1
|
Saettini F, Guerra F, Fazio G, Bugarin C, McMillan HJ, Ohtake A, Ardissone A, Itoh M, Giglio S, Cappuccio G, Giardino G, Romano R, Quadri M, Gasperini S, Moratto D, Chiarini M, Akira I, Fukuhara Y, Hayakawa I, Okazaki Y, Mauri M, Piazza R, Cazzaniga G, Biondi A. Antibody Deficiency in Patients with Biallelic KARS1 Mutations. J Clin Immunol 2023; 43:2115-2125. [PMID: 37770806 DOI: 10.1007/s10875-023-01584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Biallelic KARS1 mutations cause KARS-related diseases, a rare syndromic condition encompassing central and peripheral nervous system impairment, heart and liver disease, and deafness. KARS1 encodes the t-RNA synthase of lysine, an aminoacyl-tRNA synthetase, involved in different physiological mechanisms (such as angiogenesis, post-translational modifications, translation initiation, autophagy and mitochondrial function). Although patients with immune-hematological abnormalities have been individually described, results have not been collectively discussed and functional studies investigating how KARS1 mutations affect B cells have not been performed. Here, we describe one patient with severe developmental delay, sensoneurinal deafness, acute disseminated encephalomyelitis, hypogammaglobulinemia and recurrent infections. Pathogenic biallelic KARS1 variants (Phe291Val/ Pro499Leu) were associated with impaired B cell metabolism (decreased mitochondrial numbers and activity). All published cases of KARS-related diseases were identified. The corresponding authors and researchers involved in the diagnosis of inborn errors of immunity or genetic syndromes were contacted to obtain up-to-date clinical and immunological information. Seventeen patients with KARS-related diseases were identified. Recurrent/severe infections (9/17) and B cell abnormalities (either B cell lymphopenia [3/9], hypogammaglobulinemia [either IgG, IgA or IgM; 6/15] or impaired vaccine responses [4/7]) were frequently reported. Immunoglobulin replacement therapy was given in five patients. Full immunological assessment is warranted in these patients, who may require detailed investigation and specific supportive treatment.
Collapse
Affiliation(s)
- Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
| | - Fabiola Guerra
- Pediatria, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| | - Grazia Fazio
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Cristina Bugarin
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Akira Ohtake
- Department of Clinical Genomics & Pediatrics, Saitama Medical University, Moroyama, Saitama, Japan
| | - Anna Ardissone
- Child Neurology, "Fondazione IRCCS IstitutoNeurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gerarda Cappuccio
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
- Current address: Baylor College of Medicine, Houston, TX, USA
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Manuel Quadri
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Serena Gasperini
- Pediatria, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Daniele Moratto
- Flow Cytometry Unit, Clinical ChemistryLaboratory, ASST Spedali Civili, Brescia, Italy
| | - Marco Chiarini
- Flow Cytometry Unit, Clinical ChemistryLaboratory, ASST Spedali Civili, Brescia, Italy
| | - Ishiguro Akira
- Center for Postgraduate Education and Training, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Division of Hematology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Yasuyuki Fukuhara
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Itaru Hayakawa
- Division of Neurology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Yasushi Okazaki
- Division of Neurology, National Center for Child Health and Development (NCCHD), Tokyo, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Mario Mauri
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| | - Rocco Piazza
- Ematologia, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Gianni Cazzaniga
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Pediatria, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Zheng B, Yang Y, Chen L, Wu M, Zhou S. B-Cell Receptor Repertoire Sequencing: Deeper Digging into the Mechanisms and Clinical Aspects of Immune-mediated Diseases. iScience 2022; 25:105002. [PMID: 36157582 PMCID: PMC9494237 DOI: 10.1016/j.isci.2022.105002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
B cells play an essential role in adaptive immunity and are intimately correlated with pleiotropic immune-mediated diseases. Each B cell occupies a unique B cell receptor (BCR), and all BCRs throughout our body form “BCR repertoire.” With the development of sequencing technology and coupled bioinformatics, accumulating evidence indicates that BCR repertoire largely varies under physiological and pathological conditions. Therefore, comprehensive grasp of BCR repertoire will provide new insights into the pathogenesis of immune-mediated diseases and help exploit efficient diagnostic and treatment strategies. In this review, we start with an overview of BCR repertoire and related sequencing technologies and summarize their current applications in immune-mediated diseases. We also underscore the challenges of this emerging field and propose promising future directions in advancing BCR repertoire exploration.
Collapse
Affiliation(s)
- Bohao Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yuqing Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Lin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Corresponding author
| |
Collapse
|
3
|
Ravendran S, Hernández SS, König S, Bak RO. CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Front Genome Ed 2022; 4:793010. [PMID: 35373187 PMCID: PMC8969908 DOI: 10.3389/fgeed.2022.793010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Defects in the DOCK8 gene causes combined immunodeficiency termed DOCK8 immunodeficiency syndrome (DIDS). DIDS previously belonged to the disease category of autosomal recessive hyper IgE syndrome (AR-HIES) but is now classified as a combined immunodeficiency (CID). This genetic disorder induces early onset of susceptibility to severe recurrent viral and bacterial infections, atopic diseases and malignancy resulting in high morbidity and mortality. This pathological state arises from impairment of actin polymerization and cytoskeletal rearrangement, which induces improper immune cell migration-, survival-, and effector functions. Owing to the severity of the disease, early allogenic hematopoietic stem cell transplantation is recommended even though it is associated with risk of unintended adverse effects, the need for compatible donors, and high expenses. So far, no alternative therapies have been developed, but the monogenic recessive nature of the disease suggests that gene therapy may be applied. The advent of the CRISPR/Cas gene editing system heralds a new era of possibilities in precision gene therapy, and positive results from clinical trials have already suggested that the tool may provide definitive cures for several genetic disorders. Here, we discuss the potential application of different CRISPR/Cas-mediated genetic therapies to correct the DOCK8 gene. Our findings encourage the pursuit of CRISPR/Cas-based gene editing approaches, which may constitute more precise, affordable, and low-risk definitive treatment options for DOCK8 deficiency.
Collapse
Affiliation(s)
| | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Jacob M, Masood A, Shinwari Z, Abdel Jabbar M, Al-Mousa H, Arnaout R, AlSaud B, Dasouki M, Alaiya AA, Abdel Rahman AM. Proteomics Profiling to Distinguish DOCK8 Deficiency From Atopic Dermatitis. FRONTIERS IN ALLERGY 2021; 2:774902. [PMID: 35386989 PMCID: PMC8974780 DOI: 10.3389/falgy.2021.774902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 8 deficiency is an autosomal recessive primary immune deficiency disease belonging to the group of hyperimmunoglobulinemia E syndrome (HIES). The clinical phenotype of dedicator of cytokinesis 8 (DOCK8) deficiency, characterized by allergic manifestations, increased infections, and increased IgE levels, overlaps with the clinical presentation of atopic dermatitis (AD). Despite the identification of metabolomics and cytokine biomarkers, distinguishing between the two conditions remains clinically challenging. The present study used a label-free untargeted proteomics approach using liquid-chromatography mass spectrometry with network pathway analysis to identify the differentially regulated serum proteins and the associated metabolic pathways altered between the groups. Serum samples from DOCK8 (n = 10), AD (n = 9) patients and healthy control (Ctrl) groups (n = 5) were analyzed. Based on the proteomics profile, the PLS-DA score plot between the three groups showed a clear group separation and sample clustering (R2 = 0.957, Q2 = 0.732). Significantly differentially abundant proteins (p < 0.05, FC cut off 2) were identified between DOCK8-deficient and AD groups relative to Ctrl (n = 105, and n = 109) and between DOCK8-deficient and AD groups (n = 85). Venn diagram analysis revealed a differential regulation of 24 distinct proteins from among the 85 between DOCK8-deficient and AD groups, including claspin, haptoglobin-related protein, immunoglobulins, complement proteins, fibulin, and others. Receiver-operating characteristic curve (ROC) analysis identified claspin and haptoglobin-related protein, as potential biomarkers with the highest sensitivity and specificity (AUC = 1), capable of distinguishing between patients with DOCK8 deficiency and AD. Network pathway analysis between DOCK8-deficiency and AD groups revealed that the identified proteins centered around the dysregulation of ERK1/2 signaling pathway. Herein, proteomic profiling of DOCK8-deficiency and AD groups was carried out to determine alterations in the proteomic profiles and identify a panel of the potential proteomics biomarker with possible diagnostic applications. Distinguishing between DOCK8-deficiency and AD will help in the early initiation of treatment and preventing complications.
Collapse
Affiliation(s)
- Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Zakiya Shinwari
- Proteomics Unit, Stem-Cell and Tissue Re-engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mai Abdel Jabbar
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rand Arnaout
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bandar AlSaud
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Majed Dasouki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ayodele A. Alaiya
- Proteomics Unit, Stem-Cell and Tissue Re-engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
- *Correspondence: Anas M. Abdel Rahman
| |
Collapse
|