional T cells exist as minor subsets of T cells in peripheral blood. Despite their low number, they play a crucial role in various immune-mediated diseases such as inflammation, autoimmunity, allergy, and cancer. Gender-based frequency of these cells altogether on large number of healthy individuals are unestablished creating hurdles to manifest association with various immune-mediated pathologic conditions. In this study, we used a multicolor flow cytometric panel to identify iNKT cells, γδ T cells, and MAIT cells altogether in the peripheral blood samples of 93 healthy adult males and 109 healthy adult females from the Caucasian population. The results revealed iNKT cell median value (% T cells) in females was higher: 0.114% ranging from 0.011 to 3.84%, than males: 0.076% (p value 0.0292), ranging from 0.007 to 0.816% and found to be negatively correlated with age in females (p value 0.0047). However, γδ T cell median value in males was higher: 2.52% ranging from 0.31 to 16.09%, than females: 1.79% (p value 0.0155), ranging from 0.078 to 12.49% and each gender was negatively correlated with age (male p value 0.0003 and female p value 0.0007). MAIT cell median values were 3.04% ranging from 0.11 to 10.75% in males and 2.67% ranging from 0.2 to 18.36% in females. MAIT cells did not show any statistically significant difference between genders and found to be negatively correlated with age (p value < 0.0001). Our results could be used for further gender-wise investigations of various pathologic conditions such as cancer and their prognosis, autoimmune diseases, allergies, and their pathogenicity.
Collapse
Affiliation(s)
- Parvind Singh
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Marianna Szaraz‐Szeles
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zoltan Mezei
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Sandor Barath
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
22
|
Abstract
Mucosal Associated Invariant T cells (MAIT) exert potent antimicrobial activity through direct recognition of metabolite-MR1 complexes and indirect activation by inflammatory cytokines. Additionally, via licensing of antigen presenting cells, MAIT cells orchestrate humoral and cellular adaptive immunity. Our recent understanding of molecular mechanisms of MAIT cell activation, and of the signals required to differentiate them in polarised subsets, pave the way for harnessing their functionality through small molecules or adoptive cell therapy.
Collapse
Affiliation(s)
- Mariolina Salio
- Immunocore LTD, 92 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, United Kingdom.
| |
Collapse
|
23
|
Hackstein CP, Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination. Semin Immunol 2022; 61-64:101661. [PMID: 36374780 PMCID: PMC10933818 DOI: 10.1016/j.smim.2022.101661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
24
|
Salerno-Gonçalves R, Fresnay S, Magder L, Darton TC, Waddington CS, Blohmke CJ, Angus B, Levine MM, Pollard AJ, Sztein MB. Mucosal-Associated Invariant T cells exhibit distinct functional signatures associated with protection against typhoid fever. Cell Immunol 2022; 378:104572. [PMID: 35772315 PMCID: PMC9377420 DOI: 10.1016/j.cellimm.2022.104572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022]
Abstract
First demonstration of cytokine-secreting MAIT cell kinetics after human challenge with Salmonella enterica serovar Typhi. MAIT cell's functional signatures and association with typhoid fever protection. Predictive value of MAIT cell cytokine pattern. Lack of association between the number of cytokines expressed by MAIT cells and prevention against typhoid fever. We have previously demonstrated that Mucosal-Associated Invariant T (MAIT) cells secrete multiple cytokines after exposure to Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. However, whether cytokine secreting MAIT cells can enhance or attenuate the clinical severity of bacterial infections remain debatable. This study characterizes human MAIT cell functions in subjects participating in a wild-type S. Typhi human challenge model. Here, we found that MAIT cells exhibit distinct functional signatures associated with protection against typhoid fever. We also observed that the cytokine patterns of MAIT cell responses, rather than the average number of cytokines expressed, are more predictive of typhoid fever outcomes. These results might enable us to objectively, based on functional parameters, identify cytokine patterns that may serve as predictive biomarkers during natural infection and vaccination.
Collapse
|
25
|
Haliloglu Y, Ozcan A, Erdem S, Azizoglu ZB, Bicer A, Ozarslan OY, Kilic O, Okus FZ, Demir F, Canatan H, Karakukcu M, Uludag SZ, Kutuk MS, Unal E, Eken A. Characterization of cord blood CD3 + TCRVα7.2 + CD161 high T and innate lymphoid cells in the pregnancies with gestational diabetes, morbidly adherent placenta, and pregnancy hypertension diseases. Am J Reprod Immunol 2022; 88:e13555. [PMID: 35452164 DOI: 10.1111/aji.13555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Although pregnant women with gestational diabetes (GD), morbidly adherent placenta (MAP), and pregnancy hypertension (pHT) diseases lead to intrauterine growth restriction (IUGR), little is known about their effect on mucosal-associated invariant T (MAIT) and innate lymphoid cells (ILC) in the umbilical cord. This study aimed to quantify and characterize MAIT cells and ILCs in the cord blood of pregnant women with GD, MAP, and pHT diseases. METHOD OF STUDY Cord blood mononuclear cells (CBMCs) were isolated by Ficoll-Paque gradient. CD3+ TCRVα7.2+ CD161high cells and ILC subsets were quantified by flow cytometry. CBMCs were stimulated with PMA/Ionomycin and Golgi Plug for 4 h and stained for IFN-γ, TNF-α, and granzyme B. The stained cells were analyzed on FACS ARIA III. RESULTS Compared with healthy pregnancies, in the cord blood of the pHT group, elevated number of lymphocytes was observed. Moreover, the absolute number of IFN-γ producing CD4+ or CD4- subsets of CD3+ TCRVα7.2+ CD161high cells as well as those producing granzyme B were significantly elevated in the pHT group compared to healthy controls suggesting increased MAIT cell activity in the pHT cord blood. Similarly, in the MAP group, the absolute number of total CD3+ TCRVα7.2+ CD161high cells, but not individual CD4+ or negative subsets, were significantly increased compared with healthy controls' cord blood. Absolute numbers of total CD3+ TCRVα7.2+ CD161high cells and their subsets were comparable in the cord blood of the GD group compared with healthy controls. Finally, the absolute number of total ILCs and ILC3 subset were significantly elevated in only pHT cord blood compared with healthy controls. Our data also reveal that IFN-γ+ or granzyme B+ cell numbers negatively correlated with fetal birth weight. CONCLUSIONS CD3+ TCRVα7.2+ CD161high cells and ILCs show unique expansion and activity in the cord blood of pregnant women with distinct diseases causing IUGR and may play roles in fetal growth restriction.
Collapse
Affiliation(s)
- Yesim Haliloglu
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Alper Ozcan
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Serife Erdem
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zehra Busra Azizoglu
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Ayten Bicer
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Ozcan Yeniay Ozarslan
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Omer Kilic
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fatma Zehra Okus
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Fatma Demir
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Halit Canatan
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Musa Karakukcu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Semih Zeki Uludag
- Department of Obstetrics and Gynecology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - M Serdar Kutuk
- Department of Obstetrics and Gynecology, School of Medicine, Bezmi Alem University, Istanbul, Turkey
| | - Ekrem Unal
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Pediatrics, Division of Pediatric Hematology and Oncology, School of Medicine, Erciyes University, Kayseri, Turkey.,Department of Blood Banking and Transfusion Medicine, Health Science Institution, Erciyes University, Kayseri, Turkey
| | - Ahmet Eken
- Department of Medical Biology, School of Medicine, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| |
Collapse
|
26
|
Singh P, Szaraz-Szeles M, Mezei Z, Barath S, Hevessy Z. Age-dependent frequency of unconventional T cells in a healthy adult Caucasian population: a combinational study of invariant natural killer T cells, γδ T cells, and mucosa-associated invariant T cells. GeroScience 2022; 44:2047-2060. [PMID: 35038082 PMCID: PMC8763133 DOI: 10.1007/s11357-022-00515-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Unconventional T cells show distinct and unique features during antigen recognition as well as other immune responses. Their decrease in frequency is associated with various autoimmune disorders, allergy, inflammation, and cancer. The landscape frequency of the unconventional T cells altogether (iNKT, γδ T, and MAIT) is largely unestablished leading to various challenges affecting diagnosis and research in this field. In this study, we have established the age group–wise frequency of iNKT, γδ T, and MAIT cells altogether on a total of 203 healthy adult samples of the Caucasian population. The results revealed that iNKT cells were 0.095%, γδ T cells were 2.175%, and MAIT cells were 2.99% of the total T cell population. γδ and MAIT cell frequency is higher in younger age groups than elderly; however, there is no statistically significant difference in the frequency of iNKT cells. Furthermore, γδ and MAIT cells were negatively correlating with age, supporting immunosenescence, unlike iNKT cells. Our finding could be used for further age-wise investigation of various pathological conditions such as cancer and their prognosis, autoimmune diseases and their pathogenicity.
Collapse
Affiliation(s)
- Parvind Singh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Marianna Szaraz-Szeles
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Zoltan Mezei
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Sandor Barath
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary
| | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032, Debrecen, Hungary.
| |
Collapse
|
27
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, et alCossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Show More Authors] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
28
|
Nel I, Beaudoin L, Gouda Z, Rousseau C, Soulard P, Rouland M, Bertrand L, Boitard C, Larger E, Lehuen A. MAIT cell alterations in adults with recent-onset and long-term type 1 diabetes. Diabetologia 2021; 64:2306-2321. [PMID: 34350463 PMCID: PMC8336671 DOI: 10.1007/s00125-021-05527-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/27/2021] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes expressing an αβ T cell antigen receptor that recognises the MHC-related 1 molecule. MAIT cells are altered in children at risk for and with type 1 diabetes, and mouse model studies have shown MAIT cell involvement in type 1 diabetes development. Since several studies support heterogeneity in type 1 diabetes physiopathology according to the age of individuals, we investigated whether MAIT cells were altered in adults with type 1 diabetes. METHODS MAIT cell frequency, phenotype and function were analysed by flow cytometry, using fresh peripheral blood from 21 adults with recent-onset type 1 diabetes (2-14 days after disease onset) and 47 adults with long-term disease (>2 years after diagnosis) compared with 55 healthy blood donors. We also separately analysed 17 women with long-term type 1 diabetes and an associated autoimmune disease, compared with 30 healthy women and 27 women with long-term type 1 diabetes. RESULTS MAIT cells from adults with recent-onset type 1 diabetes, compared with healthy adult donors, harboured a strongly activated phenotype indicated by an elevated CD25+ MAIT cell frequency. In adults with long-term type 1 diabetes, MAIT cells displayed an activated and exhausted phenotype characterised by high CD25 and programmed cell death 1 (PD1) expression and a decreased production of proinflammatory cytokines, IL-2, IFN-γ and TNF-α. Even though MAIT cells from these patients showed upregulated IL-17 and IL-4 production, the polyfunctionality of MAIT cells was decreased (median 4.8 vs 13.14% of MAIT cells, p < 0.001) and the frequency of MAIT cells producing none of the effector molecules analysed increased (median 34.40 vs 19.30% of MAIT cells, p < 0.01). Several MAIT cell variables correlated with HbA1c level and more particularly in patients with recent-onset type 1 diabetes. In women with long-term type 1 diabetes, MAIT cell alterations were more pronounced in those with an associated autoimmune disease than in those without another autoimmune disease. In women with long-term type 1 diabetes and an associated autoimmune disease, there was an increase in CD69 expression and a decrease in the survival B-cell lymphoma 2 (BCL-2) (p < 0.05) and CD127 (IL-7R) (p < 0.01) marker expression compared with women without a concomitant autoimmune disorder. Concerning effector molecules, TNF-α and granzyme B production by MAIT cells was decreased. CONCLUSIONS/INTERPRETATION Alterations in MAIT cell frequency, phenotype and function were more pronounced in adults with long-term type 1 diabetes compared with adults with recent-onset type 1 diabetes. There were several correlations between MAIT cell variables and clinical characteristics. Moreover, the presence of another autoimmune disease in women with long-term type 1 diabetes further exacerbated MAIT cell alterations. Our results suggest that MAIT cell alterations in adults with type 1 diabetes could be associated with two aspects of the disease: impaired glucose homeostasis; and autoimmunity.
Collapse
Affiliation(s)
- Isabelle Nel
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Lucie Beaudoin
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Zouriatou Gouda
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Camille Rousseau
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Pauline Soulard
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Matthieu Rouland
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Léo Bertrand
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
| | - Christian Boitard
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
- Diabetology Department, Cochin Hospital, AP-HP Centre - Université de Paris, Paris, France
| | - Etienne Larger
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France
- Diabetology Department, Cochin Hospital, AP-HP Centre - Université de Paris, Paris, France
| | - Agnès Lehuen
- Institut Cochin, Inserm, CNRS, Laboratory of Excellence Inflamex, Université de Paris, Paris, France.
| |
Collapse
|
29
|
Dou Y, Maurer K, Conrad M, Patel T, Shraim R, Sullivan KE, Kelsen J. Mucosal Invariant T cells are Diminished in Very Early-Onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2021; 73:529-536. [PMID: 34117197 PMCID: PMC8713142 DOI: 10.1097/mpg.0000000000003189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Very early-onset inflammatory bowel disease (VEO-IBD) arises in children less than 6 years old, a critical time for immunologic development and maturation of the intestinal microbiome. Non-conventional lymphocytes, defined here as mucosal-associated invariant T cells and innate lymphocytes, require microbial products for either development or expansion, aspects that could be altered in very early-onset inflammatory bowel disease. Our objective was to define conventional leukocyte and non-conventional lymphocyte populations in controls and patients using multiparameter flow cytometry to test the hypothesis that their frequencies would be altered in a chronic inflammatory state associated with significant dysbiosis. METHODS Multiparameter flow cytometry was used in a control cohort of 105 subjects to define age-effects, not previously comprehensively examined for these cell types in humans. Differences were defined between 263 unique age-matched patients with VEO-IBD and 105 controls using Student t-test. Subjects were divided into two age groups at the time of sampling to control for age-related changes in immune composition. RESULTS Intermediate monocytes were consistently decreased in patients with VEO-IBD compared to controls. Mucosal-associated invariant T cells were significantly lower in patients with long-standing disease. Levels were less than half of those seen in the age-matched control cohort. The innate lymphoid cells type 2 population was expanded in the youngest patients. CONCLUSION Mucosal-associated invariant T cells are diminished years after presentation with inflammatory bowel disease. This durable effect of early life intestinal inflammation may have long-term consequences. Diminished mucosal-associated invariant T cells could impact host defense of intestinal infections.
Collapse
Affiliation(s)
- Ying Dou
- Division of Allergy Immunology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kelly Maurer
- Division of Allergy Immunology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Maire Conrad
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Trusha Patel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Rawan Shraim
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Judith Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
30
|
Mucosal-Associated Invariant T Cell Response to Acute Exercise and Exercise Training in Older Obese Women. Sports (Basel) 2021; 9:sports9100133. [PMID: 34678914 PMCID: PMC8541130 DOI: 10.3390/sports9100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/01/2022] Open
Abstract
(1) Background: Obesity is a major global public health concern as it is associated with many of the leading causes of preventable deaths. Exercise reduces obesity-induced inflammation; however, it is unknown how exercise training may impact mucosal associated invariant T (MAIT) cells in overweight/obese (OW) post-menopausal women. Therefore, the purpose of this study was to investigate (i) circulating MAIT-cells at rest in OW vs. Lean women, (ii) the response of MAIT-cells to a single bout of combined aerobic and resistance exercise, and (iii) the effects of 12 weeks of exercise training (EX) or educational program (ED) on the MAIT-cell response in OW. (2) Methods: OW completed an acute exercise session or sitting control, underwent 12 weeks of exercise training or received educational materials, and then repeated the exercise session/sitting control. Lean post-menopausal women provided a baseline comparison. (3) Results: OW had lower circulating MAIT-cells at rest than Lean prior to exercise training; however, after training EX displayed improved MAIT-cell frequency. Additionally, prior to training EX did not exhibit MAIT-cell mobilization/egress, however, both improved after training. (4) Conclusions: Reduced MAIT-cell frequency and ability to mobilize/egress were potentially partially rescued in EX after 12 weeks of exercise training; however, further research is needed to elucidate age or obesity-induced attenuations in MAIT-cells.
Collapse
|
31
|
Chiba A, Murayama G, Miyake S. Characteristics of mucosal-associated invariant T cells and their roles in immune diseases. Int Immunol 2021; 33:775-780. [PMID: 34508634 DOI: 10.1093/intimm/dxab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that express a semi-invariant T cell receptor and are restricted by the molecule major histocompatibility complex class I-related molecule 1 (MR1). MAIT cells recognize biosynthetic derivatives of the riboflavin synthesis pathway present in microbes. MAIT cells have attracted increased interest related to various immune responses because of their unique features including their abundance in humans, nonpeptidic antigens, and ability to respond to antigenic and non-antigenic stimuli. The numbers of circulating MAIT cells are decreased in many immune diseases such as multiple sclerosis, systemic lupus erythematosus, and inflammatory bowel diseases. However, the remaining MAIT cells have an increased cytokine-producing capacity and activated status, which is related to disease activity. Additionally, MAIT cells have been observed at sites of inflammation including the kidneys, synovial fluid and intestinal mucosa. These findings suggest their involvement in the pathogenesis of immune diseases. In this mini-review, we summarize the recent findings of MAIT cells in human immune diseases and animal models, and discuss their role and potential as a therapeutic target.
Collapse
Affiliation(s)
- Asako Chiba
- Department of Immunology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Goh Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
32
|
Raffetseder J, Lindau R, van der Veen S, Berg G, Larsson M, Ernerudh J. MAIT Cells Balance the Requirements for Immune Tolerance and Anti-Microbial Defense During Pregnancy. Front Immunol 2021; 12:718168. [PMID: 34497611 PMCID: PMC8420809 DOI: 10.3389/fimmu.2021.718168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like T cell subset with proinflammatory and cytotoxic effector functions. During pregnancy, modulation of the maternal immune system, both at the fetal-maternal interface and systemically, is crucial for a successful outcome and manifests through controlled enhancement of innate and dampening of adaptive responses. Still, immune defenses need to efficiently protect both the mother and the fetus from infection. So far, it is unknown whether MAIT cells are subjected to immunomodulation during pregnancy, and characterization of decidual MAIT cells as well as their functional responses during pregnancy are mainly lacking. We here characterized the presence and phenotype of Vα7.2+CD161+ MAIT cells in blood and decidua (the uterine endometrium during pregnancy) from women pregnant in the 1st trimester, i.e., the time point when local immune tolerance develops. We also assessed the phenotype and functional responses of MAIT cells in blood of women pregnant in the 3rd trimester, i.e., when systemic immunomodulation is most pronounced. Multi-color flow cytometry panels included markers for MAIT subsets, and markers of activation (CD69, HLA-DR, Granzyme B) and immunoregulation (PD-1, CTLA-4). MAIT cells were numerically decreased at the fetal-maternal interface and showed, similar to other T cells in the decidua, increased expression of immune checkpoint markers compared with MAIT cells in blood. During the 3rd trimester, circulating MAIT cells showed a higher expression of CD69 and CD56, and their functional responses to inflammatory (activating anti-CD3/CD28 antibodies, and IL-12 and IL-18) and microbial stimuli (Escherichia coli, group B streptococci and influenza A virus) were generally increased compared with MAIT cells from non-pregnant women, indicating enhanced antimicrobial defenses during pregnancy. Taken together, our findings indicate dual roles for MAIT cells during pregnancy, with an evidently well-adapted ability to balance the requirements of immune tolerance in parallel with maintained antimicrobial defenses. Since MAIT cells are easily activated, they need to be strictly regulated during pregnancy, and failure to do so could contribute to pregnancy complications.
Collapse
Affiliation(s)
- Johanna Raffetseder
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Robert Lindau
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Sigrid van der Veen
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Göran Berg
- Division of Obstetrics and Gynecology, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology (MMV), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
33
|
Comont T, Nicolau-Travers ML, Bertoli S, Recher C, Vergez F, Treiner E. MAIT cells numbers and frequencies in patients with acute myeloid leukemia at diagnosis: association with cytogenetic profile and gene mutations. Cancer Immunol Immunother 2021; 71:875-887. [PMID: 34477901 DOI: 10.1007/s00262-021-03037-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Harnessing or monitoring immune cells is actually a major topic in pre-clinical and clinical studies in acute myeloid leukemia (AML). Mucosal-Associated Invariant T cells (MAIT) constitute one of the largest subset of innate-like, cytotoxic T cell subsets in humans. Despite some papers suggesting a role for MAIT cells in cancer, their specific involvement remains unclear, especially in myeloid malignancies. This prospective monocentric study included 216 patients with a newly diagnosed AML. Circulating MAIT cells were quantified by flow cytometry at diagnosis and during intensive chemotherapy. We observed that circulating MAIT cells show a specific decline in AML patients at diagnosis compared to healthy donors. Post-induction monitored patients presented with a drastic drop in MAIT cell numbers, with recovery after one month. We also found correlation between decrease in MAIT cells number and adverse cytogenetic profile. FLT3-ITD and IDH ½ mutations were associated with higher MAIT cell numbers. Patients with high level of activated MAIT cells are under-represented within patients with a favorable cytogenetic profile, and over-represented among patients with IDH1 mutations or bi-allelic CEBPA mutations. We show for the first time that circulating MAIT cells are affected in newly diagnosed AML patients, suggesting a link between MAIT cells and AML progression. Our work fosters new studies to deepen our knowledge about the role of MAIT cells in cancer.
Collapse
Affiliation(s)
- Thibault Comont
- Department of Internal Medicine, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Laboratory of Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
| | | | - Sarah Bertoli
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- Department of Clinical Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Christian Recher
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- Department of Clinical Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Francois Vergez
- Laboratory of Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Emmanuel Treiner
- Laboratory of Immunology, CHU Toulouse, Toulouse, France.
- University Paul Sabatier III, Toulouse, France.
- Infinity, Inserm UMR1291, 330 Avenue de Grande Bretagne, 31000, Toulouse, France.
| |
Collapse
|
34
|
Czaja AJ. Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease. World J Gastroenterol 2021; 27:3705-3733. [PMID: 34321839 PMCID: PMC8291028 DOI: 10.3748/wjg.v27.i25.3705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been described in liver and non-liver diseases, and they have been ascribed antimicrobial, immune regulatory, protective, and pathogenic roles. The goals of this review are to describe their biological properties, indicate their involvement in chronic liver disease, and encourage investigations that clarify their actions and therapeutic implications. English abstracts were identified in PubMed by multiple search terms, and bibliographies were developed. MAIT cells are activated by restricted non-peptides of limited diversity and by multiple inflammatory cytokines. Diverse pro-inflammatory, anti-inflammatory, and immune regulatory cytokines are released; infected cells are eliminated; and memory cells emerge. Circulating MAIT cells are hyper-activated, immune exhausted, dysfunctional, and depleted in chronic liver disease. This phenotype lacks disease-specificity, and it does not predict the biological effects. MAIT cells have presumed protective actions in chronic viral hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease, primary sclerosing cholangitis, and decompensated cirrhosis. They have pathogenic and pro-fibrotic actions in autoimmune hepatitis and mixed actions in primary biliary cholangitis. Local factors in the hepatic microenvironment (cytokines, bile acids, gut-derived bacterial antigens, and metabolic by-products) may modulate their response in individual diseases. Investigational manipulations of function are warranted to establish an association with disease severity and outcome. In conclusion, MAIT cells constitute a disease-nonspecific, immune response to chronic liver inflammation and infection. Their pathological role has been deduced from their deficiencies during active liver disease, and future investigations must clarify this role, link it to outcome, and explore therapeutic interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
35
|
Hanson ED, Bates LC, Harrell EP, Bartlett DB, Lee JT, Wagoner CW, Alzer MS, Amatuli DJ, Jensen BC, Deal AM, Muss HB, Nyrop KA, Battaglini CL. Exercise training partially rescues impaired mucosal associated invariant t-cell mobilization in breast cancer survivors compared to healthy older women. Exp Gerontol 2021; 152:111454. [PMID: 34146655 DOI: 10.1016/j.exger.2021.111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Exercise may attenuate immunosenescence with aging that appears to be accelerated following breast cancer treatment, although limited data on specific cell types exists and acute and chronic exercise have been investigated independently in older adults. PURPOSE To determine the mucosal associated invariant T (MAIT) cell response to acute exercise before (PRE) and after (POST) 16 weeks of exercise training in breast cancer survivors (BCS) and healthy older women (CON). METHODS Age-matched BCS and CON performed 45 min of intermittent cycling at 60% peak power output wattage. Blood samples were obtained at rest, immediately (0 h) and 1 h after exercise to determine MAIT cell counts, frequency, and intracellular cytokine expression. RESULTS At PRE, MAIT cell counts were greater in CON (137%) than BCS at 0 h (46%, p < 0.001), with increased MAIT cell frequency in CON but not BCS. TNFα+ and IFNγ+ MAIT cell counts increased at 0 h by ~120% in CON (p < 0.001), while BCS counts and frequencies were unchanged. Similar deficits were observed in CD3+ and CD3+ CD8+ cells. At POST, exercise-induced mobilization and egress of MAIT cell counts and frequency showed trends towards improvement in BCS that approached levels in CON. Independent of group, TNFα frequency trended to improve (p = 0.053). CONCLUSIONS MAIT mobilization in older BCS following acute exercise was attenuated; however, exercise training may partially rescue these initial deficits, including greater sensitivity to mitogenic stimulation. Using acute exercise before and after interventions provides a unique approach to identify age- and cancer-related immuno-dysfunction that is less apparent at rest.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Elizabeth P Harrell
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Jordan T Lee
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chad W Wagoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Mohamdod S Alzer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Dean J Amatuli
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian C Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hyman B Muss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kirsten A Nyrop
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Claudio L Battaglini
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
36
|
Yu C, Littleton S, Giroux NS, Mathew R, Ding S, Kalnitsky J, Yang Y, Petzold E, Chung HA, Rivera GO, Rotstein T, Xi R, Ko ER, Tsalik EL, Sempowski GD, Denny TN, Burke TW, McClain MT, Woods CW, Shen X, Saban DR. Mucosal-associated invariant T cell responses differ by sex in COVID-19. MED 2021; 2:755-772.e5. [PMID: 33870241 PMCID: PMC8043578 DOI: 10.1016/j.medj.2021.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sexual dimorphisms in immune responses contribute to coronavirus disease 2019 (COVID-19) outcomes, but the mechanisms governing this disparity remain incompletely understood. METHODS We carried out sex-balanced sampling of peripheral blood mononuclear cells from hospitalized and non-hospitalized individuals with confirmed COVID-19, uninfected close contacts, and healthy control individuals for 36-color flow cytometry and single-cell RNA sequencing. FINDINGS Our results revealed a pronounced reduction of circulating mucosal-associated invariant T (MAIT) cells in infected females. Integration of published COVID-19 airway tissue datasets suggests that this reduction represented a major wave of MAIT cell extravasation during early infection in females. Moreover, MAIT cells from females possessed an immunologically active gene signature, whereas cells from males were pro-apoptotic. CONCLUSIONS Our findings uncover a female-specific protective MAIT cell profile, potentially shedding light on reduced COVID-19 susceptibility in females. FUNDING This work was supported by NIH/NIAID (U01AI066569 and UM1AI104681), the Defense Advanced Projects Agency (DARPA; N66001-09-C-2082 and HR0011-17-2-0069), the Veterans Affairs Health System, and Virology Quality Assurance (VQA; 75N93019C00015). The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health. COVID-19 samples were processed under Biosafety level 2 (BSL-2) with aerosol management enhancement or BSL-3 in the Duke Regional Biocontainment Laboratory, which received partial support for construction from NIH/NIAID (UC6AI058607).
Collapse
Affiliation(s)
- Chen Yu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sejiro Littleton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas S Giroux
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Petzold
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
| | - Hong A Chung
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Grecia O Rivera
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Tomer Rotstein
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Rui Xi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Emily R Ko
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
- Duke Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ephraim L Tsalik
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas W Burke
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
| | - Micah T McClain
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher W Woods
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27710, USA
- Durham Veterans Affairs Health Care System, Durham, NC 27705, USA
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
37
|
Weight CM, Jochems SP, Adler H, Ferreira DM, Brown JS, Heyderman RS. Insights Into the Effects of Mucosal Epithelial and Innate Immune Dysfunction in Older People on Host Interactions With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:651474. [PMID: 34113578 PMCID: PMC8185287 DOI: 10.3389/fcimb.2021.651474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
In humans, nasopharyngeal carriage of Streptococcus pneumoniae is common and although primarily asymptomatic, is a pre-requisite for pneumonia and invasive pneumococcal disease (IPD). Together, these kill over 500,000 people over the age of 70 years worldwide every year. Pneumococcal conjugate vaccines have been largely successful in reducing IPD in young children and have had considerable indirect impact in protection of older people in industrialized country settings (herd immunity). However, serotype replacement continues to threaten vulnerable populations, particularly older people in whom direct vaccine efficacy is reduced. The early control of pneumococcal colonization at the mucosal surface is mediated through a complex array of epithelial and innate immune cell interactions. Older people often display a state of chronic inflammation, which is associated with an increased mortality risk and has been termed 'Inflammageing'. In this review, we discuss the contribution of an altered microbiome, the impact of inflammageing on human epithelial and innate immunity to S. pneumoniae, and how the resulting dysregulation may affect the outcome of pneumococcal infection in older individuals. We describe the impact of the pneumococcal vaccine and highlight potential research approaches which may improve our understanding of respiratory mucosal immunity during pneumococcal colonization in older individuals.
Collapse
Affiliation(s)
- Caroline M. Weight
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeremy S. Brown
- Respiratory Medicine, University College London, London, United Kingdom
| | - Robert S. Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
38
|
Xiong K, Sun W, Wang H, Xie J, Su B, Fan L. The frequency and dynamics of CD4 + mucosal-associated invariant T (MAIT) cells in active pulmonary tuberculosis. Cell Immunol 2021; 365:104381. [PMID: 34049011 DOI: 10.1016/j.cellimm.2021.104381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
MAIT cells are unconventional innate-like T lymphocytes contributing to host immune protection against Mycobacteria tuberculosis (Mtb) infection. CD4- MAIT cells play a major role in immune protection against tuberculosis (TB), however, the role of CD4+ MAIT cells was elusive due to their low abundance. We firstly investigated the frequency and functions of CD4+ MAIT cells in pulmonary tuberculosis (PTB) patients before and after anti-TB treatment. We found that the frequency of Mtb-reactive CD4+ MAIT cells and IFN-γ, granzyme B (GrzB), CD69 expression on them were increased while LAG-3+ cells of them were decreased in PTB patients. After the treatment, the frequency of Mtb-reactive CD4+ MAIT cells and CD69, IFN-γ, GrzB expression on them were decreased while LAG-3 increased. The results indicated the expression profile is distinct between CD4+ MAIT cells and CD4- MAIT cells in PTB patients, the increased IFN-γ and GrzB expression of CD4+ MAIT cells play a role in anti-TB immunity.
Collapse
Affiliation(s)
- Kunlong Xiong
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenwen Sun
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongxiu Wang
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| | - Bo Su
- Lab Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lin Fan
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Ghesquière T, Ciudad M, Ramon A, Greigert H, Gerard C, Cladière C, Thébault M, Genet C, Devilliers H, Maurier F, Ornetti P, Quipourt V, Gabrielle PH, Creuzot-Garcher C, Tarris G, Martin L, Soudry-Faure A, Saas P, Audia S, Bonnotte B, Samson M. Mucosal-associated invariant T cells in Giant Cell Arteritis. J Autoimmun 2021; 121:102652. [PMID: 34000675 DOI: 10.1016/j.jaut.2021.102652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to assess the implication of mucosal-associated invariant T (MAIT) cells in GCA. Blood samples were obtained from 34 GCA patients (before and after 3 months of treatment with glucocorticoids (GC) alone) and compared with 20 controls aged >50 years. MAIT cells, defined by a CD3+CD4-TCRγδ-TCRVα7.2+CD161+ phenotype, were analyzed by flow cytometry. After sorting, we assessed the ability of MAIT cells to proliferate and produce cytokines after stimulation with anti CD3/CD28 microbeads or IL-12 and IL-18. MAIT were stained in temporal artery biopsies (TAB) by confocal microscopy. MAIT cells were found in the arterial wall of positive TABs but was absent in negative TAB. MAIT frequency among total αβ-T cells was similar in the blood of patients and controls (0.52 vs. 0.57%; P = 0.43) and not modified after GC treatment (P = 0.82). Expression of IFN-γ was increased in MAIT cells from GCA patients compared to controls (44.49 vs. 32.9%; P = 0.029), and not modified after 3 months of GC therapy (P = 0.82). When they were stimulated with IL-12 and IL-18, MAIT from GCA patients produced very high levels of IFN-γ and displayed a stronger proliferation compared with MAIT from controls (proliferation index 3.39 vs. 1.4; P = 0.032). In GCA, the functional characteristics of MAIT cells are modified toward a pro-inflammatory phenotype and a stronger proliferation capability in response to IL-12 and IL-18, suggesting that MAIT might play a role in GCA pathogenesis. Our results support the use of treatments targeting IL-12/IL-18 to inhibit the IFN-γ pathway in GCA.
Collapse
Affiliation(s)
- Thibault Ghesquière
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Marion Ciudad
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - André Ramon
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France; Department of Rheumatology, Dijon University Hospital, Dijon, France
| | - Hélène Greigert
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Claire Gerard
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Claudie Cladière
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Marine Thébault
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Coraline Genet
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Hervé Devilliers
- Department of Internal Medicine and Systemic Diseases, Dijon University Hospital, Dijon, France
| | - François Maurier
- Department of Internal Medicine, Hospital Belle Isle, Metz, France
| | - Paul Ornetti
- Department of Rheumatology, Dijon University Hospital, Dijon, France; CIC-1432 Plateforme d'investigation Technologique Dijon University Hospital, INSERM UMR1093-CAPS, Université Bourgogne, Dijon, France
| | - Valérie Quipourt
- Department of Internal Medicine and Geriatrics, Dijon University Hospital, Dijon, France
| | | | | | - Georges Tarris
- Department of Pathology, CHU François Mitterrand, Dijon, France
| | - Laurent Martin
- Department of Pathology, CHU François Mitterrand, Dijon, France
| | - Agnès Soudry-Faure
- Unité de Soutien Méthodologique, DRCI, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | - Philippe Saas
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France; CIC-1431, INSERM, Besançon University Hospital, EFS Bourgogne Franche-Comté, LabEx LipSTIC, F-25000, Besançon, France
| | - Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Bernard Bonnotte
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Maxime Samson
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France.
| |
Collapse
|
40
|
Hanson ED, Bates LC, Bartlett DB, Campbell JP. Does exercise attenuate age- and disease-associated dysfunction in unconventional T cells? Shining a light on overlooked cells in exercise immunology. Eur J Appl Physiol 2021; 121:1815-1834. [PMID: 33822261 DOI: 10.1007/s00421-021-04679-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Unconventional T Cells (UTCs) are a unique population of immune cells that links innate and adaptive immunity. Following activation, UTCs contribute to a host of immunological activities, rapidly responding to microbial and viral infections and playing key roles in tumor suppression. Aging and chronic disease both have been shown to adversely affect UTC numbers and function, with increased inflammation, change in body composition, and physical inactivity potentially contributing to the decline. One possibility to augment circulating UTCs is through increased physical activity. Acute exercise is a potent stimulus leading to the mobilization of immune cells while the benefits of exercise training may include anti-inflammatory effects, reductions in fat mass, and improved fitness. We provide an overview of age-related changes in UTCs, along with chronic diseases that are associated with altered UTC number and function. We summarize how UTCs respond to acute exercise and exercise training and discuss potential mechanisms that may lead to improved frequency and function.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27517, USA.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | | |
Collapse
|
41
|
Qiu W, Kang N, Wu Y, Cai Y, Xiao L, Ge H, Zhu H. Mucosal Associated Invariant T Cells Were Activated and Polarized Toward Th17 in Chronic Obstructive Pulmonary Disease. Front Immunol 2021; 12:640455. [PMID: 33868270 PMCID: PMC8044354 DOI: 10.3389/fimmu.2021.640455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease characterized by airway limitation accompanied with infiltration of inflammatory cells. Mucosal associated invariant T (MAIT) cells can recognize bacteria and play an important role in controlling host immune responses by producing cytokines. In this study, we characterized the function and the ability of MAIT cells to secrete cytokines measured by flow cytometry. In COPD patients, MAIT cells have the ability to produce more IL-17 and less IFN-γ compared to healthy individuals. We found that HLA-DR expression levels reflected the degree of inflammation and the proportion of IL-17 was significantly correlated with lung function in peripheral blood. In addition, we found that MAIT cells were highly expressed in the lung, and the increased expression of CXCR2, CXCL1 indicated that MAIT cells had the potential to migrate to inflammatory tissues. This evidence implies that MAIT cells may play a potential role in COPD immunopathology.
Collapse
Affiliation(s)
- Wenjia Qiu
- Department of Respiratory Medicine, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Ning Kang
- Department of Thoracic Surgery, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Yanxu Wu
- Department of Respiratory Medicine, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Yongjun Cai
- Department of Pathology, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Li Xiao
- Department of Pathology, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Haiyan Ge
- Department of Respiratory Medicine, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Huili Zhu
- Department of Respiratory Medicine, The Affiliated Huadong Hospital of Fudan University, Shanghai, China
| |
Collapse
|
42
|
MAIT Cells: Partners or Enemies in Cancer Immunotherapy? Cancers (Basel) 2021; 13:cancers13071502. [PMID: 33805904 PMCID: PMC8037823 DOI: 10.3390/cancers13071502] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Unconventional T cells have recently come under intense scrutiny because of their innate-like effector functions and unique antigen specificity, suggesting their potential importance in antitumor immunity. MAIT cells, one such population of unconventional T cell, have been shown to significantly influence bacterial infections, parasitic and fungal infections, viral infections, autoimmune and other inflammatory diseases, and, as discussed thoroughly in this review, various cancers. This review aims to merge accumulating evidence, tease apart the complexities of MAIT cell biology in different malignancies, and discuss how these may impact clinical outcomes. While it is clear that MAIT cells can impact the tumor microenvironment, the nature of these interactions varies depending on the type of cancer, subset of MAIT cell, patient demographic, microbiome composition, and the type of therapy administered. This review examines the impact of these variables on MAIT cells and discusses outstanding questions within the field. Abstract A recent boom in mucosal-associated invariant T (MAIT) cell research has identified relationships between MAIT cell abundance, function, and clinical outcomes in various malignancies. As they express a variety of immune checkpoint receptors and ligands, and possess strong cytotoxic functions, MAIT cells are an attractive new subject in the field of tumor immunology. MAIT cells are a class of innate-like T cells that express a semi-invariant T cell antigen receptor (TCR) that recognizes microbially derived non-peptide antigens presented by the non-polymorphic MHC class-1 like molecule, MR1. In this review, we outline the current (and often contradictory) evidence exploring MAIT cell biology and how MAIT cells impact clinical outcomes in different human cancers, as well as what role they may have in cancer immunotherapy.
Collapse
|
43
|
Suliman S, Gela A, Mendelsohn SC, Iwany SK, Tamara KL, Mabwe S, Bilek N, Darboe F, Fisher M, Corbett AJ, Kjer-Nielsen L, Eckle SBG, Huang CC, Zhang Z, Lewinsohn DM, McCluskey J, Rossjohn J, Hatherill M, León SR, Calderon RI, Lecca L, Murray M, Scriba TJ, Van Rhijn I, Moody DB. Peripheral Blood Mucosal-Associated Invariant T Cells in Tuberculosis Patients and Healthy Mycobacterium tuberculosis-Exposed Controls. J Infect Dis 2021; 222:995-1007. [PMID: 32267943 DOI: 10.1093/infdis/jiaa173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/06/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In human blood, mucosal-associated invariant T (MAIT) cells are abundant T cells that recognize antigens presented on non-polymorphic major histocompatibility complex-related 1 (MR1) molecules. The MAIT cells are activated by mycobacteria, and prior human studies indicate that blood frequencies of MAIT cells, defined by cell surface markers, decline during tuberculosis (TB) disease, consistent with redistribution to the lungs. METHODS We tested whether frequencies of blood MAIT cells were altered in patients with TB disease relative to healthy Mycobacterium tuberculosis-exposed controls from Peru and South Africa. We quantified their frequencies using MR1 tetramers loaded with 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil. RESULTS Unlike findings from prior studies, frequencies of blood MAIT cells were similar among patients with TB disease and latent and uninfected controls. In both cohorts, frequencies of MAIT cells defined by MR1-tetramer staining and coexpression of CD161 and the T-cell receptor alpha variable gene TRAV1-2 were strongly correlated. Disease severity captured by body mass index or TB disease transcriptional signatures did not correlate with MAIT cell frequencies in patients with TB. CONCLUSIONS Major histocompatibility complex (MHC)-related 1-restrictied MAIT cells are detected at similar levels with tetramers or surface markers. Unlike MHC-restricted T cells, blood frequencies of MAIT cells are poor correlates of TB disease but may play a role in pathophysiology.
Collapse
Affiliation(s)
- Sara Suliman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Simon C Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sarah K Iwany
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kattya Lopez Tamara
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Socios En Salud Sucursal Peru, Lima, Peru
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Fatoumatta Darboe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chuan-Chin Huang
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zibiao Zhang
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Lewinsohn
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland VA Medical Center, Portland, Oregon, USA
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | - Leonid Lecca
- Socios En Salud Sucursal Peru, Lima, Peru.,Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan Murray
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Bister J, Crona Guterstam Y, Strunz B, Dumitrescu B, Haij Bhattarai K, Özenci V, Brännström M, Ivarsson MA, Gidlöf S, Björkström NK. Human endometrial MAIT cells are transiently tissue resident and respond to Neisseria gonorrhoeae. Mucosal Immunol 2021; 14:357-365. [PMID: 32759973 DOI: 10.1038/s41385-020-0331-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 02/04/2023]
Abstract
Mucosa-associated invariant T (MAIT) cells are non-classical T cells important in the mucosal defense against microbes. Despite an increasing interest in the immunobiology of the endometrial mucosa, little is known regarding human MAIT cells in this compartment. The potential role of MAIT cells as a tissue-resident local defense against microbes in the endometrium is largely unexplored. Here, we performed a high-dimensional flow cytometry characterization of MAIT cells in endometrium from pre- and postmenopausal women, and in decidua from first-trimester pregnancies. Furthermore, we assessed MAIT cell function by stimulation with Neisseria gonorrhoeae (N. gonorrhoeae). Endometrial MAIT (eMAIT) cells represented a stable endometrial immune cell population as limited dynamic changes were observed during the menstrual cycle, post menopause, or in response to pregnancy. Furthermore, eMAIT cells exhibited an activated tissue-resident phenotype. Despite expressing CD69 and CD103, eMAIT cells were replenished over time by circulating MAIT cells, as assessed using human uterus transplantation as a model. Finally, functional experiments revealed the capability of MAIT cells to respond to the sexually transmitted and tissue-relevant pathogen, N. gonorrhoeae. In conclusion, our study provides novel insight into human MAIT cell dynamics and anti-microbial properties in the human uterus.
Collapse
Affiliation(s)
- Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ylva Crona Guterstam
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Karin Haij Bhattarai
- Clinical microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Volkan Özenci
- Clinical microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg and Stockholm IVF - Eugin, Stockholm, Sweden
| | - Martin A Ivarsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Gidlöf
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Obstetrics and Gynecology, Stockholm South General Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
45
|
Shao C, Zhu C, Zhu Y, Hao J, Li Y, Hu H, Si L, Zhong F, Wang X, Wang H. Decrease of peripheral blood mucosal-associated invariant T cells and impaired serum Granzyme-B production in patients with gastric cancer. Cell Biosci 2021; 11:12. [PMID: 33422137 PMCID: PMC7796455 DOI: 10.1186/s13578-020-00518-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/17/2020] [Indexed: 02/08/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an invariant T cell subset, which have been reported to play an antimicrobial role in infectious diseases. However, little is known about it in malignant diseases and tumors, especially in gastric cancer (GC). So in this study, we aim to examine the frequency, phenotype, partial functional capacity and clinical relevance of this cells from GC patients’ peripheral blood by flow cytometry. It was shown that the frequency of peripheral blood MAIT cells was negatively correlated with their increasing age in healthy adults. Importantly, comparing to the healthy controls (HC), the frequency and the absolute number of MAIT cells from GC patients’ peripheral blood with or without chemotherapy were both significantly lower than those. For the phenotype, the proportion of CD4−MAIT cell subset in GC patients without chemotherapy was lower than in HC, but higher than in GC patients with chemotherapy. Whereas, the proportion of CD4−CD8+MAIT cell subset in GC patients without chemotherapy was significantly lower than that in HC. Finally, the level of Granzyme-B (GrB), a molecule associated with MAIT cells was markedly lower in GC patients. But the correlation between the serum levels of GC-associated tumor antigens and the percentages of MAIT cells in GC patients was not observed. In conclusion, our study shows the decreased frequency, changed phenotypes and partial potentially impaired function of MAIT cells in GC patients, suggesting a possible MAIT cell-based immunological surveillance of GC.
Collapse
Affiliation(s)
- Chunyan Shao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Chenwen Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yun Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yongxiang Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Huaqing Hu
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Li Si
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Fei Zhong
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
| | - Xuefu Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China. .,Institute of Liver Diseases, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
46
|
Liu J, Nan H, Brutkiewicz RR, Casasnovas J, Kua KL. Sex discrepancy in the reduction of mucosal-associated invariant T cells caused by obesity. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:299-309. [PMID: 33332759 PMCID: PMC7860596 DOI: 10.1002/iid3.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/28/2020] [Indexed: 01/07/2023]
Abstract
Introduction Gut microbiota has been reported to contribute to obesity and the pathology of obesity‐related diseases but the underlying mechanisms are largely unknown. Mucosal‐associated invariant T (MAIT) cells are a unique subpopulation of T cells characterized by the expression of a semi‐invariant T cell receptor (TCR) α chain (Vα19 in mice; Vα7.2 in humans). The expansion and maturation of MAIT cells require the gut microbiota and antigen‐presenting molecule MR1, suggesting that MAIT cells may play a unique role in bridging gut microbiota, obesity, and obesity‐associated inflammation. Methods The levels of human MAIT cells from obese patients, as well as mouse MAIT cells from obese mouse models, were determined by flow cytometry. By comparing to controls, we analyzed the change of MAIT cells in obese subjects. Results We found obese patients had fewer circulating MAIT cells than healthy‐weight donors and the difference was more distinct in male patients. Consistently, male mice (but not female mice) have shown reduced MAIT cells in the liver and adipose tissue after a 10‐week Western diet compared to mice on a control diet. We also explored the possibility of utilizing high‐throughput technology (i.e., quantitative polymerase chain reaction [qPCR]), other than flow cytometry, to determine the expression levels of the invariant TCR of human MAIT cells. But a minimal correlation (R2 = 0.23, p = .11) was observed between qPCR and flow cytometry data. Conclusion Our study suggests that there is a sex discrepancy in the impact of obesity on MAIT cells: MAIT cells in male (but not female) humans and male mice are reduced by obesity.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jose Casasnovas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kok Lim Kua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
47
|
Plužarić V, Štefanić M, Mihalj M, Tolušić Levak M, Muršić I, Glavaš-Obrovac L, Petrek M, Balogh P, Tokić S. Differential Skewing of Circulating MR1-Restricted and γδ T Cells in Human Psoriasis Vulgaris. Front Immunol 2020; 11:572924. [PMID: 33343564 PMCID: PMC7744298 DOI: 10.3389/fimmu.2020.572924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023] Open
Abstract
Psoriasis vulgaris (PV) is a chronic, recurrent inflammatory dermatosis mediated by aberrantly activated immune cells. The role of the innate-like T cells, particularly gammadelta T (γδT) cells and MR1-restricted T lymphocytes, is incompletely explored, mainly through animal models, or by use of surrogate lineage markers, respectively. Here, we used case-control settings, multiparameter flow cytometry, 5-OP-RU-loaded MR1-tetramers, Luminex technology and targeted qRT-PCR to dissect the cellular and transcriptional landscape of γδ and MR1-restricted blood T cells in untreated PV cases (n=21, 22 matched controls). High interpersonal differences in cell composition were observed, fueling transcriptional variability at healthy baseline. A minor subset of canonical CD4+CD8+MR1-tet+TCRVα7.2+ and CD4+CD8-MR1-tet+TCRVα7.2+ T cells was the most significantly underrepresented community in male PV individuals, whereas Vδ2+ γδ T cells expressing high levels of TCR and Vδ1-δ2- γδ T cells expressing intermediate levels of TCR were selectively enriched in affected males, partly reflecting disease severity. Our findings highlight a formerly unappreciated skewing of human circulating MAIT and γδ cytomes during PV, and reveal their compositional changes in relation to sex, CMV exposure, serum cytokine content, BMI, and inflammatory burden. Complementing numerical alterations, we finally show that flow-sorted, MAIT and γδ populations exhibit divergent transcriptional changes in mild type I psoriasis, consisting of differential bulk expression for signatures of cytotoxicity/type-1 immunity (EOMES, RUNX3, IL18R), type-3 immunity (RORC, CCR6), and T cell innateness (ZBTB16).
Collapse
Affiliation(s)
- Vera Plužarić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Maja Tolušić Levak
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Histology and Embryology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Ivanka Muršić
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia
| | - Peter Balogh
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pecs, Pecs, Hungary
| | - Stana Tokić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| |
Collapse
|
48
|
Venosa A. Senescence in Pulmonary Fibrosis: Between Aging and Exposure. Front Med (Lausanne) 2020; 7:606462. [PMID: 33282895 PMCID: PMC7689159 DOI: 10.3389/fmed.2020.606462] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
To date, chronic pulmonary pathologies represent the third leading cause of death in the elderly population. Evidence-based projections suggest that >65 (years old) individuals will account for approximately a quarter of the world population before the turn of the century. Genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, are described as the nine “hallmarks” that govern cellular fitness. Any deviation from the normal pattern initiates a complex cascade of events culminating to a disease state. This blueprint, originally employed to describe aberrant changes in cancer cells, can be also used to describe aging and fibrosis. Pulmonary fibrosis (PF) is the result of a progressive decline in injury resolution processes stemming from endogenous (physiological decline or somatic mutations) or exogenous stress. Environmental, dietary or occupational exposure accelerates the pathogenesis of a senescent phenotype based on (1) window of exposure; (2) dose, duration, recurrence; and (3) cells type being targeted. As the lung ages, the threshold to generate an irreversibly senescent phenotype is lowered. However, we do not have sufficient knowledge to make accurate predictions. In this review, we provide an assessment of the literature that interrogates lung epithelial, mesenchymal, and immune senescence at the intersection of aging, environmental exposure and pulmonary fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, United States
| |
Collapse
|
49
|
Perez C, Gruber I, Arber C. Off-the-Shelf Allogeneic T Cell Therapies for Cancer: Opportunities and Challenges Using Naturally Occurring "Universal" Donor T Cells. Front Immunol 2020; 11:583716. [PMID: 33262761 PMCID: PMC7685996 DOI: 10.3389/fimmu.2020.583716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineered T cell therapies individually prepared for each patient with autologous T cells have recently changed clinical practice in the management of B cell malignancies. Even though CARs used to redirect polyclonal T cells to the tumor are not HLA restricted, CAR T cells are also characterized by their endogenous T cell receptor (TCR) repertoire. Tumor-antigen targeted TCR-based T cell therapies in clinical trials are thus far using “conventional” αβ-TCRs that recognize antigens presented as peptides in the context of the major histocompatibility complex. Thus, both CAR- and TCR-based adoptive T cell therapies (ACTs) are dictated by compatibility of the highly polymorphic HLA molecules between donors and recipients in order to avoid graft-versus-host disease and rejection. The development of third-party healthy donor derived well-characterized off-the-shelf cell therapy products that are readily available and broadly applicable is an intensive area of research. While genome engineering provides the tools to generate “universal” donor cells that can be redirected to cancers, we will focus our attention on third-party off-the-shelf strategies with T cells that are characterized by unique natural features and do not require genome editing for safe administration. Specifically, we will discuss the use of virus-specific T cells, lipid-restricted (CD1) T cells, MR1-restricted T cells, and γδ-TCR T cells. CD1- and MR1-restricted T cells are not HLA-restricted and have the potential to serve as a unique source of universal TCR sequences to be broadly applicable in TCR-based ACT as their targets are presented by the monomorphic CD1 or MR1 molecules on a wide variety of tumor types. For each cell type, we will summarize the stage of preclinical and clinical development and discuss opportunities and challenges to deliver off-the-shelf targeted cellular therapies against cancer.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Gruber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
50
|
Batatinha H, Tavares-Silva E, Leite GSF, Resende AS, Albuquerque JAT, Arslanian C, Fock RA, Lancha AH, Lira FS, Krüger K, Thomatieli-Santos R, Rosa-Neto JC. Probiotic supplementation in marathonists and its impact on lymphocyte population and function after a marathon: a randomized placebo-controlled double-blind study. Sci Rep 2020; 10:18777. [PMID: 33139757 PMCID: PMC7608678 DOI: 10.1038/s41598-020-75464-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Probiotic supplementation arises as playing an immune-stimulatory role. High-intensity and -volume exercise can inhibit immune cell function, which threatens athletic performance and recovery. We hypothesized that 30 days of probiotic supplementation could stabilize the immune system of athletes preventing immune suppression after a marathon race. Twenty-seven male marathonists were double-blinded randomly into probiotic (Bifidobacterium-animalis-subsp.-Lactis (10 × 109) and Lactobacillus-Acidophilus (10 × 109) + 5 g of maltodextrin) and placebo (5 g of maltodextrin) group. They received 30 sachets and supplemented 1 portion/day during 30 days before the race. Blood were collected 30 days before (rest), 1 day before (pre), 1 h after (post) and 5 days after the race (recovery). Both chronic and acute exercise modulated a different T lymphocyte population (CD3+CD4−CD8− T-cells), increasing pre-race, decreasing post and returning to rest values at the recovery. The total number of CD8 T cell and the memory subsets statistically decreased only in the placebo group post-race. Pro-inflammatory cytokine production by stimulated lymphocytes decreased in the probiotic group after the supplementation period. 30 days of probiotic supplementation maintained CD8 T cell and effector memory cell population and played an immunomodulatory role in stimulated lymphocytes. Both, training and marathon modulated a non-classical lymphocyte population regardless of probiotic supplementation.
Collapse
Affiliation(s)
- Helena Batatinha
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil. .,Department of Cell and Developmental Biology, University of São Paulo,, 1524, Prof Lineu Prestes Av., Sao Paulo, SP, 05508-000, Brazil.
| | - Edgar Tavares-Silva
- Programa de pós-graduação em psicobiologia, Universidade Federal de São Paulo, Santos, Brazil
| | - Geovana S F Leite
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - Ayane S Resende
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - José A T Albuquerque
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christina Arslanian
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo A Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio H Lancha
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ronaldo Thomatieli-Santos
- Programa de pós-graduação em psicobiologia, Universidade Federal de São Paulo, Santos, Brazil.,Department of Bioscience, Universidade Federal de São Paulo, Santos, Brazil
| | - José C Rosa-Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|