1
|
Mauricio F, Mendoza R, Silva H, Calderon I, Espinoza-Carhuancho F, Pacheco-Mendoza J, Mayta-Tovalino F. Overview, Trends, and Collaboration on Immunization, Vaccination, and Immunomodulation Therapies for Periodontitis: A Scientometric Study. J Contemp Dent Pract 2024; 25:128-133. [PMID: 38514409 DOI: 10.5005/jp-journals-10024-3641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
AIM To identify patterns and trends in the field of immunization, vaccination, and immunomodulation therapies for periodontitis. MATERIALS AND METHODS Metadata were collected from the Scopus database on publications related to these topics from January 1986 to February 2024. Several types of papers were included in this study, a total of 22 publications. Data were extracted from relevant publications and loaded into SciVal for analysis that were used to identify trends and patterns in the data, including cross-country collaboration, thematic evolution, and keyword distribution. RESULTS Mohsen Amin of Tehran University of Medical Sciences in Iran and S. Aadil Ahamed and Annie Kitty George of Saveetha Institute of Medical and Technical Sciences in India were found to be notable contributors in this field. India leads in terms of academic paper production, followed by Iran and China. The journals Expert Review of Vaccines and International Immunopharmacology have published significant papers in this field. CONCLUSIONS According to Lotka's Law, most authors have written only one paper, reflecting the distribution of productivity in many academic and scientific fields. Collaborations were observed between Iran and Canada, Korea and New Zealand, and the United States and Belgium. This study provides useful insight into the predominant trends and patterns in the scientific literature in the field of immunization, vaccination, and immunomodulation therapies for periodontitis. CLINICAL SIGNIFICANCE The findings of this study may help to understand the dynamics of the production on immunization, vaccination, and immunomodulation therapies could reduce the inflammation and progression of periodontitis, thus improving the patient's oral and overall health. How to cite this article: Mauricio F, Mendoza R, Silva H, et al. Overview, Trends, and Collaboration on Immunization, Vaccination, and Immunomodulation Therapies for Periodontitis: A Scientometric Study. J Contemp Dent Pract 2024;25(2):128-133.
Collapse
Affiliation(s)
- Franco Mauricio
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Roman Mendoza
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Herbert Silva
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Ivan Calderon
- Academic Department, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Fran Espinoza-Carhuancho
- Academic Department, Grupo de Bibliometría, Evaluación de Evidencia y Revisiones Sistemáticas (BEERS), Human Medicine Career, Universidad Cientifica del Sur, Lima, Peru
| | - Josmel Pacheco-Mendoza
- Academic Department, Grupo de Bibliometría, Evaluación de Evidencia y Revisiones Sistemáticas (BEERS), Human Medicine Career, Universidad Cientifica del Sur, Lima, Peru
| | - Frank Mayta-Tovalino
- Research Department, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru, Phone: +51 13171023, e-mail:
| |
Collapse
|
2
|
Böcher S, Meyer HL, Dafni E, Conrads G. Prevalence and Phylogenetic Analysis of Lipoprotein-Gene ragB-1 of Porphyromonas gingivalis-A Pilot Study. Antibiotics (Basel) 2023; 12:1458. [PMID: 37760754 PMCID: PMC10525598 DOI: 10.3390/antibiotics12091458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Porphyromonas gingivalis (P.g.) is a key pathogen involved in periodontal diseases. The aim of this study was to investigate the prevalence and phylogenetic origin of the lipoprotein-gene ragB in its most virulent variant, ragB-1 (co-transcribed with ragA-1 as locus rag-1), in different P.g. strains collected worldwide. A total of 138 P.g. strains were analyzed for the presence of ragB-1 by pooled analysis and subsequently individual PCRs. Sequencing a core fragment of ragB-1 of the individual strains made it possible to carry out a phylogenetic classification using sequence alignment. In total, 22 of the 138 P.g. strains tested positive for ragB-1, corresponding to a prevalence of 16%. The fragment investigated was highly conserved, with variations in the base sequence detected in only three strains (OMI 1072, OMI 1081, and OMI 1074). In two strains, namely OMI 1072 (original name: I-433) and OMI 1081 (original name: I-372), which originate from monkeys, two amino-acid alterations were apparent. Since ragB-1 has also been found in animal strains, it may be concluded that rag-1 was transferred from animals to humans and that this originally virulent variant was weakened by mutations over time so that new, less virulent, adapted commensal versions of rag (rag-2, -3, and -4), with P.g. as the host, evolved.
Collapse
Affiliation(s)
- Sarah Böcher
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Hendrik L. Meyer
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (G.C.)
| | - Evdokia Dafni
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (G.C.)
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (G.C.)
| |
Collapse
|
3
|
Bai G, Yu H, Guan X, Zeng F, Liu X, Chen B, Liu J, Tian Y. CpG immunostimulatory oligodeoxynucleotide 1826 as a novel nasal ODN adjuvant enhanced the protective efficacy of the periodontitis gene vaccine in a periodontitis model in SD rats. BMC Oral Health 2021; 21:403. [PMID: 34399747 PMCID: PMC8369760 DOI: 10.1186/s12903-021-01763-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously demonstrated that nasal administration of periodontitis gene vaccine (pVAX1-HA2-fimA) or pVAX1-HA2-fimA plus IL-15 as adjuvant provoked protective immunity in the periodontal tissue of SD rats. This study evaluated the immune effect of pVAX1-HA2-fimA plus CpG-ODN 1826 as an adjuvant in the SD rat periodontitis models to improve the efficacy of the previously used vaccine. METHODS Periodontitis was induced in maxillary second molars in SD rats receiving a ligature and infected with Porphyromonas gingivalis. Forty-two SD rats were randomly assigned to six groups: A, control without P. gingivalis; B, P. gingivalis with saline; C, P. gingivalis with pVAX1; D, P. gingivalis with pVAX1-HA2-fimA; E, P. gingivalis with pVAX1-HA2-fimA/IL-15; F, P. gingivalis with pVAX1-HA2-fimA+CpG ODN 1826 (30 µg). The levels of FimA-specific and HA2-specific secretory IgA antibodies in the saliva of rats were measured by ELISA. The levels of COX-2 and RANKL were detected by immunohistochemical assay. Morphometric analysis was used to evaluate alveolar bone loss. Major organs were observed by HE staining. RESULTS 30 μg could be the optimal immunization dose for CpG-ODN 1826 and the levels of SIgA antibody were consistently higher in the pVAX1-HA2-fimA+CpG-ODN 1826 (30 µg) group than in the other groups during weeks 1-8 (P < 0.05, except week 1 or 2). Morphometric analysis demonstrated that pVAX1-HA2-fimA+CpG-ODN 1826 (30 µg) significantly reduced alveolar bone loss in ligated maxillary molars in group F compared with groups B-E (P < 0.05). Immunohistochemical assays revealed that the levels of COX-2 and RANKL were significantly lower in group F compared with groups B-E (P < 0.05). HE staining results of the major organs indicated that pVAX1-HA2-fimA with or without CpG-ODN 1826 was not toxic for in vivo use. CONCLUSIONS These results indicated that CpG-ODN 1826 (30 µg) could be used as an effective and safe mucosal adjuvant for pVAX1-HA2-fimA in SD rats since it could elicit mucosal SIgA responses and modulate COX-2 and RANKL production during weeks 1-8, thereby inhibiting inflammation and decreasing bone loss.
Collapse
Affiliation(s)
- Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Hang Yu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoyan Guan
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Fengjiao Zeng
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Xia Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Bin Chen
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Jianguo Liu
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| | - Yuan Tian
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China. .,Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
4
|
Potempa J, Madej M, Scott DA. The RagA and RagB proteins of Porphyromonas gingivalis. Mol Oral Microbiol 2021; 36:225-232. [PMID: 34032024 DOI: 10.1111/omi.12345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022]
Abstract
RagA and RagB proteins are major components of the outer membrane of the oral pathogen Porphyromonas gingivalis and, while recently suggested to represent a novel peptide uptake system, their full function is still under investigation. Herein, we (a) discuss the evidence that the rag locus contributes to P. gingivalis virulence; (b) provide insight to Rag protein potential biological function in macromolecular transport and other aspects of bacterial physiology; (c) address the host response to Rag proteins which are immunodominant and immunomodulatory; and (d) review the potential of Rag-focused therapeutic strategies for the control of periodontal diseases.
Collapse
Affiliation(s)
- Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA.,Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Kraków, Poland
| | - Mariusz Madej
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Microbiology, Jagiellonian University, Kraków, Poland
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
5
|
Goulas T, Garcia-Ferrer I, Hutcherson JA, Potempa BA, Potempa J, Scott DA, Gomis-Rüth FX. Structure of RagB, a major immunodominant outer-membrane surface receptor antigen of Porphyromonas gingivalis. Mol Oral Microbiol 2016; 31:472-485. [PMID: 26441291 PMCID: PMC4823178 DOI: 10.1111/omi.12140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
Porphyromonas gingivalis is the main causative agent of periodontitis. It deregulates the inflammatory and innate host immune responses through virulence factors, which include the immunodominant outer-membrane surface receptor antigens A (PgRagA) and B (PgRagB), co-transcribed from the rag pathogenicity island. The former is predicted to be a Ton-dependent porin-type translocator but the targets of this translocation and the molecular function of PgRagB are unknown. Phenomenologically, PgRagB has been linked with epithelial cell invasion and virulence according to murine models. It also acts as a Toll-like receptor agonist and promotes multiple mediators of inflammation. Hence, PgRagB is a candidate for the development of a periodontitis vaccine, which would be facilitated by the knowledge of its atomic structure. Here, we crystallized and solved the structure of 54-kDa PgRagB, which revealed a single domain centered on a curved helical scaffold. It consists of four tetratrico peptide repeats (TPR1-4), each arranged as two helices connected by a linker, plus two extra downstream capping helices. The concave surface bears four large intertwined irregular inserts (A-D), which contribute to an overall compact moiety. Overall, PgRagB shows substantial structural similarity with Bacteroides thetaiotaomicron SusD and Tannerella forsythia NanU, which are, respectively, engaged in binding and uptake of malto-oligosaccharide/starch and sialic acid. This suggests a similar sugar-binding function for PgRagB for uptake by the cognate PgRagA translocator, and, consistently, three potential monosaccharide-binding sites were tentatively assigned on the molecular surface.
Collapse
Affiliation(s)
- T Goulas
- Proteolysis Laboratory, Department of Structural Biology ('María de Maeztu' Unit of Excellence), Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain
| | - I Garcia-Ferrer
- Proteolysis Laboratory, Department of Structural Biology ('María de Maeztu' Unit of Excellence), Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain
| | - J A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - B A Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - J Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
- Małopolska Center of Biotechnology and Department Laboratory of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - D A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville School of Dentistry, Louisville, KY, USA
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology ('María de Maeztu' Unit of Excellence), Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain.
| |
Collapse
|
6
|
Carvalho-Filho PC, Gomes-Filho IS, Meyer R, Olczak T, Xavier MT, Trindade SC. Role of Porphyromonas gingivalis HmuY in Immunopathogenesis of Chronic Periodontitis. Mediators Inflamm 2016; 2016:7465852. [PMID: 27403039 PMCID: PMC4925967 DOI: 10.1155/2016/7465852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/25/2016] [Indexed: 12/03/2022] Open
Abstract
Periodontitis is a multifactorial disease, with participation of bacterial, environmental, and host factors. It results from synergistic and dysbiotic multispecies microorganisms, critical "keystone pathogens," affecting the whole bacterial community. The purpose of this study was to review the role of Porphyromonas gingivalis in the immunopathogenesis of chronic periodontitis, with special attention paid to HmuY. The host response during periodontitis involves the innate and adaptive immune system, leading to chronic inflammation and progressive destruction of tooth-supporting tissues. In this proinflammatory process, the ability of P. gingivalis to evade the host immune response and access nutrients in the microenvironment is directly related to its survival, proliferation, and infection. Furthermore, heme is an essential nutrient for development of these bacteria, and HmuY is responsible for its capture from host heme-binding proteins. The inflammatory potential of P. gingivalis HmuY has been shown, including induction of high levels of proinflammatory cytokines and CCL2, decreased levels of IL-8, and increased levels of anti-HmuY IgG and IgG1 antibodies in individuals with chronic periodontitis. Therefore, the HmuY protein might be a promising target for therapeutic strategies and for development of diagnostic methods in chronic periodontitis, especially in the case of patients with chronic periodontitis not responding to treatment, monitoring, and maintenance therapy.
Collapse
Affiliation(s)
- P. C. Carvalho-Filho
- Odontology Course, Bahiana School of Medicine and Public Health, 41150-100 Salvador, BA, Brazil
| | - I. S. Gomes-Filho
- Department of Periodontics, Feira de Santana State University, 44036-900 Feira de Santana, BA, Brazil
| | - R. Meyer
- Department of Biointeraction, Federal University of Bahia, 40110-100 Salvador, BA, Brazil
| | - T. Olczak
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - M. T. Xavier
- Odontology Course, Bahiana School of Medicine and Public Health, 41150-100 Salvador, BA, Brazil
| | - S. C. Trindade
- Department of Periodontics, Feira de Santana State University, 44036-900 Feira de Santana, BA, Brazil
| |
Collapse
|