1
|
Lolli V, Viscusi P, Bonzanini F, Conte A, Fuso A, Larocca S, Leni G, Caligiani A. Oil and protein extraction from fruit seed and kernel by-products using a one pot enzymatic-assisted mild extraction. Food Chem X 2023; 19:100819. [PMID: 37780249 PMCID: PMC10534168 DOI: 10.1016/j.fochx.2023.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Accepted: 07/29/2023] [Indexed: 10/03/2023] Open
Abstract
This research evaluated the application of a one-pot enzymatic extraction by using a protease for the concomitant and sustainable extraction of oils and proteins from fruit seeds/kernels of different species of stone, citrus and exotic fruits. The proteolysis improved the oil solvent-extractability of seeds/kernels of some fruit species compared to the use of acid and/or organic solvents and led to directly recover fat (10-33%) from mango, lemon and pumpkin seeds. Good protein extraction yields were obtained compared to conventional solvent extractions and with a good hydrolysis degree (almost 10%) in the case of lemon and pumpkin seed protein hydrolysates. The nutritional quality of all the protein hydrolysates was quite low, because of their limiting amino acids (histidine, methionine and lysine). On the contrary, the fruit seed/kernel oils resulted with high nutritional value, as they were mostly rich in unsaturated fatty acids, primarily oleic acid (>25%) and linoleic acid (till 40%).
Collapse
Affiliation(s)
- Veronica Lolli
- Food and Drug Department, University of Parma, Parma, Italy
| | - Pio Viscusi
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | - Andrea Fuso
- Food and Drug Department, University of Parma, Parma, Italy
| | | | - Giulia Leni
- Food and Drug Department, University of Parma, Parma, Italy
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | |
Collapse
|
2
|
Landim APM, Tiburski JH, Mellinger CG, Juliano P, Rosenthal A. Potential Application of High Hydrostatic Pressure on the Production of Hydrolyzed Proteins with Antioxidant and Antihypertensive Properties and Low Allergenicity: A Review. Foods 2023; 12:foods12030630. [PMID: 36766158 PMCID: PMC9914325 DOI: 10.3390/foods12030630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The high hydrostatic pressure (HHP) process has been studied for several applications in food technology and has been commercially implemented in several countries, mainly for non-thermal pasteurization and shelf-life extension of food products. HHP processing has been demonstrated to accelerate proteolytic hydrolysis at a specific combination of pressure and pressure-holding time for a given protein source and enzyme. The enzymatic hydrolysis of proteins is a well-known alternative to producing biologically active peptides, with antioxidant and antihypertensive capacity, from different food protein sources. However, some of these protein sources contain allergenic epitopes which are often not degraded by traditional hydrolysis. Moreover, the peptide profile and related biological activity of a hydrolysate depend on the protein source, the enzymes used, the parameters of the proteolysis process (pH, temperature, time of hydrolysis), and the use of other technologies such as HHP. The present review aims to provide an update on the use of HHP for improving enzymatic hydrolysis, with a particular focus on studies which evaluated hydrolysate antihypertensive and antioxidant capacity, as well as residual allergenicity. Overall, HHP has been shown to improve the biological properties of hydrolysates. While protein allergenicity can be reduced with traditional hydrolysis, HHP can further reduce the allergenicity. Compared with traditional hydrolysis methods, HHP-assisted protein hydrolysis offers a greater opportunity to add value to protein-rich products through conversion into high-end hydrolysate products with enhanced nutritional and functional properties.
Collapse
Affiliation(s)
- Ana Paula Miguel Landim
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Julia Hauck Tiburski
- Department of Food Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Caroline Grassi Mellinger
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Pablo Juliano
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - Amauri Rosenthal
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
- Correspondence: ; Tel./Fax: +55-21-3622-9620
| |
Collapse
|
3
|
Tedeschi T, Prandi B, Lolli V, Gasparini A, Leni G, Loffi C, Nocetti M, Pizzamiglio V, Caligiani A. A novel approach based on enzymatic hydrolysis for the valorisation of edible Parmigiano Reggiano cheese rinds. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Li H, Zhang S, Xu S, Yang J, Yuan Y, Gao X, Li H, Yu J. Enzymatic hydrolysis of milk protein by complex enzyme mixture of alcalase and neutrase: Kinetic model and hydrolysis control. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Shuhua Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Siyuan Xu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Jingjing Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Yujing Yuan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Xianjun Gao
- Tianjin Tianyi‐U Biotechnology Co., Ltd. No. 88, North Central Road, Hangzhou Street, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering Tianjin University of Science and Technology No. 29, No. 13 Avenue, Economic‐Technological Development Area (TEDA) Tianjin 300457 China
| |
Collapse
|
5
|
Aidarbekova S, Aider M. Production of Ryazhenka, a traditional Ukrainian fermented baked milk, by using electro-activated whey as supplementing ingredient and source of lactulose. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Alternatives to Cow’s Milk-Based Infant Formulas in the Prevention and Management of Cow’s Milk Allergy. Foods 2022; 11:foods11070926. [PMID: 35407012 PMCID: PMC8997926 DOI: 10.3390/foods11070926] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Cow’s milk-based infant formulas are the most common substitute to mother’s milk in infancy when breastfeeding is impossible or insufficient, as cow’s milk is a globally available source of mammalian proteins with high nutritional value. However, cow’s milk allergy (CMA) is the most prevalent type of food allergy among infants, affecting up to 3.8% of small children. Hypoallergenic infant formulas based on hydrolysed cow’s milk proteins are commercially available for the management of CMA. Yet, there is a growing demand for more options for infant feeding, both in general but especially for the prevention and management of CMA. Milk from other mammalian sources than the cow, such as goat, sheep, camel, donkey, and horse, has received some attention in the last decade due to the different protein composition profile and protein amino acid sequences, resulting in a potentially low cross-reactivity with cow’s milk proteins. Recently, proteins from plant sources, such as potato, lentil, chickpeas, quinoa, in addition to soy and rice, have gained increased interest due to their climate friendly and vegan status as well as potential lower allergenicity. In this review, we provide an overview of current and potential future infant formulas and their relevance in CMA prevention and management.
Collapse
|
7
|
Larsen JM, Bang-Berthelsen CH, Qvortrup K, Sancho AI, Hansen AH, Andersen KIH, Thacker SSN, Eiwegger T, Upton J, Bøgh KL. Production of allergen-specific immunotherapeutic agents for the treatment of food allergy. Crit Rev Biotechnol 2020; 40:881-894. [PMID: 32515236 DOI: 10.1080/07388551.2020.1772194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergen-specific immunotherapy (IT) is emerging as a viable avenue for the treatment of food allergies. Clinical trials currently investigate raw or slightly processed foods as therapeutic agents, as trials using food-grade agents can be performed without the strict regulations to which conventional drugs are subjected. However, this limits the ability of standardization and may affect clinical trial outcomes and reproducibility. Herein, we provide an overview of methods used in the production of immunotherapeutic agents for the treatment of food allergies, including processed foods, allergen extracts, recombinant allergens, and synthetic peptides, as well as the physical and chemical processes for the reduction of protein allergenicity. Commercial interests currently favor producing standardized drug-grade allergen extracts for therapeutic use, and clinical trials are ongoing. In the near future, recombinant production could replace purification strategies since it allows the manufacturing of pure, native allergens or sequence-modified allergens with reduced allergenicity. A recurring issue within this field is the inadequate reporting of production procedures, quality control, product physicochemical characteristics, allergenicity, and immunological properties. This information is of vital importance in assessing therapeutic standardization and clinical safety profile, which are central parameters for the development of future therapeutic agents.
Collapse
Affiliation(s)
- Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ana Isabel Sancho
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | - Thomas Eiwegger
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada.,Research Institute, The Hospital for Sick Children, Translational Medicine Program, Toronto, Canada.,Department of Immunology, The University of Toronto, Toronto, Canada
| | - Julia Upton
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
8
|
Panahipour L, Tabatabaei AA, Gruber R. Hypoallergenic infant formula lacks transforming growth factor beta activity and has a lower anti-inflammatory activity than regular infant formula. J Dairy Sci 2020; 103:6771-6781. [PMID: 32505409 DOI: 10.3168/jds.2019-18067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/27/2020] [Indexed: 01/02/2023]
Abstract
Hypoallergenic formulas are recommended for infants who are not breastfed and cannot tolerate cow milk formulas due to allergy. These formulas are hydrolyzed to break down larger protein chains into shorter, easy-to-digest, and potentially less allergenic proteins. Hydrolysis, however, possibly occurs at the expense of the transforming growth factor beta (TGF-β) and anti-inflammatory activity that is inherent in regular formula. Our objective was to determine the TGF-β and the anti-inflammatory activity of commercially available hypoallergenic and regular formulas. Human gingival fibroblasts were incubated with reconstituted formulas followed by detection of TGF-β target genes and activation of Smad2/3 signaling. Gingival fibroblasts and the oral squamous cell carcinoma cell line HSC-2 were also exposed to formulas before adding interleukin (IL)1β and tumor necrosis factor (TNF)α to provoke expression of pro-inflammatory cytokines. For murine bone marrow-derived macrophages, pro-inflammatory cytokine expression was stimulated with saliva. Changes in p65 nuclear translocation and phosphorylation of smad3 and p38 were analyzed by immunostaining. Our study demonstrated that regular formula, but not hypoallergenic formula, enhanced the expression of TGF-β target genes IL11, PRG4, and NOX4 in gingival fibroblasts. Hypoallergenic formulas also failed to initiate nuclear translocation of Smad2/3 and phosphorylation of Smad3. Moreover, regular formulas were more potent than hypoallergenic formulas in reducing the expression of pro-inflammatory cytokines in gingival fibroblasts, HSC-2 epithelial cells, and murine bone marrow macrophages. Hypoallergenic and regular formulas had a similar capacity to reduce p65 nuclear translocation and phosphorylation of p38 in fibroblasts. These findings suggest that hypoallergenic formulas lack in vitro TGF-β activity and have a lower anti-inflammatory activity compared with regular formulas.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | | | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria.
| |
Collapse
|
9
|
Iwamoto H, Matsubara T, Okamoto T, Yoshikawa M, Matsumoto T, Kono G, Takeda Y. Epicutaneous immunogenicity of partially hydrolyzed whey protein evaluated using tape-stripped mouse model. Pediatr Allergy Immunol 2020; 31:388-395. [PMID: 31943412 DOI: 10.1111/pai.13211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Hydrolyzed cow's milk protein formulas are widely used for infants with a history or risk of cow's milk allergy. Based on the current theory that food allergen sensitization occurs via the skin, we investigated the epicutaneous immunogenicity of partially hydrolyzed whey proteins, which are ingredients in infant formulas. METHODS BALB/c mice were exposed epicutaneously to whey protein concentrate (WPC) or partial whey protein hydrolysates (PWH1 or PWH2) on tape-stripped skin. Sensitization was assessed by evaluating serum β-lactoglobulin (β-LG)-specific antibodies, basophil activation, and cytokine production from β-LG-stimulated lymphoid cells. The anaphylaxis reaction was evaluated by measuring the rectal temperature and plasma level of mouse mast cell protease-1 after oral β-LG challenge. Immune cell accumulation in the skin was also analyzed. RESULTS Substantive sensitization and β-LG-induced anaphylaxis reaction were observed in WPC-exposed mice, whereas no significant changes were observed in PWH1- or PWH2-exposed mice. The basophil and eosinophil counts increased in WPC-exposed murine skin, not but in PWH1- or PWH2-exposed mice. CONCLUSION The epicutaneous immunogenicity of PWH1 and PWH2 is markedly decreased, which may reduce the risk of allergen sensitization. Further studies are required to investigate the clinical value of these partial hydrolysates for high-risk infants.
Collapse
Affiliation(s)
- Hiroshi Iwamoto
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Takeshi Matsubara
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Tomoyuki Okamoto
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Mayu Yoshikawa
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Takuya Matsumoto
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Gaku Kono
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Yasuhiro Takeda
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| |
Collapse
|
10
|
Graversen KB, Ballegaard AR, Kræmer LH, Hornslet SE, Sørensen LV, Christoffersen HF, Jacobsen LN, Untersmayr E, Smit JJ, Bøgh KL. Cow’s milk allergy prevention and treatment by heat‐treated whey—A study in Brown Norway rats. Clin Exp Allergy 2020; 50:708-721. [DOI: 10.1111/cea.13587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Louise H. Kræmer
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Sofie E. Hornslet
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | - Laila V. Sørensen
- Research & Development Arla Foods Ingredients Group P/S Videbæk Denmark
| | | | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Joost J. Smit
- Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands
| | - Katrine L. Bøgh
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| |
Collapse
|
11
|
Castan L, Bøgh KL, Maryniak NZ, Epstein MM, Kazemi S, O'Mahony L, Bodinier M, Smit JJ, Bilsen JHM, Blanchard C, Głogowski R, Kozáková H, Schwarzer M, Noti M, Wit N, Bouchaud G, Bastiaan‐Net S. Overview of in vivo and ex vivo endpoints in murine food allergy models: Suitable for evaluation of the sensitizing capacity of novel proteins? Allergy 2020; 75:289-301. [PMID: 31187876 PMCID: PMC7065134 DOI: 10.1111/all.13943] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/12/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Significant efforts are necessary to introduce new dietary protein sources to feed a growing world population while maintaining food supply chain sustainability. Such a sustainable protein transition includes the use of highly modified proteins from side streams or the introduction of new protein sources that may lead to increased clinically relevant allergic sensitization. With food allergy being a major health problem of increasing concern, understanding the potential allergenicity of new or modified proteins is crucial to ensure public health protection. The best predictive risk assessment methods currently relied on are in vivo models, making the choice of endpoint parameters a key element in evaluating the sensitizing capacity of novel proteins. Here, we provide a comprehensive overview of the most frequently used in vivo and ex vivo endpoints in murine food allergy models, addressing their strengths and limitations for assessing sensitization risks. For optimal laboratory‐to‐laboratory reproducibility and reliable use of predictive tests for protein risk assessment, it is important that researchers maintain and apply the same relevant parameters and procedures. Thus, there is an urgent need for a consensus on key food allergy parameters to be applied in future food allergy research in synergy between both knowledge institutes and clinicians.
Collapse
Affiliation(s)
| | - Katrine L. Bøgh
- National Food Institute Technical University of Denmark Kgs. Lyngby Denmark
| | | | - Michelle M. Epstein
- Experimental Allergy Laboratory, Department of Dermatology Medical University of Vienna Vienna Austria
| | - Sahar Kazemi
- Experimental Allergy Laboratory, Department of Dermatology Medical University of Vienna Vienna Austria
| | - Liam O'Mahony
- Department of Medicine, APC Microbiome Ireland National University of Ireland Cork Ireland
- Department of Microbiology, APC Microbiome Ireland National University of Ireland Cork Ireland
| | | | - Joost J. Smit
- Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands
| | | | | | - Robert Głogowski
- Department of Animal Breeding and Production Warsaw University of Life Sciences Warsaw Poland
| | - Hana Kozáková
- Institute of Microbiology Czech Academy of Sciences Nový Hrádek Czech Republic
| | - Martin Schwarzer
- Institute of Microbiology Czech Academy of Sciences Nový Hrádek Czech Republic
| | - Mario Noti
- Institute of Pathology University of Bern Bern Switzerland
| | - Nicole Wit
- Wageningen Food and Biobased Research Wageningen The Netherlands
| | | | | |
Collapse
|
12
|
Jensen L, Larsen J, Madsen C, Laursen R, Jacobsen L, Bøgh K. Preclinical Brown Norway Rat Models for the Assessment of Infant Formulas in the Prevention and Treatment of Cow’s Milk Allergy. Int Arch Allergy Immunol 2019; 178:307-314. [DOI: 10.1159/000495801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
|
13
|
Martins CPC, Cavalcanti RN, Couto SM, Moraes J, Esmerino EA, Silva MC, Raices RSL, Gut JAW, Ramaswamy HS, Tadini CC, Cruz AG. Microwave Processing: Current Background and Effects on the Physicochemical and Microbiological Aspects of Dairy Products. Compr Rev Food Sci Food Saf 2019; 18:67-83. [DOI: 10.1111/1541-4337.12409] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Carolina P. C. Martins
- Dept. of Food Technology; Federal Rural Univ. of Rio de Janeiro (UFRRJ); Rodovia BR 465, km 7 23890-000 Seropédica RJ Brazil
| | - Rodrigo N. Cavalcanti
- Dept. of Chemical Engineering; Univ. of São Paulo; Main Campus, Av. Prof. Luciano Gualberto, Trav.3, n° 380 Lab. de Eng. de Alimentos, Cidade Univ. 05508-010 São Paulo SP Brazil
- FoRC/NAPAN - Food Research Center; Univ. of São Paulo; Main campus, Av. Prof. Lineu Prestes, 580, Bloco 14 Cidade Univ. 05508-000 São Paulo SP Brazil
- Dept. of Food Science and Agricultural Chemistry; McGill Univ.; Macdonald campus, 21,111 Lakeshore H9X 3V9 Sainte Anne de Bellevue Quebec Canada
| | - Silvia M. Couto
- Nutrition Inst. Josué de Castro; Federal Univ. of Rio de Janeiro (UFRJ); Av. Carlos Chagas Filho, 373, CCS, Bloco J/2° andar, Cidade Univ., Ilha do Fundão 21941-902 Rio de Janeiro RJ Brazil
| | - Jeremias Moraes
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| | - Erick A. Esmerino
- Dept. of Food Technology; Federal Rural Univ. of Rio de Janeiro (UFRRJ); Rodovia BR 465, km 7 23890-000 Seropédica RJ Brazil
| | - Marcia Cristina Silva
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| | - Renata S. L. Raices
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| | - Jorge A. W. Gut
- Dept. of Chemical Engineering; Univ. of São Paulo; Main Campus, Av. Prof. Luciano Gualberto, Trav.3, n° 380 Lab. de Eng. de Alimentos, Cidade Univ. 05508-010 São Paulo SP Brazil
- FoRC/NAPAN - Food Research Center; Univ. of São Paulo; Main campus, Av. Prof. Lineu Prestes, 580, Bloco 14 Cidade Univ. 05508-000 São Paulo SP Brazil
| | - Hosahalli S. Ramaswamy
- Dept. of Food Science and Agricultural Chemistry; McGill Univ.; Macdonald campus, 21,111 Lakeshore H9X 3V9 Sainte Anne de Bellevue Quebec Canada
| | - Carmen C. Tadini
- Dept. of Chemical Engineering; Univ. of São Paulo; Main Campus, Av. Prof. Luciano Gualberto, Trav.3, n° 380 Lab. de Eng. de Alimentos, Cidade Univ. 05508-010 São Paulo SP Brazil
- FoRC/NAPAN - Food Research Center; Univ. of São Paulo; Main campus, Av. Prof. Lineu Prestes, 580, Bloco 14 Cidade Univ. 05508-000 São Paulo SP Brazil
| | - Adriano G. Cruz
- Federal Institute of Education, Science and Technology of Rio de Janeiro (IFRJ); Rio de Janeiro campus, Food Dept.; Rua Senador Furtado, 121/125 Maracanã 20270-021 Rio de Janeiro Brazil
| |
Collapse
|
14
|
Huang J, Liu C, Wang Y, Wang C, Xie M, Qian Y, Fu L. Application of in vitro and in vivo models in the study of food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Combined microwave processing and enzymatic proteolysis of bovine whey proteins: the impact on bovine β-lactoglobulin allergenicity. Journal of Food Science and Technology 2018; 56:177-186. [PMID: 30728559 DOI: 10.1007/s13197-018-3471-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/09/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
The main aim of this study was to develop a continuous microwave treatment system of whey proteins and then apply this process at 37 °C, 50 °C, 65 °C and 70 °C to achieve pepsinolysis and produce extensively hydrolysed bovine whey protein hydrolysates with low allergenic properties. The microwave process was compared to a conventional thermal treatment with similar temperature set points. Both processes were deeply analysed in terms of the thermal kinetics and operating conditions. The pepsin hydrolysates obtained by the continuous microwave treatment and conventional heating were characterized by SDS-PAGE and RP-HPLC. The allergenicity of the whey protein hydrolysates was explored using a human IgE sensitized rat basophil leukaemia cell assay. The results indicate that extensively hydrolysed whey protein hydrolysates were obtained by microwave only at 65 °C and in a shorter time compared with the conventional thermal treatment. In the same temperature conditions under conventional heating, β-lactoglobulin was resistant to pepsinolysis, and 37% of it remained intact. As demonstrated by an in vitro degranulation assay using specific human IgE-sensitized rat basophils, the extensively hydrolysed whey protein obtained by microwave showed maximum degranulation values of 6.53% compared to those of the native whey protein isolate (45.97%) and hence elicited no more allergenic reactions in basophils. This work emphasizes the potential industrial use of microwave heating specific to milk protein processing to reduce their allergenicity and improve their end-use properties.
Collapse
|
16
|
Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr 2017; 58:1629-1649. [PMID: 28102702 DOI: 10.1080/10408398.2016.1275519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the most promising strategies currently assayed against IgE-mediated allergic diseases stands the possibility of using immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. This review focuses on the beneficial effects of food derived immunomodulating peptides on food allergy, which can be directly exerted in the intestinal tract or once being absorbed through the intestinal epithelial barrier to interact with immune cells. Food peptides influence intestinal homeostasis by maintaining and reinforcing barrier function or affecting intestinal cell-signalling to nearby immune cells and mucus secretion. In addition, they can stimulate cells of the innate and adaptive immune system while supressing inflammatory responses. Peptides represent an attractive alternative to whole allergens to enhance the safety and efficacy of immunotherapy treatments. The conclusions drawn from curative and preventive experiments in murine models are promising, although there is a need for more pre-clinical studies to further explore the immunomodulating strategy and its mechanisms and for a deeper knowledge of the peptide sequence and structural requirements that determine the immunoregulatory function.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| | - Rosina López-Fandiño
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| |
Collapse
|
17
|
Lozano-Ojalvo D, Pérez-Rodríguez L, Pablos-Tanarro A, López-Fandiño R, Molina E. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.07.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Bøgh KL, van Bilsen J, Głogowski R, López-Expósito I, Bouchaud G, Blanchard C, Bodinier M, Smit J, Pieters R, Bastiaan-Net S, de Wit N, Untersmayr E, Adel-Patient K, Knippels L, Epstein MM, Noti M, Nygaard UC, Kimber I, Verhoeckx K, O'Mahony L. Current challenges facing the assessment of the allergenic capacity of food allergens in animal models. Clin Transl Allergy 2016; 6:21. [PMID: 27313841 PMCID: PMC4910256 DOI: 10.1186/s13601-016-0110-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/09/2016] [Indexed: 01/16/2023] Open
Abstract
Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured.
Collapse
Affiliation(s)
| | | | | | - Iván López-Expósito
- Department of Bioactivity and Food Analysis, Institute for Food Science Research (CIAL) (CSIC-UAM), Madrid, Spain
| | | | | | | | - Joost Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Raymond Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shanna Bastiaan-Net
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Nicole de Wit
- Food and Biobased Research, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Eva Untersmayr
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Karine Adel-Patient
- UMR-INRA-CEA, Service de Pharmacologie et d'Immunoanalyse, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Leon Knippels
- Danone Nutricia Research, Utrecht, The Netherlands ; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michelle M Epstein
- Experimental Allergy Laboratory, DIAID, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mario Noti
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Ian Kimber
- University of Manchester, Manchester, UK
| | | | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos Platz, Switzerland
| |
Collapse
|