1
|
Mohamed SH, Fu MS, Hain S, Alselami A, Vanhoffelen E, Li Y, Bojang E, Lukande R, Ballou ER, May RC, Ding C, Velde GV, Drummond RA. Microglia are not protective against cryptococcal meningitis. Nat Commun 2023; 14:7202. [PMID: 37938547 PMCID: PMC10632471 DOI: 10.1038/s41467-023-43061-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Microglia provide protection against a range of brain infections including bacteria, viruses and parasites, but how these glial cells respond to fungal brain infections is poorly understood. We investigated the role of microglia in the context of cryptococcal meningitis, the most common cause of fungal meningitis in humans. Using a series of transgenic- and chemical-based microglia depletion methods we found that, contrary to their protective role during other infections, loss of microglia did not affect control of Cryptococcus neoformans brain infection which was replicated with several fungal strains. At early time points post-infection, we found that microglia depletion lowered fungal brain burdens, which was related to intracellular residence of C. neoformans within microglia. Further examination of extracellular and intracellular fungal populations revealed that C. neoformans residing in microglia were protected from copper starvation, whereas extracellular yeast upregulated copper transporter CTR4. However, the degree of copper starvation did not equate to fungal survival or abundance of metals within different intracellular niches. Taken together, these data show how tissue-resident myeloid cells may influence fungal phenotype in the brain but do not provide protection against this infection, and instead may act as an early infection reservoir.
Collapse
Affiliation(s)
- Sally H Mohamed
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Man Shun Fu
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sofia Hain
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Alanoud Alselami
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, 110015, Liaoning, China
| | - Ebrima Bojang
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Robert Lukande
- Department of Pathology, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Birmingham, UK
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, 110015, Liaoning, China
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK.
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Chaudhuri S, Acharya S, Chaudhuri S. Therapeutic intervention of glioma with the novel antineoplastic agent T11TS: the story so far. Immunotherapy 2022; 14:1263-1277. [PMID: 36004447 DOI: 10.2217/imt-2021-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The disease relevance of novel therapeutic agent T11TS, established first by the authors' group, was shown to ameliorate experimental glioma through multimodal mechanistic activities. T11TS reverses immunosuppression in glioma, causing profound effects on immune potentiation via peripheral, intracranial and hematopoietic cells. T-cell signaling in glioma is reversed by T11TS, modulating cytokine levels and favoring apoptotic killing of glioma cells. T11TS arrests the glioma cell cycle at the G1 phase via activation of p21. VEGF downregulation hypophosphorylates the Akt pathway. T11TS hinders endothelial cell progression and metastasis by arresting matrix degradation, inhibiting the Ras-Raf and Akt-PTEN pathways and initiating inflammatory changes, causing apoptosis. T11TS is effective against in vitro human glioma. Toxicity studies demonstrate that T11TS is nontoxic. The authors' study promise translational research with T11TS.
Collapse
Affiliation(s)
- Suhnrita Chaudhuri
- 4D Pharma Research Ltd, Life Sciences Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, UK, Formerly: Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Sagar Acharya
- Department of Zoology, Vidyasagar University, Paschim Medinipur, West Bengal, 721102, India, Formerly: Department of Laboratory Medicine, Cellular and Molecular Immunology Lab, School of Tropical Medicine, Kolkata, West Bengal 700073, India
| | - Swapna Chaudhuri
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata, West Bengal, 700026, India
| |
Collapse
|
3
|
Sun Z, Ji N, Jiang J, Tao Y, Zhang E, Yang X, Wang Z, Chen Z, Huang M, Zhang M. Fine Particulate Matter (PM 2. 5) Promotes CD146 Expression in Alveolar Epithelial Cells and Cryptococcus neoformans Pulmonary Infection. Front Microbiol 2021; 11:525976. [PMID: 33537006 PMCID: PMC7848894 DOI: 10.3389/fmicb.2020.525976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Air pollution is a leading cause of increasing infectious lung diseases. Pulmonary cryptococcosis is a fatal fungal pneumonia in acquired immunodeficiency syndrome patients. In some cases, the pathogen Cryptococcus neoformans also develops dormant nodules in immunocompetent individuals. In the present study, we demonstrated that fine particulate matter (PM2.5) increased CD146 expression in alveolar epithelial cells and promoted C. neoformans pulmonary infection. Aryl hydrocarbon receptor (AhR) signaling was required for increased expression of CD146 in epithelial cells treated with PM2.5. In a murine model of pulmonary infection, PM2.5 promoted fungal infection, and CD146 deficiency decreased the fugal burden of C. neoformans. Our study may highlight the importance of air pollution to lung mycosis and CD146 as a target for preventing infectious lung diseases.
Collapse
Affiliation(s)
- Zhixiao Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Tao
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Enrui Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xiaofan Yang
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Tang G, Yuan X, Luo Y, Lin Q, Chen Z, Xing X, Song H, Wu S, Hou H, Yu J, Mao L, Liu W, Wang F, Sun Z. Establishing immune scoring model based on combination of the number, function, and phenotype of lymphocytes. Aging (Albany NY) 2020; 12:9328-9343. [PMID: 32396527 PMCID: PMC7288950 DOI: 10.18632/aging.103208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Abstract
Background: Quantitatively assessing host immunity remains a challenge in clinical practice. Results: Most parameters in lymphocyte number, function and phenotype were correlated with age. The reference ranges of these parameters were established in four age groups (children, adolescents, adults, and elders). The numbers of CD4+ T cells, CD8+ T cells, B cells, but not NK cells, were negatively correlated with age. However, the function of CD4+ T cells, CD8+ T cells and NK cells was positively correlated with age. The expression of CD28 on T cells gradually decreased with increasing age and was negatively correlated with their function. An opposite phenomenon was observed in the expressions of HLA-DR and CD45RO on T cells. An immune scoring model was established by using 8 parameters (CD4+ T cell number × function, CD28+CD4+ T cell number, HLA-DR+CD4+ T cell number, CD45RO+CD4+ T cell number, CD8+ T cell number × function, CD28+CD8+ T cell number, HLA-DR+CD8+ T cell number, NK cell number × function) from the results of lymphocyte number, function, and phenotype. This immune scoring model showed sensitivities of 70% and 71.4% in determining hyper-immune and hypo-immune status, respectively. Conclusions: An immune scoring model based on combination of lymphocyte number, function, and phenotype shows potential value in quantitatively assessing host immunity. Methods: 261 healthy individuals aged 1 to 82 years were recruited from Tongji Hospital. The number, function, and phenotype of CD4+ T cells, CD8+ T cells and NK cells were simultaneously determined.
Collapse
Affiliation(s)
- Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Xing
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Song
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liyan Mao
- Center for Cellular and Molecular Diagnosis, Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Sk Md OF, Hazra I, Datta A, Mondal S, Moitra S, Chaudhuri S, Das PK, Basu AK, Mishra R, Chaudhuri S. Regulation of key molecules of immunological synapse by T11TS immunotherapy abrogates Cryptococcus neoformans infection in rats. Mol Immunol 2020; 122:207-221. [PMID: 32388483 DOI: 10.1016/j.molimm.2020.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Cryptococcus neoformans infects and disseminates in hosts with diminished T cell responses. The immunomodulator T11TS (T11 target structure) had profound potential in glioma as well as C. neoformans infected model for disease amelioration. It is been established by our group that T11TS potentiates Calcineurin-NFAT pathway in T cells of C. neoformans infected rats. We investigated the upstream Immunological Synapse (IS) molecules that are vital for the foundation of initial signals for downstream signaling, differentiation and proliferation in T cells. Improved RANTES level in the T11TS treated groups suggests potential recruitment of T cells. Down-regulation of TCRαβ, CD3ζ, CD2, CD45 and CD28 molecules by cryptococcus were boosted after T11TS therapy. Heightened expression of inhibitory molecule CTLA-4 in cryptococcosis was dampened by T11TS. The decline of MHC I, MHC II and CD80 expression on macrophages by C. neoformans were enhanced by T11TS. The dampening of positive regulators and upsurge of negative regulators of the IS during cryptococcosis was reversed with T11TS therapy resulting in enhanced clearance of fungus from the lungs as envisaged by our histological studies. This preclinical study with T11TS opens a new prospect for potential immunotherapeutic intervention against the devastating C. neoformans infection with positive aspect for the long-term solution and a safer immunotherapeutic regimen.
Collapse
Affiliation(s)
- Omar Faruk Sk Md
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India; Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Iman Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Ankur Datta
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Somnath Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Saibal Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Suhnrita Chaudhuri
- Centre for Tumor Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, ECIM 6BQ, UK
| | - Prasanta Kumar Das
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Anjan Kumar Basu
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India
| | - Roshnara Mishra
- Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C. R. Avenue, Kolkata 700073, West Bengal, India.
| |
Collapse
|
6
|
Omar Faruk SM, Hazra I, Mondal S, Datta A, Moitra S, Das PK, Mishra R, Chaudhuri S. T11TS immunotherapy potentiates the repressed calcineurin-NFAT signalling pathway of T cells in Cryptococcus neoformans infected rats: a cue towards T-cell activation for antifungal immunity. J Appl Microbiol 2020; 129:753-767. [PMID: 32145053 DOI: 10.1111/jam.14631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
AIMS To examine the modulation of the interacting partners of the calcineurin (CaN)-NFAT pathway in T cells during Cryptococcus neoformans fungal infection and post-T11TS immunotherapy. METHODS AND RESULTS Wistar rats were infected with C. neoformans and followed by immunotherapy with immune-potentiator T11TS. T cells were analysed by flow cytometry, immunoblotting and nuclear translocation study. The signalling proteins LCK, FYN, LAT, PLCγ1 and CaN in T cells were regulated by C. neoformans infection resulting in reduced nuclear translocation of NFAT and IL-2 expression. Following T11TS immunotherapy, the expressions of the above-mentioned proteins were boosted and thus resulting in the clearance of C. neoformans from lung and spleen. CONCLUSIONS The precise mechanism of suppression of the T-cell function by C. neoformans is still unknown. Previously, we have shown that T11TS positively regulates the function of T cells to abrogate glioma and other immunosuppressive conditions. T11TS immunotherapy increased the expression of the above signalling partners of the CaN-NFAT pathway in T cells and improved nuclear retention of NFAT. As a result, an increased IL-2 expression leads to activation and proliferation of T cells. SIGNIFICANCE AND IMPACT OF THE STUDY Our results demonstrate the role of T11TS in restoring the CaN-NFAT signalling pathway in T cells. It identifies T11TS as an immunotherapeutic agent with potential clinical outcomes to counteract C. neoformans infection.
Collapse
Affiliation(s)
- S M Omar Faruk
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - I Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - A Datta
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - P K Das
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - R Mishra
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - S Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|