1
|
Mori F, Pascali G, Berra S, Lazzarotti A, Panetta D, Rocchiccioli S, Ceccherini E, Norelli F, Morlando A, Donadelli R, Clivio A, Farina C, Noris M, Salvadori PA, Remuzzi G. Proof of concept of a new plasma complement Factor H from waste plasma fraction. Front Immunol 2024; 15:1334151. [PMID: 38919628 PMCID: PMC11197005 DOI: 10.3389/fimmu.2024.1334151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Complement factor H (FH) is a major regulator of the complement alternative pathway, its mutations predispose to an uncontrolled activation in the kidney and on blood cells and to secondary C3 deficiency. Plasma exchange has been used to correct for FH deficiency and although the therapeutic potential of purified FH has been suggested by in vivo experiments in animal models, a clinical approved FH concentrate is not yet available. We aimed to develop a purification process of FH from a waste fraction rather than whole plasma allowing a more efficient and ethical use of blood and plasma donations. Methods Waste fractions from industrial plasma fractionation (pooled human plasma) were analyzed for FH content by ELISA. FH was purified from unused fraction III and its decay acceleration, cofactor, and C3 binding capacity were characterized in vitro. Biodistribution was assessed by high-resolution dynamic PET imaging. Finally, the efficacy of the purified FH preparation was tested in the mouse model of C3 glomerulopathy (Cfh-/- mice). Results Our purification method resulted in a high yield of highly purified (92,07%), pathogen-safe FH. FH concentrate is intact and fully functional as demonstrated by in vitro functional assays. The biodistribution revealed lower renal and liver clearance of human FH in Cfh-/- mice than in wt mice. Treatment of Cfh-/- mice documented its efficacy in limiting C3 activation and promoting the clearance of C3 glomerular deposits. Conclusion We developed an efficient and economical system for purifying intact and functional FH, starting from waste material of industrial plasma fractionation. The FH concentrate could therefore constitute possible treatments options of patients with C3 glomerulopathy, particularly for those with FH deficiency, but also for patients with other diseases associated with alternative pathway activation.
Collapse
Affiliation(s)
- Filippo Mori
- Research and Innovation, Kedrion Biopharma, Lucca, Italy
| | - Giancarlo Pascali
- Biosciences, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- School of Chemistry, University of New South Wales, Kensington, NSW, Australia
| | - Silvia Berra
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| | | | - Daniele Panetta
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Silvia Rocchiccioli
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Elisa Ceccherini
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Francesco Norelli
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Antonio Morlando
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alberto Clivio
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Milan, Italy
| | - Claudio Farina
- Research and Innovation, Kedrion Biopharma, Lucca, Italy
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Piero A. Salvadori
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
2
|
Tschongov T, Konwar S, Busch A, Sievert C, Hartmann A, Noris M, Gastoldi S, Aiello S, Schaaf A, Panse J, Zipfel PF, Dabrowska-Schlepp P, Häffner K. Moss-produced human complement factor H with modified glycans has an extended half-life and improved biological activity. Front Immunol 2024; 15:1383123. [PMID: 38799460 PMCID: PMC11117068 DOI: 10.3389/fimmu.2024.1383123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Most drugs that target the complement system are designed to inhibit the complement pathway at either the proximal or terminal levels. The use of a natural complement regulator such as factor H (FH) could provide a superior treatment option by restoring the balance of an overactive complement system while preserving its normal physiological functions. Until now, the systemic treatment of complement-associated disorders with FH has been deemed unfeasible, primarily due to high production costs, risks related to FH purified from donors' blood, and the challenging expression of recombinant FH in different host systems. We recently demonstrated that a moss-based expression system can produce high yields of properly folded, fully functional, recombinant FH. However, the half-life of the initial variant (CPV-101) was relatively short. Here we show that the same polypeptide with modified glycosylation (CPV-104) achieves a pharmacokinetic profile comparable to that of native FH derived from human serum. The treatment of FH-deficient mice with CPV-104 significantly improved important efficacy parameters such as the normalization of serum C3 levels and the rapid degradation of C3 deposits in the kidney compared to treatment with CPV-101. Furthermore, CPV-104 showed comparable functionality to serum-derived FH in vitro, as well as similar performance in ex vivo assays involving samples from patients with atypical hemolytic uremic syndrome, C3 glomerulopathy and paroxysomal nocturnal hematuria. CPV-104 - the human FH analog expressed in moss - will therefore allow the treatment of complement-associated human diseases by rebalancing instead of inhibiting the complement cascade.
Collapse
Affiliation(s)
- Todor Tschongov
- Department of Internal Medicine IV (Nephrology), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Swagata Konwar
- Department of Internal Medicine IV (Nephrology), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Andrea Hartmann
- Department of Infection Biology, Leibniz Insitute for Natural Product Research and Infection Biology, Jena, Germany
| | - Marina Noris
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Dacco”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Sara Gastoldi
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Dacco”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Sistiana Aiello
- Centro di Ricerche Cliniche per le Malattie Rare “Aldo e Cele Dacco”, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Jens Panse
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD) Germany Pauwelsstrasse 30, Aachen, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Insitute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | | | - Karsten Häffner
- Department of Internal Medicine IV (Nephrology), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Kamala O, Malik TH, Hallam TM, Cox TE, Yang Y, Vyas F, Luli S, Connelly C, Gibson B, Smith-Jackson K, Denton H, Pappworth IY, Huang L, Kavanagh D, Pickering MC, Marchbank KJ. Homodimeric Minimal Factor H: In Vivo Tracking and Extended Dosing Studies in Factor H Deficient Mice. Front Immunol 2021; 12:752916. [PMID: 34956184 PMCID: PMC8696033 DOI: 10.3389/fimmu.2021.752916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway (AP) of complement and treatment options remain inadequate. Factor H (FH) is a potent regulator of the AP. An in-depth analysis of FH-related protein dimerised minimal (mini)-FH constructs has recently been published. This analysis showed that addition of a dimerisation module to mini-FH not only increased serum half-life but also improved complement regulatory function, thus providing a potential treatment option for C3G. Herein, we describe the production of a murine version of homodimeric mini-FH [mHDM-FH (mFH1-5^18-20^R1-2)], developed to reduce the risk of anti-drug antibody formation during long-term experiments in murine models of C3G and other complement-driven pathologies. Our analysis of mHDM-FH indicates that it binds with higher affinity and avidity to WT mC3b when compared to mouse (m)FH (mHDM-FH KD=505 nM; mFH KD=1370 nM) analogous to what we observed with the respective human proteins. The improved binding avidity resulted in enhanced complement regulatory function in haemolytic assays. Extended interval dosing studies in CFH-/- mice (5mg/kg every 72hrs) were partially effective and bio-distribution analysis in CFH-/- mice, through in vivo imaging technologies, demonstrates that mHDM-FH is preferentially deposited and remains fixed in the kidneys (and liver) for up to 4 days. Extended dosing using an AAV- human HDM-FH (hHDM-FH) construct achieved complete normalisation of C3 levels in CFH-/- mice for 3 months and was associated with a significant reduction in glomerular C3 staining. Our data demonstrate the ability of gene therapy delivery of mini-FH constructs to enhance complement regulation in vivo and support the application of this approach as a novel treatment strategy in diseases such as C3G.
Collapse
Affiliation(s)
- Ola Kamala
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Talat H. Malik
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Thomas M. Hallam
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Thomas E. Cox
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Yi Yang
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Falguni Vyas
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Saimir Luli
- Preclinical In Vivo Imaging, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Chloe Connelly
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Beth Gibson
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Kate Smith-Jackson
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Harriet Denton
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Isabel Y. Pappworth
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Lei Huang
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - David Kavanagh
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|