1
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
2
|
Piotrowska-Nowak A, Safranow K, Adamczyk JG, Sołtyszewski I, Cięszczyk P, Tońska K, Żekanowski C, Borzemska B. Mitochondrial Genome Variation in Polish Elite Athletes. Int J Mol Sci 2023; 24:12992. [PMID: 37629173 PMCID: PMC10454803 DOI: 10.3390/ijms241612992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Energy efficiency is one of the fundamental athletic performance-affecting features of the cell and the organism as a whole. Mitochondrial DNA (mtDNA) variants and haplogroups have been linked to the successful practice of various sports, but despite numerous studies, understanding of the correlation is far from being comprehensive. In this study, the mtDNA sequence and copy number were determined for 99 outstanding Polish male athletes performing in power (n = 52) or endurance sports (n = 47) and 100 controls. The distribution of haplogroups, single nucleotide variant association, heteroplasmy, and mtDNA copy number were analyzed in the blood and saliva. We found no correlation between any haplogroup, single nucleotide variant, especially rare or non-synonymous ones, and athletic performance. Interestingly, heteroplasmy was less frequent in the study group, especially in endurance athletes. We observed a lower mtDNA copy number in both power and endurance athletes compared to controls. This could result from an inactivity of compensatory mechanisms activated by disadvantageous variants present in the general population and indicates a favorable genetic makeup of the athletes. The results emphasize a need for a more comprehensive analysis of the involvement of the mitochondrial genome in physical performance, combining nucleotide and copy number analysis in the context of nuclear gene variants.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warszawa, Poland; (A.P.-N.); (K.T.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Jakub G. Adamczyk
- Department of Theory of Sport, Józef Piłsudski University of Physical Education, Marymoncka 34 Street, 00-968 Warszawa, Poland;
| | - Ireneusz Sołtyszewski
- Department of Forensic Medicine, Medical University of Warsaw, Oczki 1 Street, 02-007 Warszawa, Poland;
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 5a Pawińskiego Street, 02-106 Warszawa, Poland; (A.P.-N.); (K.T.)
| | - Cezary Żekanowski
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Street, 02-106 Warszawa, Poland
| | - Beata Borzemska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| |
Collapse
|
3
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
4
|
Martel-Pelletier J, Pelletier JP. Is there a mitochondrial DNA haplogroup connection between osteoarthritis and elite athletes? A narrative review. RMD Open 2022; 8:rmdopen-2022-002602. [PMID: 36113964 PMCID: PMC9486370 DOI: 10.1136/rmdopen-2022-002602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Elite athletes are at greater risk of joint injuries linked to the subsequent risk of developing osteoarthritis (OA). Genetic factors such as mitochondrial (mt) DNA haplogroups have been associated with the incidence/progression of OA and athletic performance. This review highlights an area not yet addressed: is there a common pattern in the mtDNA haplogroups for OA occurrence in individuals and elite athletes of populations of the same descent? Haplotypes J and T confer a decreased risk of OA in Caucasian/European descent, while H and U increase this risk. Both J and T haplogroups are under-represented in Caucasian/European individuals and endurance athletes with OA, but power athletes showed a greater percentage of the J haplogroup. Caucasian/European endurance athletes had a higher percentage of haplogroup H, which is associated with increased athletic performance. In a Chinese population, haplogroup G appears to increase OA susceptibility and is over-represented in Japanese endurance athletes. In contrast, in Koreans, haplogroup B had a higher frequency of individuals with OA but was under-represented in the endurance athlete population. For Caucasian endurance athletes, it would be interesting to evaluate if those carrying haplotype H would be at an increased risk of accelerated OA, as well as the haplogroup G in Chinese and Japanese endurance athletes. The reverse might be studied for the Korean descent for haplogroup B. Knowledge of such genetic data could be used as a preliminary diagnosis to identify individuals at high risk of OA, adding prognostic information and assisting in personalising the early management of both populations.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
5
|
Mitochondrial mutations alter endurance exercise response and determinants in mice. Proc Natl Acad Sci U S A 2022; 119:e2200549119. [PMID: 35482926 PMCID: PMC9170171 DOI: 10.1073/pnas.2200549119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Primary mitochondrial diseases (PMDs) are the most prevalent inborn metabolic disorders, affecting an estimated 1 in 4,200 individuals. Endurance exercise is generally known to improve mitochondrial function, but its indication in the heterogeneous group of PMDs is unclear. We determined the relationship between mitochondrial mutations, endurance exercise response, and the underlying molecular pathways in mice with distinct mitochondrial mutations. This revealed that mitochondria are crucial regulators of exercise capacity and exercise response. Endurance exercise proved to be mostly beneficial across the different mitochondrial mutant mice with the exception of a worsened dilated cardiomyopathy in ANT1-deficient mice. Thus, therapeutic exercises, especially in patients with PMDs, should take into account the physical and mitochondrial genetic status of the patient. Primary mitochondrial diseases (PMDs) are a heterogeneous group of metabolic disorders that can be caused by hundreds of mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes. Current therapeutic approaches are limited, although one approach has been exercise training. Endurance exercise is known to improve mitochondrial function in heathy subjects and reduce risk for secondary metabolic disorders such as diabetes or neurodegenerative disorders. However, in PMDs the benefit of endurance exercise is unclear, and exercise might be beneficial for some mitochondrial disorders but contraindicated in others. Here we investigate the effect of an endurance exercise regimen in mouse models for PMDs harboring distinct mitochondrial mutations. We show that while an mtDNA ND6 mutation in complex I demonstrated improvement in response to exercise, mice with a CO1 mutation affecting complex IV showed significantly fewer positive effects, and mice with an ND5 complex I mutation did not respond to exercise at all. For mice deficient in the nDNA adenine nucleotide translocase 1 (Ant1), endurance exercise actually worsened the dilated cardiomyopathy. Correlating the gene expression profile of skeletal muscle and heart with the physiologic exercise response identified oxidative phosphorylation, amino acid metabolism, matrisome (extracellular matrix [ECM]) structure, and cell cycle regulation as key pathways in the exercise response. This emphasizes the crucial role of mitochondria in determining the exercise capacity and exercise response. Consequently, the benefit of endurance exercise in PMDs strongly depends on the underlying mutation, although our results suggest a general beneficial effect.
Collapse
|
6
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
7
|
Gajda R, Samełko A, Czuba M, Piotrowska-Nowak A, Tońska K, Żekanowski C, Klisiewicz A, Drygas W, Gębska-Kuczerowska A, Gajda J, Knechtle B, Adamczyk JG. To Be a Champion of the 24-h Ultramarathon Race. If Not the Heart ... Mosaic Theory? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052371. [PMID: 33804352 PMCID: PMC7957735 DOI: 10.3390/ijerph18052371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
This comprehensive case analysis aimed to identify the features enabling a runner to achieve championship in 24-h ultramarathon (UM) races. A 36-year-old, multiple medalist of the World Championships in 24-h running, was assessed before, one and 10 days after a 24-h run. Results of his extensive laboratory and cardiological diagnostics with transthoracic echocardiography (TTE) and a one-time cardiopulmonary exercise test (CPET) were analyzed. After 12 h of running (approximately 130 km), the athlete experienced an increasing pain in the right knee. His baseline clinical data were within the normal range. High physical efficiency in CPET (VO2max 63 mL/kg/min) was similar to the average achieved by other ultramarathoners who had significantly worse results. Thus, we also performed genetic tests and assessed his psychological profile, body composition, and markers of physical and mental stress (serotonin, cortisol, epinephrine, prolactin, testosterone, and luteinizing hormone). The athlete had a mtDNA haplogroup H (HV0a1 subgroup, belonging to the HV cluster), characteristic of athletes with the highest endurance. Psychological studies have shown high and very high intensity of the properties of individual scales of the tools used mental resilience (62–100% depending on the scale), openness to experience (10th sten), coherence (10th sten), positive perfectionism (100%) and overall hope for success score (10th sten). The athlete himself considers the commitment and mental support of his team to be a significant factor of his success. Body composition assessment (%fat 13.9) and the level of stress markers were unremarkable. The tested athlete showed a number of features of the champions of ultramarathon runs, such as: inborn predispositions, mental traits, level of training, and resistance to pain. However, none of these features are reserved exclusively for “champions”. Team support’s participation cannot be underestimated. The factors that guarantee the success of this elite 24-h UM runner go far beyond physiological and psychological explanations. Further studies are needed to identify individual elements of the putative “mosaic theory of being a champion”.
Collapse
Affiliation(s)
- Robert Gajda
- Center for Sports Cardiology, Gajda-Med Medical Center in Pułtusk, 06-100 Pułtusk, Poland;
- Correspondence: ; Tel.: +48-604286030
| | - Aleksandra Samełko
- Department of Pedagogy and Psychology of Physical Culture, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka St. 34, 00-968 Warsaw, Poland;
| | - Miłosz Czuba
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty St., 65-417 Zielona Gora, Poland;
- Department of Kinesiology, Institute of Sport, 2 Trylogii St., 01-982 Warsaw, Poland
| | - Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, 02-106 Warsaw, Poland; (A.P.-N.); (K.T.)
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, 02-106 Warsaw, Poland; (A.P.-N.); (K.T.)
| | - Cezary Żekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawinskiego 5, 02-106 Warszawa, Poland;
| | - Anna Klisiewicz
- The Cardinal Stefan Wyszyński National Institute of Cardiology, ul. Alpejska 42, 04-628 Warszawa, Poland; (A.K.); (W.D.)
| | - Wojciech Drygas
- The Cardinal Stefan Wyszyński National Institute of Cardiology, ul. Alpejska 42, 04-628 Warszawa, Poland; (A.K.); (W.D.)
- Department of Preventive Medicine, Faculty of Health, Medical University of Lodz, ul. Lucjana Żeligowskiego 7/9, 90-752 Łódź, Poland
| | - Anita Gębska-Kuczerowska
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Jacek Gajda
- Center for Sports Cardiology, Gajda-Med Medical Center in Pułtusk, 06-100 Pułtusk, Poland;
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland;
- Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland
| | - Jakub Grzegorz Adamczyk
- Department of Theory of Sport, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka St. 34, 00-968 Warsaw, Poland;
| |
Collapse
|
8
|
Kiiskilä J, Jokelainen J, Kytövuori L, Mikkola I, Härkönen P, Keinänen-Kiukaanniemi S, Majamaa K. Association of mitochondrial DNA haplogroups J and K with low response in exercise training among Finnish military conscripts. BMC Genomics 2021; 22:75. [PMID: 33482721 PMCID: PMC7821635 DOI: 10.1186/s12864-021-07383-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background We have previously suggested that some of the mutations defining mitochondrial DNA (mtDNA) haplogroups J and K produce an uncoupling effect on oxidative phosphorylation and thus are detrimental for elite endurance performance. Here, the association between haplogroups J and K and physical performance was determined in a population-based cohort of 1036 Finnish military conscripts. Results Following a standard-dose training period, excellence in endurance performance was less frequent among subjects with haplogroups J or K than among subjects with non-JK haplogroups (p = 0.041), and this finding was more apparent among the best-performing subjects (p < 0.001). Conclusions These results suggest that mtDNA haplogroups are one of the genetic determinants explaining individual variability in the adaptive response to endurance training, and mtDNA haplogroups J and K are markers of low-responders in exercise training. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07383-x.
Collapse
Affiliation(s)
- Jukka Kiiskilä
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland.
| | - Jari Jokelainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | | | - Pirjo Härkönen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland.,Healthcare and Social Services of Selänne, Pyhäjärvi, Finland
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
9
|
Erlandson KM, Bradford Y, Samuels DC, Brown TT, Sun J, Wu K, Tassiopoulos K, Ritchie MD, Haas DW, Hulgan T. Mitochondrial DNA Haplogroups and Frailty in Adults Living with HIV. AIDS Res Hum Retroviruses 2020; 36:214-219. [PMID: 31822125 DOI: 10.1089/aid.2019.0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroup has been associated with disease risk and longevity. Among persons with HIV (PWH), mtDNA haplogroup has been associated with AIDS progression, neuropathy, cognitive impairment, and gait speed decline. We sought to determine whether haplogroup is associated with frailty and its components among older PWH. A cross-sectional analysis was performed of AIDS Clinical Trials Group A5322 (HAILO) participants with available genome-wide genotype and frailty assessments. Multivariable logistic regression models adjusted for age, gender, education, smoking, hepatitis C, and prior use of didanosine/stavudine. Among 634 participants, 81% were male, 49% non-Hispanic white, 31% non-Hispanic black, and 20% Hispanic. Mean age was 51.0 (standard deviation 7.5) years and median nadir CD4 count was 212 (interquartile range 72, 324) cells/μL; 6% were frail, 7% had slow gait, and 21% weak grip. H haplogroup participants were more likely to be frail/prefrail (p = .064), have slow gait (p = .09), or weak grip (p = .017) compared with non-H haplogroup participants (not all comparisons reached statistical significance). In adjusted analyses, PWH with haplogroup H had a greater odds of being frail versus nonfrail [odds ratio (OR) 4.0 (95% confidence interval 1.0-15.4)] and having weak grip [OR 2.1 (1.1, 4.1)], but not slow gait [OR 1.6 (0.5, 5.0)] compared with non-H haplogroup. Among black and Hispanic participants, haplogroup was not significantly associated with frailty, grip, or gait. Among antiretroviral therapy (ART)-treated PWH, mtDNA haplogroup H was independently associated with weak grip and frailty. This association could represent a mechanism of weakness and frailty in the setting of HIV and ART.
Collapse
Affiliation(s)
- Kristine M. Erlandson
- Division of Infectious Diseases, Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David C. Samuels
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Todd T. Brown
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jing Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Kunling Wu
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Katherine Tassiopoulos
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David W. Haas
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Internal Medicine, Meharry Medical College, Nashville, Tennessee
| | - Todd Hulgan
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
10
|
Kiiskilä J, Moilanen JS, Kytövuori L, Niemi AK, Majamaa K. Analysis of functional variants in mitochondrial DNA of Finnish athletes. BMC Genomics 2019; 20:784. [PMID: 31664900 PMCID: PMC6819560 DOI: 10.1186/s12864-019-6171-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/04/2019] [Indexed: 11/15/2022] Open
Abstract
Background We have previously reported on paucity of mitochondrial DNA (mtDNA) haplogroups J and K among Finnish endurance athletes. Here we aimed to further explore differences in mtDNA variants between elite endurance and sprint athletes. For this purpose, we determined the rate of functional variants and the mutational load in mtDNA of Finnish athletes (n = 141) and controls (n = 77) and determined the sequence variation in haplogroups. Results The distribution of rare and common functional variants differed between endurance athletes, sprint athletes and the controls (p = 0.04) so that rare variants occurred at a higher frequency among endurance athletes. Furthermore, the ratio between rare and common functional variants in haplogroups J and K was 0.42 of that in the remaining haplogroups (p = 0.0005). The subjects with haplogroup J and K also showed a higher mean level of nonsynonymous mutational load attributed to common variants than subjects with the other haplogroups. Interestingly, two of the rare variants detected in the sprint athletes were the disease-causing mutations m.3243A > G in MT-TL1 and m.1555A > G in MT-RNR1. Conclusions We propose that endurance athletes harbor an excess of rare mtDNA variants that may be beneficial for oxidative phosphorylation, while sprint athletes may tolerate deleterious mtDNA variants that have detrimental effect on oxidative phosphorylation system. Some of the nonsynonymous mutations defining haplogroup J and K may produce an uncoupling effect on oxidative phosphorylation thus favoring sprint rather than endurance performance.
Collapse
Affiliation(s)
- Jukka Kiiskilä
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland.
| | - Jukka S Moilanen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Anna-Kaisa Niemi
- Division of Neonatology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
11
|
Meta-analyses of the association between the PPARGC1A Gly482Ser polymorphism and athletic performance. Biol Sport 2019; 36:301-309. [PMID: 31938000 PMCID: PMC6945052 DOI: 10.5114/biolsport.2019.88752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/22/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) encoded by the PPARGC1A gene is a vital regulator of glucose and fatty acid oxidation, mitochondrial biogenesis, and skeletal muscle fibre conversion. Several studies have investigated the association between PPARGC1A Gly482Ser polymorphism and athletic performance in humans. However, the results were contradictory. In the present study, two meta-analyses were performed to assess the association between the Gly482Ser polymorphism and endurance or power athletic performance to resolve this inconsistency. Ten articles were identified, including a total of 3,708 athletes and 6,228 controls. Higher frequencies of the Gly/Gly genotype (OR, 1.26; 95% CI, 1.11-1.42) and the Gly allele (OR, 1.29; 95% CI, 1.09-1.52) were observed in Caucasian endurance athletes. Furthermore, higher incidences of the Gly/Gly genotype (OR, 1.30; 95% CI, 1.16-1.46) and the Gly allele (OR, 1.22; 95% CI, 1.12-1.33) were observed in power athletes compared to controls. This finding demonstrates that the Gly/Gly genotype and the Gly allele of the PPARGC1A Gly482Ser polymorphism may facilitate athletic performance regardless of the type of sport, as well as providing solid evidence to support the possible influence of genetic factors on human athletic performance.
Collapse
|
12
|
Is mitochondrial DNA profiling predictive for athletic performance? Mitochondrion 2019; 47:125-138. [PMID: 31228565 DOI: 10.1016/j.mito.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA encodes some proteins of the oxidative phosphorylation enzymatic complex, playing an important role in aerobic ATP production; therefore, it can contribute to the ability to respond to endurance exercise training. The accumulation of mitochondrial mutations and the migratory processes of populations have given a great contribution to the development of haplogroups with a different distribution in the world. Several studies have shown the important role of gene polymorphisms in aerobic performance. In this review, some mitochondrial haplogroups and multiple rare alleles were taken into consideration and could be linked to the athlete's physical performance of different ethnic groups.
Collapse
|
13
|
Hwang IW, Kim K, Choi EJ, Jin HJ. Association of mitochondrial haplogroup F with physical performance in Korean population. Genomics Inform 2019; 17:e11. [PMID: 30929412 PMCID: PMC6459174 DOI: 10.5808/gi.2019.17.1.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Athletic performance is a complex multifactorial trait involving genetic and
environmental factors. The heritability of an athlete status was reported to be
about 70% in a twin study, and at least 155 genetic markers are known to be
related with athlete status. Mitochondrial DNA (mtDNA) encodes essential
proteins for oxidative phosphorylation, which is related to aerobic capacity.
Thus, mtDNA is a candidate marker for determining physical performance. Recent
studies have suggested that polymorphisms of mtDNA are associated with athlete
status and/or physical performance in various populations. Therefore, we
analyzed mtDNA haplogroups to assess their association with the physical
performance of Korean population. The 20 mtDNA haplogroups were determined using
the SNaPshot assay. Our result showed a significant association of the
haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval,
1.094 to 8.464; p = 0.012). Athletes with haplogroup F (60.64 ±
3.04) also demonstrated a higher Sargent jump than athletes with other
haplogroups (54.28 ± 1.23) (p = 0.041). Thus, our data imply
that haplogroup F may play a crucial role in the physical performance of Korean
athletes. Functional studies with larger sample sizes are necessary to further
substantiate these findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Kicheol Kim
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Eun Ji Choi
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
14
|
Association of PPARGC1A Gly428Ser (rs8192678) polymorphism with potential for athletic ability and sports performance: A meta-analysis. PLoS One 2019; 14:e0200967. [PMID: 30625151 PMCID: PMC6326506 DOI: 10.1371/journal.pone.0200967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background Genetics plays a role in determining potential for athletic ability (AA) and sports performance (SP). In this study, AA involves comparing sedentary controls with competitive athletes in power and endurance activities as well as a mix between the two (SP). However, variable results from genetic association studies warrant a meta-analysis to obtain more precise estimates of the association between PPARGC1A Gly482Ser polymorphism and AA/SP. Methods Multi-database literature search yielded 14 articles (16 studies) for inclusion. Pooled odds ratios (ORs) and 95% confidence intervals (CI) were used to estimate associations. Summary effects were modified based on statistical power. Subgroup analysis was based on SP (power, endurance and mixed) and race (Caucasians and Asians). Heterogeneity was assessed with the I2 metric and its sources examined with outlier analysis which dichotomized our findings into pre- (PRO) and post-outlier (PSO). Results Gly allele effects significantly favoring AA/SP (OR > 1.0, P < 0.05) form the core of our findings in: (i) homogeneous overall effect at the post-modified, PSO level (OR 1.13, 95% CI 1.03–1.25, P = 0.01, I2 = 0%); (ii) initially homogeneous power SP (ORs 1.22–1.25, 95% CI 1.05–1.44, P = 0.003–0.008, I2 = 0%) which precluded outlier treatment; (iii) PRO Caucasian outcomes (ORs 1.29–1.32, 95% CI 1.12–1.54, P = 0.0005) over that of Asians with a pooled null effect (OR 0.99, 95% CI 0.72–1.99, P = 0.53–0.92) and (iv) homogeneous all > 80% (ORs 1.19–1.38, 95% CI 1.05–1.66, P = 0.0007–0.007, I2 = 0%) on account of high statistical power (both study-specific and combined). In contrast, none of the Ser allele effects significantly favored AA/SP and no Ser-Gly genotype outcome favored AA/SP. The core significant outcomes were robust and showed no evidence of publication bias. Conclusion Meta-analytical applications in this study generated evidence that show association between the Gly allele and AA/SP. These were observed in the overall, Caucasians and statistically powered comparisons which exhibited consistent significance, stability, robustness, precision and lack of bias. Our central findings rest on association of the Gly allele with endurance and power, differentially favoring the latter over the former.
Collapse
|
15
|
Kramer P, Bressan P. Mitochondria Inspire a Lifestyle. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2019; 231:105-126. [PMID: 30610376 DOI: 10.1007/102_2018_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tucked inside our cells, we animals (and plants, and fungi) carry mitochondria, minuscule descendants of bacteria that invaded our common ancestor 2 billion years ago. This unplanned breakthrough endowed our ancestors with a convenient, portable source of energy, enabling them to progress towards more ambitious forms of life. Mitochondria still manufacture most of our energy; we have evolved to invest it to grow and produce offspring, and to last long enough to make it all happen. Yet because the continuous generation of energy is inevitably linked to that of toxic free radicals, mitochondria give us life and give us death. Stripping away clutter and minutiae, here we present a big-picture perspective of how mitochondria work, how they are passed on virtually only by mothers, and how they shape the lifestyles of species and individuals. We discuss why restricting food prolongs lifespan, why reproducing shortens it, and why moving about protects us from free radicals despite increasing their production. We show that our immune cells use special mitochondria to keep control over our gut microbes. And we lay out how the fabrication of energy and free radicals sets the internal clocks that command our everyday rhythms-waking, eating, sleeping. Mitochondria run the show.
Collapse
Affiliation(s)
- Peter Kramer
- Dipartimento di Psicologia Generale, University of Padova, Padova, Italy
| | - Paola Bressan
- Dipartimento di Psicologia Generale, University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Wone BWM, Yim WC, Schutz H, Meek TH, Garland T. Mitochondrial haplotypes are not associated with mice selectively bred for high voluntary wheel running. Mitochondrion 2018; 46:134-139. [PMID: 29626644 DOI: 10.1016/j.mito.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
Mitochondrial haplotypes have been associated with human and rodent phenotypes, including nonshivering thermogenesis capacity, learning capability, and disease risk. Although the mammalian mitochondrial D-loop is highly polymorphic, D-loops in laboratory mice are identical, and variation occurs elsewhere mainly between nucleotides 9820 and 9830. Part of this region codes for the tRNAArg gene and is associated with mitochondrial densities and number of mtDNA copies. We hypothesized that the capacity for high levels of voluntary wheel-running behavior would be associated with mitochondrial haplotype. Here, we analyzed the mtDNA polymorphic region in mice from each of four replicate lines selectively bred for 54 generations for high voluntary wheel running (HR) and from four control lines (Control) randomly bred for 54 generations. Sequencing the polymorphic region revealed a variable number of adenine repeats. Single nucleotide polymorphisms (SNPs) varied from 2 to 3 adenine insertions, resulting in three haplotypes. We found significant genetic differentiations between the HR and Control groups (Fst = 0.779, p ≤ 0.0001), as well as among the replicate lines of mice within groups (Fsc = 0.757, p ≤ 0.0001). Haplotypes, however, were not strongly associated with voluntary wheel running (revolutions run per day), nor with either body mass or litter size. This system provides a useful experimental model to dissect the physiological processes linking mitochondrial, genomic SNPs, epigenetics, or nuclear-mitochondrial cross-talk to exercise activity.
Collapse
Affiliation(s)
- Bernard W M Wone
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; Department of Biology, University of South Dakota, Vermillion, SD 57069, USA.
| | - Won C Yim
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Heidi Schutz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; Biology Department, Pacific Lutheran University, Tacoma, WA 98447, USA
| | - Thomas H Meek
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; In Vivo Pharmacology Research Unit, Novo Nordisk, Seattle, WA 98109, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
17
|
San-Millán I, Brooks GA. Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals. Sports Med 2017. [DOI: 10.1007/s40279-017-0751-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Clark A, Mach N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front Physiol 2017; 8:319. [PMID: 28579962 PMCID: PMC5437217 DOI: 10.3389/fphys.2017.00319] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
Many physiological changes occur in response to endurance exercise in order to adapt to the increasing energy needs, mitochondria biogenesis, increased reactive oxygen species (ROS) production and acute inflammatory responses. Mitochondria are organelles within each cell that are crucial for ATP production and are also a major producer of ROS and reactive nitrogen species during intense exercise. Recent evidence shows there is a bidirectional interaction between mitochondria and microbiota. The gut microbiota have been shown to regulate key transcriptional co-activators, transcription factors and enzymes involved in mitochondrial biogenesis such as PGC-1α, SIRT1, and AMPK genes. Furthermore, the gut microbiota and its metabolites, such as short chain fatty acids and secondary bile acids, also contribute to host energy production, ROS modulation and inflammation in the gut by attenuating TNFα- mediated immune responses and inflammasomes such as NLRP3. On the other hand, mitochondria, particularly mitochondrial ROS production, have a crucial role in regulating the gut microbiota via modulating intestinal barrier function and mucosal immune responses. Recently, it has also been shown that genetic variants within the mitochondrial genome, could affect mitochondrial function and therefore the intestinal microbiota composition and activity. Diet is also known to dramatically modulate the composition of the gut microbiota. Therefore, studies targeting the gut microbiota can be useful for managing mitochondrial related ROS production, pro-inflammatory signals and metabolic limits in endurance athletes.
Collapse
Affiliation(s)
- Allison Clark
- Health Science Department, Open University of CataloniaBarcelona, Spain
| | - Núria Mach
- Health Science Department, Open University of CataloniaBarcelona, Spain.,UMR 1313, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
19
|
MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association. Sci Rep 2017; 7:43449. [PMID: 28230165 PMCID: PMC5322532 DOI: 10.1038/srep43449] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Human mtDNA genetic variants have traditionally been considered markers for ancient population migrations. However, during the past three decades, these variants have been associated with altered susceptibility to various phenotypes, thus supporting their importance for human health. Nevertheless, mtDNA disease association has frequently been supported only in certain populations, due either to population stratification or differential epistatic compensations among populations. To partially overcome these obstacles, we performed meta-analysis of the multiple mtDNA association studies conducted until 2016, encompassing 53,975 patients and 63,323 controls. Our findings support the association of mtDNA haplogroups and recurrent variants with specific phenotypes such as Parkinson’s disease, type 2 diabetes, longevity, and breast cancer. Strikingly, our assessment of mtDNA variants’ involvement with multiple phenotypes revealed significant impact for Caucasian haplogroups H, J, and K. Therefore, ancient mtDNA variants could be divided into those that affect specific phenotypes, versus others with a general impact on phenotype combinations. We suggest that the mtDNA could serve as a model for phenotype specificity versus allele heterogeneity.
Collapse
|
20
|
Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion 2016; 30:105-16. [PMID: 27423788 PMCID: PMC5023480 DOI: 10.1016/j.mito.2016.07.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022]
Abstract
Once considered exclusively the cell's powerhouse, mitochondria are now recognized to perform multiple essential functions beyond energy production, impacting most areas of cell biology and medicine. Since the emergence of molecular biology and the discovery of pathogenic mitochondrial DNA defects in the 1980's, research advances have revealed a number of common human diseases which share an underlying pathogenesis involving mitochondrial dysfunction. Mitochondria undergo function-defining dynamic shape changes, communicate with each other, regulate gene expression within the nucleus, modulate synaptic transmission within the brain, release molecules that contribute to oncogenic transformation and trigger inflammatory responses systemically, and influence the regulation of complex physiological systems. Novel mitopathogenic mechanisms are thus being uncovered across a number of medical disciplines including genetics, oncology, neurology, immunology, and critical care medicine. Increasing knowledge of the bioenergetic aspects of human disease has provided new opportunities for diagnosis, therapy, prevention, and in connecting various domains of medicine. In this article, we overview specific aspects of mitochondrial biology that have contributed to - and likely will continue to enhance the progress of modern medicine.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA; Department of Neurology and CTNI, H Houston Merritt Center, Columbia University Medical Center, New York, NY, USA.
| | - Douglas C Wallace
- The Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Burelle
- Faculty of Pharmacy, Université de Montreal, Montreal, QC, Canada
| |
Collapse
|
21
|
Peplonska B, Adamczyk JG, Siewierski M, Safranow K, Maruszak A, Sozanski H, Gajewski AK, Zekanowski C. Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scand J Med Sci Sports 2016; 27:788-800. [PMID: 27140937 DOI: 10.1111/sms.12687] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/28/2022]
Abstract
The aim of the study was to assess whether selected genetic variants are associated with elite athlete performance in a group of 413 elite athletes and 451 sedentary controls. Polymorphisms in ACE, ACTN3, AGT, NRF-2, PGC1A, PPARG, and TFAM implicated in physical performance traits were analyzed. Additionally, polymorphisms in CHRNB3 and FAAH coding for proteins modulating activity of brain's emotion centers were included. The results of univariate analyses indicated that the elite athletic performance is associated with four polymorphisms: ACE (rs4341, P = 0.0095), NRF-2 (rs12594956, P = 0.011), TFAM (rs2306604, P = 0.049), and FAAH (rs324420, P = 0.0041). The multivariate analysis adjusted for age and gender confirmed this association. The higher number of ACE D alleles (P = 0.0021) and the presence of NRF-2 rs12594956 A allele (P = 0.0067) are positive predictors, whereas TFAM rs2306604 GG genotype (P = 0.031) and FAAH rs324420 AA genotype (P = 0.0084) negatively affect the elite athletic performance. The CHRNB3 variant (rs4950, G allele) is significantly more frequent in the endurance athletes compared with the power ones (P = 0.025). Multivariate analysis demonstrated that the presence of rs4950 G allele contributes to endurance performance (P = 0.0047). Our results suggest that genetic inheritance of psychological traits should be taken into consideration while trying to decipher a genetic profile of top athletic performance.
Collapse
Affiliation(s)
- B Peplonska
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - J G Adamczyk
- Department of Sport's Theory, Jozef Pilsudski University of Physical Education in Warsaw, Warszawa, Poland.,Department of Rehabilitation, Physiotherapy Division, Medical University of Warsaw, Warszawa, Poland
| | - M Siewierski
- Department of Sport's Theory, Jozef Pilsudski University of Physical Education in Warsaw, Warszawa, Poland
| | - K Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - A Maruszak
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - H Sozanski
- Department of Sport's Theory, Jozef Pilsudski University of Physical Education in Warsaw, Warszawa, Poland
| | - A K Gajewski
- Department of Sport's Theory, Jozef Pilsudski University of Physical Education in Warsaw, Warszawa, Poland
| | - C Zekanowski
- Department of Sport's Theory, Jozef Pilsudski University of Physical Education in Warsaw, Warszawa, Poland
| |
Collapse
|
22
|
Santos CGM, Pimentel-Coelho PM, Budowle B, de Moura-Neto RS, Dornelas-Ribeiro M, Pompeu FAMS, Silva R. The heritable path of human physical performance: from single polymorphisms to the "next generation". Scand J Med Sci Sports 2015; 26:600-12. [PMID: 26147924 DOI: 10.1111/sms.12503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2015] [Indexed: 12/22/2022]
Abstract
Human physical performance is a complex multifactorial trait. Historically, environmental factors (e.g., diet, training) alone have been unable to explain the basis of all prominent phenotypes for physical performance. Therefore, there has been an interest in the study of the contribution of genetic factors to the development of these phenotypes. Support for a genetic component is found with studies that shown that monozygotic twins were more similar than were dizygotic twins for many physiological traits. The evolution of molecular techniques and the ability to scan the entire human genome enabled association of several genetic polymorphisms with performance. However, some biases related to the selection of cohorts and inadequate definition of the study variables have complicated the already difficult task of studying such a large and polymorphic genome, often resulting in inconsistent results about the influence of candidate genes. This review aims to provide a critical overview of heritable genetic aspects. Novel molecular technologies, such as next-generation sequencing, are discussed and how they can contribute to improving understanding of the molecular basis for athletic performance. It is important to ensure that the large amount of data that can be generated using these tools will be used effectively by ensuring well-designed studies.
Collapse
Affiliation(s)
- C G M Santos
- Instituto de Biologia do Exército, Brazillian Army Biologic Institute, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P M Pimentel-Coelho
- Instituto de Biologia do Exército, Brazillian Army Biologic Institute, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - B Budowle
- Molecular and Medical Genetics, University of North Texas - Health and Science Center, Fort Worth, Texas, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - R S de Moura-Neto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Dornelas-Ribeiro
- Instituto de Biologia do Exército, Brazillian Army Biologic Institute, Rio de Janeiro, Brazil
| | - F A M S Pompeu
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|