1
|
Cheon YH, Lee CH, Eun SY, Park GD, Chung CH, Kim JY, Lee MS. Vigeo attenuates cartilage and bone destruction in a collagen‑induced arthritis mouse model by reducing production of pro‑inflammatory cytokines. Exp Ther Med 2024; 27:208. [PMID: 38590570 PMCID: PMC11000045 DOI: 10.3892/etm.2024.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 04/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease characterized by articular cartilage destruction, bone destruction and synovial hyperplasia. It has been suggested that Vigeo, a mixture of Eleutherococcus senticosus, Achyranthes japonica and Atractylodes japonica fermented with Korean nuruk, has an anti-osteoporotic effect in a mouse model of inflammation-mediated bone loss. The present study evaluated the therapeutic effects of Vigeo in RA using a collagen-induced arthritis (CIA) mouse model. DBA/1J mice were immunized with bovine type II collagen on days 0 and 21 and Vigeo was administered daily for 20 days beginning the day after the second type II collagen injection. The mice were sacrificed on day 42 and the joint tissues were anatomically separated and subjected to micro computed tomography and histological analyses. In addition, the serum levels of TNF-α, IL-6 and IL-1β were determined by enzyme-linked immunosorbent assays. CIA in DBA/1J mice caused symptoms of RA, such as joint inflammation, cartilage destruction and bone erosion. Treatment of CIA mice with Vigeo markedly decreased the symptoms and cartilage pathology. In addition, radiological and histological analyses showed that Vigeo attenuated bone and cartilage destruction. The serum TNF-α, IL-6 and IL-1β levels following oral Vigeo administration were also reduced when compared with those in CIA mice. The present study revealed that Vigeo suppressed arthritis symptoms in a CIA-RA mouse model, including bone loss and serum levels of TNF-α, IL-6 and IL-1β.
Collapse
Affiliation(s)
- Yoon-Hee Cheon
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chang Hoon Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Jeonbuk 54538, Republic of Korea
| | - So Young Eun
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Gyeong Do Park
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chong Hyuk Chung
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Myeung Su Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
2
|
Walther A, Stepula E, Ditzel N, Kassem M, Bergholt MS, Hedegaard MAB. In Vivo Longitudinal Monitoring of Disease Progression in Inflammatory Arthritis Animal Models Using Raman Spectroscopy. Anal Chem 2023; 95:3720-3728. [PMID: 36757324 PMCID: PMC9949228 DOI: 10.1021/acs.analchem.2c04743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
Current techniques for monitoring disease progression and testing drug efficacy in animal models of inflammatory arthritis are either destructive, time-consuming, subjective, or require ionizing radiation. To accommodate this, we have developed a non-invasive and label-free optical system based on Raman spectroscopy for monitoring tissue alterations in rodent models of arthritis at the biomolecular level. To test different sampling geometries, the system was designed to collect both transmission and reflection mode spectra. Mice with collagen antibody-induced arthritis and controls were subject to in vivo Raman spectroscopy at the tibiotarsal joint every 3 days for 14 days. Raman-derived measures of bone content correlated well with micro-computed tomography bone mineral densities. This allowed for time-resolved quantitation of bone densities, which indicated gradual bone erosion in mice with arthritis. Inflammatory pannus formation, bone erosion, and bone marrow inflammation were confirmed by histological analysis. In addition, using library-based spectral decomposition, we quantified the progression of bone and soft tissue components. In general, the tissue components followed significantly different tendencies in mice developing arthritis compared to the control group in line with the histological analysis. In total, this demonstrates Raman spectroscopy as a versatile technique for monitoring alterations to both mineralized and soft tissues simultaneously in rodent models of musculoskeletal disorders. Furthermore, the technique presented herein allows for objective repeated within-animal measurements potentially refining and reducing the use of animals in research while improving the development of novel antiarthritic therapeutics.
Collapse
Affiliation(s)
- Anders
R. Walther
- SDU
Chemical Engineering, University of Southern
Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Elzbieta Stepula
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, UK
| | - Nicholas Ditzel
- Molecular
Endocrinology Unit (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern
Denmark, J.B. Winsløwsvej
25, 5000 Odense, Denmark
| | - Moustapha Kassem
- Molecular
Endocrinology Unit (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern
Denmark, J.B. Winsløwsvej
25, 5000 Odense, Denmark
| | - Mads S. Bergholt
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, UK
| | - Martin A. B. Hedegaard
- SDU
Chemical Engineering, University of Southern
Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
3
|
Campos-Sánchez JC, Carrillo NG, Guardiola FA, Francisco DC, Esteban MÁ. Ultrasonography and X-ray micro-computed tomography characterization of the effects caused by carrageenin in the muscle of gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2022; 123:431-441. [PMID: 35337979 DOI: 10.1016/j.fsi.2022.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The current work aimed to carry out an in vivo study of the λ-carrageenin-induced inflammation in the skin of gilthead seabream (Sparus aurata). The fish were injected intramuscularly with phosphate-buffered saline (PBS, as control) or λ-carrageenin (1% in PBS), and the injection zone was evaluated by real-time ultrasonography (Vevo Lab, VisualSonics) at 1.5, 3, 6, 12, and 24 h post-injection (p.i.). Results demonstrated that the skin thickness was increased in fish injected with λ-carrageenin and sampled at 1.5, 3, and 6 h p.i. However, the skin thickness of the injected area decreased to the normal values in those fish sampled at 12 and 24 h p.i. In addition, fish injected with λ-carrageenin and analysed at 1.5, 3, and 6 h p.i. showed, in the underlying muscle at the injection place, several hyperechoic small foci surrounded by an anechoic area which were not observed in control fish. Furthermore, the fish were analysed by X-ray micro-computed tomography (micro-CT). The analysis of the micro-CT acquisitions revealed also a dark area in the place of the injection with λ-carrageenin at 1.5, 3, and 6 h. These areas were smaller in fish analysed at longer times (12 h p.i.) and were almost disappeared in fish sampled at 24 h p.i. These areas had an average density of -850 to -115 HU, which did not correspond with any tissue density of the rest of the body. Furthermore, similar dark areas at the injection zones were never observed in control fish. Present results support the use of both non-invasive techniques to study the inflammatory process in fish of commercial interest such as gilthead seabream.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Nuria García Carrillo
- Integrated Center for Biomedical Research (CEIB), Health Sciences Campus, University of Murcia, 30120, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Diana Ceballos Francisco
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Lord AE, Zhang L, Erickson JE, Bryant S, Nelson CM, Gaudette SM, Phillips LA, Schwartz Sterman AJ, Mitra S. Quantitative in vivo micro-computed tomography for monitoring disease activity and treatment response in a collagen-induced arthritis mouse model. Sci Rep 2022; 12:2863. [PMID: 35190580 PMCID: PMC8861028 DOI: 10.1038/s41598-022-06837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
A painful, chronic condition, Rheumatoid Arthritis, is marked by bone erosion and soft tissue swelling at the joint. As treatments are investigated in pre-clinical models, characterizing disease progression is integral to assessing treatment efficacy. Here, in vivo and ex vivo micro-computed tomography (µCT) are used in parallel with traditional caliper score measurement to quantify physiological changes in the tarsal region in a murine, collagen-induced arthritis model. In vivo imaging methods, which are validated here through comparison to ex vivo and caliper methods, afford longitudinal analysis of both bone and soft tissue through a single image acquisition. This method removes the subjectivity of swelling quantification which is inherently associated with traditional caliper measurements. Histopathology offers an additional assessment of bone erosion and inflammation by providing a microscopic characterization of disease activity. In comparison to untreated animals, daily prednisolone (glucocorticoid) treatment is shown to restore bone volume, as reflected through in vivo and ex vivo µCT images, as well as histopathology. Prednisolone-associated reduction in inflammation is shown through in vivo µCT soft tissue volume measurements, paw caliper measurements, and histopathology. The findings reported here provide a comprehensive validation of in vivo µCT with a sensitivity that enables characterization of pre-clinical disease assessment in response to treatment in a murine, collagen-induced arthritis model.
Collapse
Affiliation(s)
- Audrey E Lord
- AbbVie Bioresearch Center, Worcester, MA, 016015, USA
| | - Liang Zhang
- AbbVie Bioresearch Center, Worcester, MA, 016015, USA
| | | | | | | | | | | | | | - Soumya Mitra
- AbbVie Bioresearch Center, Worcester, MA, 016015, USA.
| |
Collapse
|
5
|
Grace TM, O'Rourke D, Robertson T, Perilli E, Callary S, Taylor M, Atkins GJ, Solomon LB, Thewlis D. A semiautomated method to quantitatively assess osteolytic lesion volume and bone mineral density within acetabular regions of interest from CT. J Orthop Res 2022; 40:396-408. [PMID: 33871103 DOI: 10.1002/jor.25051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
The objectives of this study were to (1) develop a semiautomated method to obtain lesion volume and bone mineral density (BMD) in terms of Hounsfield units from pelvic computed tomography (CT) scans in three regions of interest, and (2) assess accuracy and reliability of the method based on cadaveric CT scans. Image artefacts due to metal implants reduce CT clarity and are more severe with more than one implant in situ. Therefore, accuracy and reliability tests were performed with varying numbers of total hip arthroplasties implanted. To test the accuracy of lesion size measurements, microcomputed tomography was used as a reference. Mean absolute error ranged from 36 to 284 mm3 after five measurements. Intra- and inter-operator reliability of the entire method was measured for a selection of parameters. All coefficient of variation values were good to excellent for CT scans of the native pelvic anatomy and a CT scans of the same pelvis with one and two implants in situ. Accuracy of quantifying lesion volume decreased with decreasing CT image clarity by 0.6%-3.6% mean absolute relative error. Reliability of lesion volume measurement decreased with decreasing CT clarity. This was also the case for reliability of BMD measurements in the region most disrupted by metal artefact. The presented method proposes an approach for quantifying bone loss which has been proven to be accurate, reliable, and clinically applicable.
Collapse
Affiliation(s)
- Thomas M Grace
- Centre of Orthopaedic & Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Dermot O'Rourke
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Thomas Robertson
- Centre of Orthopaedic & Trauma Research, University of Adelaide, Adelaide, South Australia, Australia.,Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Egon Perilli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Stuart Callary
- Centre of Orthopaedic & Trauma Research, University of Adelaide, Adelaide, South Australia, Australia.,Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Mark Taylor
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Gerald J Atkins
- Centre of Orthopaedic & Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Lucian B Solomon
- Centre of Orthopaedic & Trauma Research, University of Adelaide, Adelaide, South Australia, Australia.,Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dominic Thewlis
- Centre of Orthopaedic & Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Williams B, Lees F, Tsangari H, Hutchinson MR, Perilli E, Crotti TN. Effects of Mild and Moderate Monoclonal Antibody Dose on Inflammation, Bone Loss, and Activation of the Central Nervous System in a Female Collagen Antibody-induced Arthritis Mouse Model. J Histochem Cytochem 2021; 69:511-522. [PMID: 34291686 DOI: 10.1369/00221554211033562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of severe inflammatory arthritis in the collagen antibody-induced arthritis (CAIA) murine model causes extensive joint damage and pain-like behavior compromising analysis. While mild models are less severe, their reduced, variable penetrance makes assessment of treatment efficacy difficult. This study aimed to compare macroscopic and microscopic changes in the paws, along with central nervous system activation between a mild and moderate CAIA model. Balb/c mice (n=18) were allocated to control, mild, and moderate CAIA groups. Paw inflammation, bone volume (BV), and paw volume (PV) were assessed. Histologically, the front paws were assessed for joint inflammation, cartilage damage, and pre/osteoclast-like cells and the lumbar spinal cord and the periaqueductal gray (PAG) region of the brain for glial reactivity. A moderate CAIA dose induced (1) significantly greater local paw inflammation, inflammatory cell infiltration, and PV; (2) significantly more osteoclast-like cells on the bone surface and within the surrounding soft tissue; and (3) significantly greater glial reactivity within the PAG compared with the mild CAIA model. These findings support the use of a moderate CAIA model (higher dose of monoclonal antibodies with low-dose lipopolysaccharide) to induce more consistent histopathological features, without excessive joint destruction.
Collapse
Affiliation(s)
| | - Florence Lees
- Adelaide Medical School.,ARC Centre for Excellence for Nanoscale Biophotonics
| | | | - Mark R Hutchinson
- Adelaide Medical School.,ARC Centre for Excellence for Nanoscale Biophotonics
| | - Egon Perilli
- The University of Adelaide, Adelaide, SA, Australia, and Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
7
|
Zhou N, Zou F, Cheng X, Huang Y, Zou H, Niu Q, Qiu Y, Shan F, Luo A, Teng W, Sun J. Porphyromonas gingivalis induces periodontitis, causes immune imbalance, and promotes rheumatoid arthritis. J Leukoc Biol 2021; 110:461-473. [PMID: 34057740 DOI: 10.1002/jlb.3ma0121-045r] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis induced by bacteria especially Porphyromonas gingivalis (P. gingivalis) is the most prevalent microbial disease worldwide and is a significant risk factor for systemic diseases such as rheumatoid arthritis (RA). RA and periodontitis share similar clinical and pathologic features. Moreover, the prevalence of RA is much higher in patients with periodontitis than in those without periodontitis. To explore the immunologic mechanism of periodontitis involved in RA, we established a mouse model of periodontitis and then induced RA. According to the results of paw thickness, arthritis clinical score, arthritis incidence, microscopic lesion using H&E staining, and micro-CT analysis, periodontitis induced by P. gingivalis promoted the occurrence and development of collagen-induced arthritis (CIA) in mice. Furthermore, periodontitis enhanced the frequency of CD19+ B cells, Th17, Treg, gMDSCs, and mMDSCs, whereas down-regulated IL-10 producing regulatory B cells (B10) in CIA mice preinduced for periodontitis with P. gingivalis. In vitro stimulation with splenic cells revealed that P. gingivalis directly enhanced differentiation of Th17, Treg, and mMDSCs but inhibited the process of B cell differentiation into B10 cells. Considering that adoptive transfer of B10 cells prevent RA development, our study, although preliminary, suggests that down-regulation of B10 cells may be the key mechanism that periodontitis promotes RA as the other main immune suppressive cells such as Treg and MDSCs are up-regulated other than down-regulated in group of P. gingivalis plus CIA.
Collapse
Affiliation(s)
- Niu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangzhou Zoo, Guangzhou, China
| | - Fagui Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiao Cheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yilian Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hang Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingru Niu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | - Aoxiang Luo
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Teng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
8
|
Zeng L, Li C, Jiang H, Chen Y, Li Z, Xu F, Liu R. Total Saponins from Nigella glandulifera Seeds Ameliorate Adjuvant-Induced Rheumatoid Arthritis in Rats by Inhibition of an Inflammatory Response and Bone Erosion. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6613527. [PMID: 33575330 PMCID: PMC7864740 DOI: 10.1155/2021/6613527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a widespread inflammatory disease whose clinical manifestations are joint swelling, pain, and disability, affecting approximately 1% of individuals worldwide. Conventional anti-RA drugs currently used in clinic have severe side effects. The present study is aimed at investigating the antiarthritic effects of total saponins from Nigella glandulifera seeds (TSNGS) in rats with adjuvant-induced rheumatoid arthritis (AIA). Arthritis score, paw swelling, and body weight were monitored throughout the period of TSNGS treatment. The histopathological features and levels of cytokines, including IFN-γ, TNF-α, IL-1β, IL-4, IL-6, IL-10, and IL-17A, and OPG/RANKL signaling, were measured to determine the amelioration by TSNGS and its potential mechanisms on the inflammatory response and bone erosion. The differentiation of regulatory T cells (Tregs) in serum was assessed by flow cytometry. The results demonstrate that TSNGS at 10 mg/kg, 50 mg/kg, and 250 mg/kg inhibited AIA-induced clinical score, paw swelling, and histological changes. TSNGS reduced the immune-inflammatory reaction by restoring the secretion and expression of inflammatory cytokines and elevating the proportion of CD4+ CD25+ Tregs, accompanied by an increase in transcription factor Foxp3 levels. TSNGS also displayed bone protection by upregulation of the OPG/RANKL pathway. Collectively, TSNGS inhibited arthritis in AIA rats and so represents a potential novel treatment for RA.
Collapse
Affiliation(s)
- Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenyang Li
- Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Chen
- Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fang Xu
- Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Kariyama N, Sakata-Haga H, Tsukada T, Shimada H, Taniguchi M, Hatta T. Rapid bone staining with hair removal (RAP-B/HR): a non-destructive and rapid whole-mount bone staining protocol optimized for adult hairy mice. Sci Rep 2021; 11:1950. [PMID: 33479385 PMCID: PMC7820006 DOI: 10.1038/s41598-021-81616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/01/2021] [Indexed: 11/16/2022] Open
Abstract
We developed a non-destructive and rapid whole-mount bone staining method for small fish, Xenopus laevis, and rodent fetuses (RAP-B). RAP-B does not require skin or soft tissue removal. However, RAP-B requires hair removal from hairy animals, such as adult mice and rats. In the present study, we investigated hair removal chemical treatments that did not result in soft tissue destruction. The hair removal effectiveness was investigated using a calcium mercaptoacetate or sodium mercaptoacetate solution on skin fragments obtained from the back of adult mice. A mixture of 2% sodium mercaptoacetate in 3% potassium hydroxide was found to be the most effective in complete hair removal from the skin. Using this hair removal treatment as a pretreatment for RAP-B, the preparation of fast-acting artifact-free whole-mount bone staining was possible without skin and soft tissue removal (RAP-B/HR). We performed a seamless observation from a low magnification wide-view to a high magnification without artifactacting artifacts using fluorescence zoom microscopy. Therefore, the combination of RAP-B/HR and fluorescent zoom microscopy is a novel platform for three-dimensional, wide-field, high-resolution pathological anatomical analysis.
Collapse
Affiliation(s)
- Nobuo Kariyama
- Department of Anatomy, Kanazawa Medical University, Ishikawa, Japan.,Department of Physical Therapy, Kanazawa Rehabilitation Academy, Ishikawa, Japan
| | | | - Tsuyoshi Tsukada
- Department of Anatomy, Kanazawa Medical University, Ishikawa, Japan.,Department of Neurosurgery, Kanazawa Medical University, Ishikawa, Japan
| | - Hiroki Shimada
- Department of Medical Science, Kanazawa Medical University, Ishikawa, Japan
| | - Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Ishikawa, Japan.
| |
Collapse
|
10
|
Assessing the Effects of Parthenolide on Inflammation, Bone Loss, and Glial Cells within a Collagen Antibody-Induced Arthritis Mouse Model. Mediators Inflamm 2020; 2020:6245798. [PMID: 32189995 PMCID: PMC7073477 DOI: 10.1155/2020/6245798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis is characterised by a chronic inflammatory response resulting in destruction of the joint and significant pain. Although a range of treatments are available to control disease activity in RA, bone destruction and joint pain exist despite suppression of inflammation. This study is aimed at assessing the effects of parthenolide (PAR) on paw inflammation, bone destruction, and pain-like behaviour in a mild collagen antibody-induced arthritis (CAIA) mouse model. CAIA was induced in BALB/c mice and treated daily with 1 mg/kg or 4 mg/kg PAR. Clinical paw inflammation was scored daily, and mechanical hypersensitivity was assessed on alternate days. At end point, bone volume and swelling in the paws were assessed using micro-CT. Paw tissue sections were assessed for inflammation and pre-/osteoclast-like cells. The lumbar spinal cord and the periaqueductal grey (PAG) and rostral ventromedulla (RVM) regions of the brain were stained for glial fibrillary acidic protein (GFAP) and ionised calcium-binding adaptor molecule 1 (IBA1) to assess for glial reactivity. Paw scores increased in CAIA mice from days 5-10 and were reduced with 1 mg/kg and 4 mg/kg PAR on days 8-10. Osteoclast-like cells on the bone surface of the radiocarpal joint and within the soft tissue of the hind paw were significantly lower following PAR treatment (p < 0.005). GFAP- and IBA1-positive cells in the PAG and RVM were significantly lower following treatment with 1 mg/kg (p < 0.0001 and p = 0.0004, respectively) and 4 mg/kg PAR (p < 0.0001 and p = 0.001, respectively). In the lumbar spinal cord, IBA1-positive cells were significantly lower in CAIA mice treated with 4 mg/kg PAR (p = 0.001). The findings indicate a suppressive effect of both low- and moderate-dose PAR on paw inflammation, osteoclast presence, and glial cell reactivity in a mild CAIA mouse model.
Collapse
|
11
|
Van de Casteele E, Perilli E, Van Aarle W, Reynolds KJ, Sijbers J. Discrete tomography in an in vivo small animal bone study. J Bone Miner Metab 2018; 36:40-53. [PMID: 28243794 DOI: 10.1007/s00774-017-0815-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
This study aimed at assessing the feasibility of a discrete algebraic reconstruction technique (DART) to be used in in vivo small animal bone studies. The advantage of discrete tomography is the possibility to reduce the amount of X-ray projection images, which makes scans faster and implies also a significant reduction of radiation dose, without compromising the reconstruction results. Bone studies are ideal for being performed with discrete tomography, due to the relatively small number of attenuation coefficients contained in the image [namely three: background (air), soft tissue and bone]. In this paper, a validation is made by comparing trabecular bone morphometric parameters calculated from images obtained by using DART and the commonly used standard filtered back-projection (FBP). Female rats were divided into an ovariectomized (OVX) and a sham-operated group. In vivo micro-CT scanning of the tibia was done at baseline and at 2, 4, 8 and 12 weeks after surgery. The cross-section images were reconstructed using first the full set of projection images and afterwards reducing them in number to a quarter and one-sixth (248, 62, 42 projection images, respectively). For both reconstruction methods, similar changes in morphometric parameters were observed over time: bone loss for OVX and bone growth for sham-operated rats, although for DART the actual values were systematically higher (bone volume fraction) or lower (structure model index) compared to FBP, depending on the morphometric parameter. The DART algorithm was, however, more robust when using fewer projection images, where the standard FBP reconstruction was more prone to noise, showing a significantly bigger deviation from the morphometric parameters obtained using all projection images. This study supports the use of DART as a potential alternative method to FBP in X-ray micro-CT animal studies, in particular, when the number of projections has to be drastically minimized, which directly reduces scanning time and dose.
Collapse
Affiliation(s)
- Elke Van de Casteele
- iMinds, VisionLab, Department of Physics, University of Antwerp (CDE), Universiteitsplein 1, Building N, 2610, Antwerp, Belgium.
| | - Egon Perilli
- Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Wim Van Aarle
- iMinds, VisionLab, Department of Physics, University of Antwerp (CDE), Universiteitsplein 1, Building N, 2610, Antwerp, Belgium
| | - Karen J Reynolds
- Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Jan Sijbers
- iMinds, VisionLab, Department of Physics, University of Antwerp (CDE), Universiteitsplein 1, Building N, 2610, Antwerp, Belgium
| |
Collapse
|
12
|
Svensson CM, Hoffmann B, Irmler IM, Straßburger M, Figge MT, Saluz HP. Quantification of arthritic bone degradation by analysis of 3D micro-computed tomography data. Sci Rep 2017; 7:44434. [PMID: 28290525 PMCID: PMC5349516 DOI: 10.1038/srep44434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
The use of animal models of arthritis is a key component in the evaluation of therapeutic strategies against the human disease rheumatoid arthritis (RA). Here we present quantitative measurements of bone degradation characterised by the cortical bone profile using glucose-6-phosphate isomerase (G6PI) induced arthritis. We applied micro-computed tomography (μCT) during three arthritis experiments and one control experiment to image the metatarsals of the hind paws and to investigate the effect of experimental arthritis on their cortical bone profile. For measurements of the cortical profile we automatically identified slices that are orthogonal to individual metatarsals, thereby making the measurements independent of animal placement in the scanner. We measured the average cortical thickness index (CTI) of the metatarsals, as well as the thickness changes along the metatarsal. In this study we introduced the cortical thickness gradient (CTG) as a new measure and we investigated how arthritis affects this measure. We found that in general both CTI and CTG are able to quantify arthritic progression, whilst CTG was found to be the more sensitive measure.
Collapse
Affiliation(s)
- Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Bianca Hoffmann
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany.,Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University Jena, Germany
| | - Ingo M Irmler
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Maria Straßburger
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University Jena, Germany
| | - Hans Peter Saluz
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany.,Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
13
|
Williams B, Tsangari E, Stansborough R, Marino V, Cantley M, Dharmapatni A, Gibson R, Perilli E, Crotti T. Mixed effects of caffeic acid phenethyl ester (CAPE) on joint inflammation, bone loss and gastrointestinal inflammation in a murine model of collagen antibody-induced arthritis. Inflammopharmacology 2017; 25:55-68. [PMID: 28044215 DOI: 10.1007/s10787-016-0306-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the effect of caffeic acid phenethyl ester (CAPE) on local and systemic inflammation and bone loss in collagen antibody-induced arthritis (CAIA) mice. METHODS Four groups of mice (n = 8 per group) were allocated; control, CAPE (1 mg/kg), CAIA and CAIA + CAPE (1 mg/kg). Local inflammation and bone loss were evaluated using clinical paw scores, in vivo micro-computed tomography (micro-CT), histological assessment and tartrate-resistant acid phosphatase (TRAP) staining. Serum levels of C-reactive protein (CRP) and C-terminal telopeptide (CTX-1) were measured by ELISA. Jejunum and colon sections were evaluated histopathologically for damage and toxicity. RESULTS Greater paw scores and percentage change in paw volume were observed in CAIA + CAPE compared to the control groups (p < 0.05). Bone volume over time remained unchanged (p = 0.94) and the number of multinucleated TRAP-positive cells was greatest in CAIA + CAPE mice (p < 0.05). CRP and CTX-1 levels did not differ between groups. CAIA + CAPE mice exhibited lower colon toxicity scores and a reduced percentage of cavitated goblet cells in the colon crypts compared with CAIA mice (p = 0.026 and p = 0.003, respectively). Histopathology in the jejunum was not altered. CONCLUSION CAPE did not reduce paw inflammation or bone loss in CAIA mice. CAPE reduced histopathological changes in the colon of CAIA mice.
Collapse
Affiliation(s)
- Bonnie Williams
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| | - Eleni Tsangari
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Romany Stansborough
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Victor Marino
- School of Dentistry, The University of Adelaide, Adelaide, SA, Australia
| | - Melissa Cantley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Anak Dharmapatni
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Rachel Gibson
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Egon Perilli
- School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, SA, Australia
| | - Tania Crotti
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Longitudinal imaging of the ageing mouse. Mech Ageing Dev 2016; 160:93-116. [PMID: 27530773 DOI: 10.1016/j.mad.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
Several non-invasive imaging techniques are used to investigate the effect of pathologies and treatments over time in mouse models. Each preclinical in vivo technique provides longitudinal and quantitative measurements of changes in tissues and organs, which are fundamental for the evaluation of alterations in phenotype due to pathologies, interventions and treatments. However, it is still unclear how these imaging modalities can be used to study ageing with mice models. Almost all age related pathologies in mice such as osteoporosis, arthritis, diabetes, cancer, thrombi, dementia, to name a few, can be imaged in vivo by at least one longitudinal imaging modality. These measurements are the basis for quantification of treatment effects in the development phase of a novel treatment prior to its clinical testing. Furthermore, the non-invasive nature of such investigations allows the assessment of different tissue and organ phenotypes in the same animal and over time, providing the opportunity to study the dysfunction of multiple tissues associated with the ageing process. This review paper aims to provide an overview of the applications of the most commonly used in vivo imaging modalities used in mouse studies: micro-computed-tomography, preclinical magnetic-resonance-imaging, preclinical positron-emission-tomography, preclinical single photon emission computed tomography, ultrasound, intravital microscopy, and whole body optical imaging.
Collapse
|
15
|
Anderson EE, Perilli E, Carati CJ, Reynolds KJ. Quantifying shape changes of silicone breast implants in a murine model using in vivo micro-CT. J Biomed Mater Res B Appl Biomater 2016; 105:1447-1452. [PMID: 27086992 DOI: 10.1002/jbm.b.33682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/01/2016] [Accepted: 03/29/2016] [Indexed: 11/06/2022]
Abstract
A major complication of silicone breast implants is the formation of a capsule around the implant known as capsular contracture which results in the distortion of the implant. Recently, a mouse model for studying capsular contracture was examined using micro-computed tomography (micro-CT), however, only qualitative changes were reported. The aim of this study was to develop a quantitative method for comparing the shape changes of silicone implants using in vivo micro-CT. Mice were bilaterally implanted with silicone implants and underwent ionizing radiation to induce capsular contracture. On day 28 post-surgery mice were examined in vivo using micro-CT. The reconstructed cross-section images were visually inspected to identify distortion. Measurements were taken in 2D and 3D to quantify the shape of the implants in the normal (n = 11) and distorted (n = 5) groups. The degree of anisotropy was significantly higher in the distorted implants in the transaxial view (0.99 vs. 1.19, p = 0.002) and the y-axis lengths were significantly shorter in the sagittal (9.27 mm vs. 8.55 mm, p = 0.015) and coronal (9.24 mm vs. 8.76 mm, p = 0.031) views, indicating a deviation from the circular cross-section and shortening of the long axis. The 3D analysis revealed a significantly lower average thickness (sphere-fitting method) in distorted implants (6.86 mm vs. 5.49 mm, p = 0.002), whereas the volume and surface area did not show significant changes. Statistically significant differences between normal and distorted implants were found in 2D and 3D using distance measurements performed via micro-CT. This objective analysis method can be useful for a range of studies involving deformable implants using in vivo micro-CT. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1447-1452, 2017.
Collapse
Affiliation(s)
- Emily E Anderson
- School of Computer Science, Engineering and Mathematics, The Medical Device Research Institute, Flinders University, South Australia, Australia
| | - Egon Perilli
- School of Computer Science, Engineering and Mathematics, The Medical Device Research Institute, Flinders University, South Australia, Australia
| | - Colin J Carati
- Department of Anatomy and Histology, School of Medicine, Flinders University, South Australia, Australia
| | - Karen J Reynolds
- School of Computer Science, Engineering and Mathematics, The Medical Device Research Institute, Flinders University, South Australia, Australia
| |
Collapse
|
16
|
Grahnemo L, Andersson A, Nurkkala-Karlsson M, Stubelius A, Lagerquist MK, Svensson MND, Ohlsson C, Carlsten H, Islander U. Trabecular bone loss in collagen antibody-induced arthritis. Arthritis Res Ther 2015. [PMID: 26209517 PMCID: PMC4514982 DOI: 10.1186/s13075-015-0703-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction Postmenopausal women with rheumatoid arthritis (RA) have increased risk of developing osteoporosis due to chronic inflammation and estrogen deprivation. Collagen antibody-induced arthritis (CAIA), an experimental polyarthritis model representing the effector phase of arthritis, is mainly mediated by the innate immune system. Compared to the widely used collagen-induced arthritis model, CAIA is conveniently short and can be used in C57BL/6 mice, enabling studies with knock-out mice. However, the impact on bone of the CAIA model in C57BL/6 mice has not previously been studied. Therefore, the aim of this study was to determine if CAIA can be used to study postmenopausal arthritis-induced osteoporosis. Methods CAIA was induced by administration of collagen-type II antibodies and lipopolysaccharide to ovariectomized female C57BL/6J mice. Control mice received lipopolysaccharide, but no antibodies. Nine days later, femurs were collected for high-resolution micro-CT and histomorphometry. Serum was used to assess cartilage breakdown and levels of complement. Frequencies of immune cell subsets from bone marrow and lymph nodes were analyzed by flow cytometery. Results Trabecular bone mass was decreased and associated with increased number of osteoclasts per bone surface in the CAIA model. Also, the frequency of interleukin-17+ cells in lymph nodes was increased in CAIA. Conclusion The present study show that CAIA, a short reproducible arthritis model that is compatible with C57BL/6 mice, is associated with increased number of osteoclasts and trabecular bone loss.
Collapse
Affiliation(s)
- Louise Grahnemo
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
| | - Annica Andersson
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
| | - Merja Nurkkala-Karlsson
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
| | - Alexandra Stubelius
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Su Sahlgrenska, 413 45, Gothenburg, Sweden.
| | - Mattias N D Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Su Sahlgrenska, 413 45, Gothenburg, Sweden.
| | - Hans Carlsten
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
| | - Ulrika Islander
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.
| |
Collapse
|