1
|
Herranen P, Waller K, Joensuu L, Palviainen T, Laakkonen EK, Kaprio J, Sillanpää E. Genetic Liability to Higher Muscle Strength Associates With a Lower Risk of Cardiovascular Disease Mortality in Men Irrespective of Leisure-Time Physical Activity in Adulthood: A Longitudinal Cohort Study. J Am Heart Assoc 2025; 14:e036941. [PMID: 40240949 DOI: 10.1161/jaha.124.036941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/20/2024] [Indexed: 04/18/2025]
Abstract
BACKGROUND Low muscle strength predicts premature mortality. We determined whether genetic liability to muscle strength is associated with mortality and whether this association is influenced by long-term leisure-time physical activity (LTPA). METHODS AND RESULTS We estimated the effects of a polygenic score for handgrip strength (PGS HGS) on all-cause and cardiovascular disease (CVD) mortality risk in the older Finnish Twin Cohort (N=8815, 53% women). LTPA was assessed longitudinally using validated questionnaires. During the 16.9-year median follow-up (143 723 person-years), 2896 deaths occurred, of which 1089 were attributable to CVD. We found a significant interaction between sex and PGS HGS (P=0.016) in relation to all-cause mortality. In men, 1-SD increase in the PGS HGS was associated with a decreased risk of all-cause (hazard ratio [HR], 0.93 [95% CI, 0.89-0.98]) and CVD mortality (HR, 0.88 [95% CI, 0.81-0.96]), but was not statistically significantly associated with mortality in women (HR, 1.01 [95% CI, 0.96-1.07]; and HR, 0.96 [95% CI, 0.87-1.05], respectively). In men, associations remained after adjusting for LTPA and persisted for CVD mortality (HR, 0.85 [95% CI, 0.76-0.96]), even after accounting for other lifestyle covariates. This remained statistically significant even when non-CVD death was accounted for as a competing risk event. No PGS HGS×LTPA interactions were found. The predictive area under the curve estimates for PGS HGS alone were limited (0.53-0.64) but comparable to that of several lifestyle factors. CONCLUSIONS Higher PGS HGS was associated with a decreased risk of CVD mortality in men. Long-term LTPA in adulthood did not potentiate this association.
Collapse
Affiliation(s)
- Päivi Herranen
- Faculty of Sport and Health Sciences, Gerontology Research Center University of Jyväskylä Finland
| | - Katja Waller
- Faculty of Sport and Health Sciences, Gerontology Research Center University of Jyväskylä Finland
| | - Laura Joensuu
- Faculty of Sport and Health Sciences, Gerontology Research Center University of Jyväskylä Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland, HiLife Helsinki Finland
| | - Eija K Laakkonen
- Faculty of Sport and Health Sciences, Gerontology Research Center University of Jyväskylä Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, HiLife Helsinki Finland
| | - Elina Sillanpää
- Faculty of Sport and Health Sciences, Gerontology Research Center University of Jyväskylä Finland
- Wellbeing Services County of Central Finland Hankasalmi Finland
| |
Collapse
|
2
|
Psatha A, Mitropoulou C, Patrinos GP. Genomics and athletic performance: an emerging discipline that is not yet ready for society. Hum Genomics 2025; 19:40. [PMID: 40221803 PMCID: PMC11994017 DOI: 10.1186/s40246-025-00751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Genomics of athletic performance is an emerging discipline with a high degree of controversy. With the existing level of evidence, it is both premature and highly risky to exploit current human genomics knowledge to predict exercise and sports performance or enhance existing training methodologies. Until more solid evidence on the influence of genomic variants in athletic performance becomes available, accompanied by regulatory approved genome-guided recommendations, all genetic associations should be restricted from general public access as commercial services, since genomic markers cannot per se predict athletic performance for talent identification, resistance to injuries or the ability to recover from them. Evidently, the complex interplay of genetics with other physical, physiological and even psychological and mental characteristics to produce a world-class athlete is still not understood.
Collapse
Affiliation(s)
- Aikaterini Psatha
- School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
| | - Christina Mitropoulou
- The Golden Helix Foundation, London, UK
- Faculty of Medicine and Health Sciences, Department of Pathology, Clinical Bioinformatics Unit, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - George P Patrinos
- School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece.
- Faculty of Medicine and Health Sciences, Department of Pathology, Clinical Bioinformatics Unit, Erasmus University Medical Center, Rotterdam, The Netherlands.
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, University Campus, Rion, Patras, GR-265 04, Greece.
| |
Collapse
|
3
|
Tharwat S, Nagy E, Elsayed AM, Salem KM, Salah AM, Mohamed SZ, Nassar MK. Prevalence of Knee Pain and Its Relation to Depression, Anxiety, and Health-Related Quality of Life Among Maintenance Hemodialysis Patients. J Clin Med 2025; 14:368. [PMID: 39860373 PMCID: PMC11765859 DOI: 10.3390/jcm14020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Knee pain in hemodialysis (HD) patients might affect health-related quality of life (HRQoL) and may be related to anxiety and depressive symptoms. The aim of this study was to assess the prevalence of knee pain in chronic HD patients and to determine its relationship with anxiety, depression, and HRQoL, Methods: This multicenter cross-sectional study was carried out on chronic HD patients. Sociodemographic, clinical, and therapeutic data were collected. The Knee Pain Screening Tool (KNEST) was used to screen for knee pain. Patients with knee pain were instructed to complete the visual analog scale (VAS) for pain and the Western Ontario and McMaster Universities Arthritis Index (WOMAC). The patients also completed an Arabic-language version of the Hospital Anxiety and Depression Scale (HADS) and the Kidney Disease Quality of Life-36 (KDQOL-36™) questionnaire. Results: This study included 271 chronic HD patients; the median age was 51 (IQR 21) years, and most of them were males (59%). Of them, 158 had knee pain. Those with knee pain were more likely to have anxiety compared to those without (p = 0.002) and significantly lower scores on the symptom/problem (p = 0.03) and burden of kidney disease domains (p = 0.047) and the physical health (p < 0.001) and mental health components (p = 0.001). Furthermore, those with moderate to severe knee pain were more likely to experience anxiety (p = 0.001) and depression (p = 0.005) and have a lower physical health composite (PHC) than those with mild knee pain (p = 0.046). Conclusions: HD patients have a significant prevalence of knee pain that is usually associated with anxiety and leads to worse HRQoL than those without knee pain.
Collapse
Affiliation(s)
- Samar Tharwat
- Rheumatology & Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Internal Medicine, Faculty of Medicine, Horus University, New Damietta 34517, Egypt; (S.Z.M.); (M.K.N.)
| | - Eman Nagy
- Mansoura Nephrology & Dialysis Unit (MNDU), Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | | | - Karem Mohamed Salem
- Nephrology & Dialysis Unit, Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum 63515, Egypt;
| | - Ahmed M. Salah
- Nephrology Unit, Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Sherin Zohdy Mohamed
- Department of Internal Medicine, Faculty of Medicine, Horus University, New Damietta 34517, Egypt; (S.Z.M.); (M.K.N.)
| | - Mohammed Kamal Nassar
- Department of Internal Medicine, Faculty of Medicine, Horus University, New Damietta 34517, Egypt; (S.Z.M.); (M.K.N.)
- Mansoura Nephrology & Dialysis Unit (MNDU), Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
4
|
Izquierdo M, de Souto Barreto P, Arai H, Bischoff-Ferrari HA, Cadore EL, Cesari M, Chen LK, Coen PM, Courneya KS, Duque G, Ferrucci L, Fielding RA, García-Hermoso A, Gutiérrez-Robledo LM, Harridge SDR, Kirk B, Kritchevsky S, Landi F, Lazarus N, Liu-Ambrose T, Marzetti E, Merchant RA, Morley JE, Pitkälä KH, Ramírez-Vélez R, Rodriguez-Mañas L, Rolland Y, Ruiz JG, Sáez de Asteasu ML, Villareal DT, Waters DL, Won Won C, Vellas B, Fiatarone Singh MA. Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR). J Nutr Health Aging 2025; 29:100401. [PMID: 39743381 PMCID: PMC11812118 DOI: 10.1016/j.jnha.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 01/04/2025]
Abstract
Aging, a universal and inevitable process, is characterized by a progressive accumulation of physiological alterations and functional decline over time, leading to increased vulnerability to diseases and ultimately mortality as age advances. Lifestyle factors, notably physical activity (PA) and exercise, significantly modulate aging phenotypes. Physical activity and exercise can prevent or ameliorate lifestyle-related diseases, extend health span, enhance physical function, and reduce the burden of non-communicable chronic diseases including cardiometabolic disease, cancer, musculoskeletal and neurological conditions, and chronic respiratory diseases as well as premature mortality. Physical activity influences the cellular and molecular drivers of biological aging, slowing aging rates-a foundational aspect of geroscience. Thus, PA serves both as preventive medicine and therapeutic agent in pathological states. Sub-optimal PA levels correlate with increased disease prevalence in aging populations. Structured exercise prescriptions should therefore be customized and monitored like any other medical treatment, considering the dose-response relationships and specific adaptations necessary for intended outcomes. Current guidelines recommend a multifaceted exercise regimen that includes aerobic, resistance, balance, and flexibility training through structured and incidental (integrated lifestyle) activities. Tailored exercise programs have proven effective in helping older adults maintain their functional capacities, extending their health span, and enhancing their quality of life. Particularly important are anabolic exercises, such as Progressive resistance training (PRT), which are indispensable for maintaining or improving functional capacity in older adults, particularly those with frailty, sarcopenia or osteoporosis, or those hospitalized or in residential aged care. Multicomponent exercise interventions that include cognitive tasks significantly enhance the hallmarks of frailty (low body mass, strength, mobility, PA level, and energy) and cognitive function, thus preventing falls and optimizing functional capacity during aging. Importantly, PA/exercise displays dose-response characteristics and varies between individuals, necessitating personalized modalities tailored to specific medical conditions. Precision in exercise prescriptions remains a significant area of further research, given the global impact of aging and broad effects of PA. Economic analyses underscore the cost benefits of exercise programs, justifying broader integration into health care for older adults. However, despite these benefits, exercise is far from fully integrated into medical practice for older people. Many healthcare professionals, including geriatricians, need more training to incorporate exercise directly into patient care, whether in settings including hospitals, outpatient clinics, or residential care. Education about the use of exercise as isolated or adjunctive treatment for geriatric syndromes and chronic diseases would do much to ease the problems of polypharmacy and widespread prescription of potentially inappropriate medications. This intersection of prescriptive practices and PA/exercise offers a promising approach to enhance the well-being of older adults. An integrated strategy that combines exercise prescriptions with pharmacotherapy would optimize the vitality and functional independence of older people whilst minimizing adverse drug reactions. This consensus provides the rationale for the integration of PA into health promotion, disease prevention, and management strategies for older adults. Guidelines are included for specific modalities and dosages of exercise with proven efficacy in randomized controlled trials. Descriptions of the beneficial physiological changes, attenuation of aging phenotypes, and role of exercise in chronic disease and disability management in older adults are provided. The use of exercise in cardiometabolic disease, cancer, musculoskeletal conditions, frailty, sarcopenia, and neuropsychological health is emphasized. Recommendations to bridge existing knowledge and implementation gaps and fully integrate PA into the mainstream of geriatric care are provided. Particular attention is paid to the need for personalized medicine as it applies to exercise and geroscience, given the inter-individual variability in adaptation to exercise demonstrated in older adult cohorts. Overall, this consensus provides a foundation for applying and extending the current knowledge base of exercise as medicine for an aging population to optimize health span and quality of life.
Collapse
Affiliation(s)
- Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain.
| | - Philipe de Souto Barreto
- IHU HealthAge, Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, UPS/Inserm 1295, Toulouse, France
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| | - Heike A Bischoff-Ferrari
- Department of Geriatrics and Aging Research, Research Centre on Aging and Mobility, University of Zurich, Zurich, Switzerland
| | - Eduardo L Cadore
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Brazil
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei Municipal Gab-Dau Hospital, Taipei, Taiwan
| | - Paul M Coen
- AdventHealth Orlando, Translational Research Institute, Orlando, Florida, United States
| | - Kerry S Courneya
- Faculty of Kinesiology, Sport, and Recreation, College of Health Sciences, University of Alberta, Edmonton, Alberta T6G 2H9, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Luigi Ferrucci
- National Institute on Aging, Baltimore, MD, United States
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, United States
| | - Antonio García-Hermoso
- Navarrabiomed, Hospital Universitario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain
| | | | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, King's College London, United Kingdom
| | - Ben Kirk
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St. Albans, Melbourne, VIC, Australia
| | - Stephen Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Norman Lazarus
- Centre for Human and Applied Physiological Sciences, King's College London, United Kingdom
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Health Laboratory, Department of Physical Therapy, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute,Vancouver, BC, Canada
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Reshma A Merchant
- Division of Geriatric Medicine, Department of Medicine, National University Hospital, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - John E Morley
- Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Kaisu H Pitkälä
- University of Helsinki and Helsinki University Hospital, PO Box 20, 00029 Helsinki, Finland
| | - Robinson Ramírez-Vélez
- Navarrabiomed, Hospital Universitario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain
| | - Leocadio Rodriguez-Mañas
- CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain; Geriatric Service, University Hospital of Getafe, Getafe, Spain
| | - Yves Rolland
- IHU HealthAge, Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, UPS/Inserm 1295, Toulouse, France
| | - Jorge G Ruiz
- Memorial Healthcare System, Hollywood, Florida and Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, Florida, United States
| | - Mikel L Sáez de Asteasu
- Navarrabiomed, Hospital Universitario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III Madrid, Spain
| | - Dennis T Villareal
- Baylor College of Medicine, and Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, Texas, United States
| | - Debra L Waters
- Department of Medicine, School of Physiotherapy, University of Otago, Dunedin; Department of Internal Medicine/Geriatrics, University of New Mexico, Albuquerque, Mexico
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bruno Vellas
- IHU HealthAge, Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, UPS/Inserm 1295, Toulouse, France
| | - Maria A Fiatarone Singh
- Faculty of Medicine and Health, School of Health Sciences and Sydney Medical School, University of Sydney, New South Wales, Australia, and Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States
| |
Collapse
|
5
|
Çığırtaş R, Bulgay C, Kazan HH, Akman O, Sporiš G, John G, Yusupov RA, Sultanov RI, Zhelankin AV, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Jurko D, Ahmetov II. The ARK2N ( C18ORF25) Genetic Variant Is Associated with Muscle Fiber Size and Strength Athlete Status. Metabolites 2024; 14:684. [PMID: 39728465 DOI: 10.3390/metabo14120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Data on the genetic factors contributing to inter-individual variability in muscle fiber size are limited. Recent research has demonstrated that mice lacking the Arkadia (RNF111) N-terminal-like PKA signaling regulator 2N (Ark2n; also known as C18orf25) gene exhibit reduced muscle fiber size, contraction force, and exercise capacity, along with defects in calcium handling within fast-twitch muscle fibers. However, the role of the ARK2N gene in human muscle physiology, and particularly in athletic populations, remains poorly understood. The aim of this study was threefold: (a) to compare ARK2N gene expression between power and endurance athletes; (b) to analyze the relationship between ARK2N gene expression and muscle fiber composition; and (c) to investigate the association between the functional variant of the ARK2N gene, muscle fiber size, and sport-related phenotypes. RESULTS We found that ARK2N gene expression was significantly higher in power athletes compared to endurance athletes (p = 0.042) and was positively associated with the proportion of oxidative fast-twitch (type IIA) muscle fibers in untrained subjects (p = 0.017, adjusted for age and sex). Additionally, we observed that the ARK2N rs6507691 T allele, which predicts high ARK2N gene expression (p = 3.8 × 10-12), was associated with a greater cross-sectional area of fast-twitch muscle fibers in strength athletes (p = 0.015) and was over-represented in world-class strength athletes (38.6%; OR = 2.2, p = 0.023) and wrestlers (33.8%; OR = 1.8, p = 0.044) compared to controls (22.0%). CONCLUSIONS In conclusion, ARK2N appears to be a gene specific to oxidative fast-twitch myofibers, with its functional variant being associated with muscle fiber size and strength-athlete status.
Collapse
Affiliation(s)
- Rukiye Çığırtaş
- Faculty of Sports Sciences, Bingol University, 12000 Bingol, Türkiye
| | - Celal Bulgay
- Faculty of Sports Sciences, Bingol University, 12000 Bingol, Türkiye
| | - Hasan Hüseyin Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, 06018 Ankara, Türkiye
| | - Onur Akman
- Faculty of Sports Sciences, Bayburt University, 69000 Bayburt, Türkiye
| | - Goran Sporiš
- Department of General and Applied Kinesiology, Faculty of Kinesiology, Zagreb University, 10110 Zagreb, Croatia
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates
| | - Rinat A Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Rinat I Sultanov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Andrey V Zhelankin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Nikolay A Kulemin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Damir Jurko
- Department of General and Applied Kinesiology, Faculty of Kinesiology, Zagreb University, 10110 Zagreb, Croatia
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St Petersburg, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
6
|
Fonseca ID, Fabbri LE, Moraes L, Coelho DB, Dos Santos FC, Rosse I. Pleiotropic effects on Sarcopenia subphenotypes point to potential molecular markers for the disease. Arch Gerontol Geriatr 2024; 127:105553. [PMID: 38970884 DOI: 10.1016/j.archger.2024.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/10/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Sarcopenia is a progressive age-related muscle disease characterized by low muscle strength, quantity and quality, and low physical performance. The clinical overlap between these subphenotypes (reduction in muscle strength, quantity and quality, and physical performance) was evidenced, but the genetic overlap is still poorly investigated. Herein, we investigated whether there is a genetic overlap amongst sarcopenia subphenotypes in the search for more effective molecular markers for this disease. For that, a Bioinformatics approach was used to identify and characterize pleiotropic effects at the genome, loci and gene levels using Genome-wide association study results. As a result, a high genetic correlation was identified between gait speed and muscle strength (rG=0.5358, p=3.39 × 10-8). Using a Pleiotropy-informed conditional and conjunctional false discovery rate method we identified two pleiotropic loci for muscle strength and gait speed, one of them was nearby the gene PHACTR1. Moreover, 11 pleiotropic loci and 25 genes were identified for muscle mass and muscle strength. Lastly, using a gene-based GWAS approach three candidate genes were identified in the overlap of the three Sarcopenia subphenotypes: FTO, RPS10 and CALCR. The current study provides evidence of genetic overlap and pleiotropy among sarcopenia subphenotypes and highlights novel candidate genes and molecular markers associated with the risk of sarcopenia.
Collapse
Affiliation(s)
- Isabela D Fonseca
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil; Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro Ouro Preto, MG Brazil
| | - Luiz Eduardo Fabbri
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, SP Brazil
| | - Lauro Moraes
- Laboratório Multiusuário de Bioinformática, Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil
| | - Daniel B Coelho
- Laboratório de Fisiologia do Exercício da Escola de Educação Física, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil
| | - Fernanda C Dos Santos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON Canada
| | - Izinara Rosse
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil; Laboratório Multiusuário de Bioinformática, Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG Brazil; Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro Ouro Preto, MG Brazil.
| |
Collapse
|
7
|
Kim S. The Relationship Between MOTS-c K14Q Polymorphism and Sarcopenia, Blood Lipids, and Mental Health in Older Korean Adults. Biomedicines 2024; 12:2384. [PMID: 39457696 PMCID: PMC11504729 DOI: 10.3390/biomedicines12102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background/objectives: An East Asian-specific 1382A>C polymorphism in the mitochondrial open reading frame of the 12S rRNA type-c results in an amino acid substitution from Lys (K) to Gln (Q) at the 14th amino acid residue. This study investigated the association between m.1382A>C polymorphism and sarcopenia, blood lipids, and mental health in older Korean adults. Methods: The study included 683 community-dwelling Korean adults (345 men and 338 women) aged 65 years and older. The m.1382A>C polymorphism was genotyped with a 7500 real-time PCR system. Handgrip strength (HGS) was measured, and appendicular skeletal muscle (ASM) mass was calculated. Demographics, blood lipids, falling risk, nutritional intake, cognition function, and depression were additionally measured. Results: Men carrying the C allele had significantly higher ASM (21.6 ± 3.0 vs. 19.5 ± 2.2 kg, p = 0.018), ASM/height2 (7.76 ± 0.76 vs. 7.14 ± 0.62 kg/m2, p = 0.012), lean mass (53.3 ± 6.2 vs. 46.5 ± 4.0 kg, p < 0.001), left HGS (33.3 ± 5.0 vs. 28.9 ± 4.0 kg, p = 0.010), and right HGS (35.6 ± 5.3 vs. 30.9 ± 4.3 kg, p = 0.009) than men carrying the A allele. The genotype differences in ASM (p = 0.017), ASM/height2 (p = 0.011), lean mass (p < 0.001), left HGS (p = 0.010), and right HGS (p = 0.009) remained significant even after adjusting for all measured covariates. By contrast, no significant differences in other measured parameters were found between women carrying the A and C alleles. Conclusions: Our study findings indicate that the m.1382A>C polymorphism may be used as a genetic biomarker of age-related sarcopenia in older Korean men.
Collapse
Affiliation(s)
- Shinuk Kim
- Gyedang College of General Education, Sangmyung University, Cheonan 31066, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
8
|
Silventoinen K, Maia J, Sillanpää E, Sund R, Gouveia ÉR, Antunes A, Marques G, Thomis M, Kaprio J, Freitas D. Genetic Regulation of Physical Fitness in Children: A Twin Study of 15 Tests from Eurofit and Fitnessgram Test Batteries. Med Sci Sports Exerc 2024; 56:2000-2006. [PMID: 38949118 DOI: 10.1249/mss.0000000000003496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
PURPOSE This study aimed to analyze the shared genetic background of physical fitness tests in children. METHODS Physical fitness was assessed in 198 Portuguese twin pairs (6-18 yr old, 40% monozygotic) through 15 tests from the Eurofit and Fitnessgram test batteries. Genetic twin modeling was used to estimate the heritability of each test and the genetic correlations between them. RESULTS Girls performed better than boys in flexibility, whereas boys performed better than girls in cardiorespiratory endurance and muscular strength. No sex differences were found in the influence of genetic factors on the physical fitness tests or their mutual correlations. Genetic factors explained 52% (standing long jump) to 79% (sit and reach) of the individual variation in motor performance, whereas individual-specific environmental factors explained the remaining variation. Most of the tests showed modest to moderate genetic correlations. Out of all 105 genetic correlations, 65% ranged from 0.2 to 0.6 indicating that they shared from 4% to 36% of genetic variation. The correlations between individual-specific environmental factors were mostly negligible. CONCLUSIONS Tests measuring the strength of different muscle groups showed only modest correlations, but moderate correlations were found between tests measuring explosive strength, running speed/agility, and cardiorespiratory endurance. Genetic factors explained a major portion of the variation in tests included in the Eurofit and Fitnessgram test batteries and explained the correlations between them. The modest to moderate genetic correlations indicated that there is little redundancy of tests in either Eurofit or Fitnessgram test batteries.
Collapse
Affiliation(s)
| | - José Maia
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, PORTUGAL
| | | | - Reijo Sund
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, FINLAND
| | | | - António Antunes
- Department of Physical Education and Sport, University of Madeira, Funchal, PORTUGAL
| | - Gonçalo Marques
- Department of Physical Education and Sport, University of Madeira, Funchal, PORTUGAL
| | - Martine Thomis
- Physical Activity, Sports & Health Research Group, Department of Movement Sciences, Faculty of Movement and Rehabilitation Sciences, KU Leuven, Leuven, BELGIUM
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, FINLAND
| | | |
Collapse
|
9
|
Wang Y, He Z, Mei T, Yang X, Gu Z, Zhang Z, Li Y. Sports-Related Genomic Predictors Are Associated with Athlete Status in Chinese Sprint/Power Athletes. Genes (Basel) 2024; 15:1251. [PMID: 39457375 PMCID: PMC11507486 DOI: 10.3390/genes15101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The aim of this study was to assess the relationship between variant loci significantly associated with sports-related traits in the GWAS Catalog database and sprint/power athlete status, as well as to explore the polygenic profile of elite athletes. Methods: Next-generation sequencing and microarray technology were used to genotype samples from 211 elite athletes who had achieved success in national or international competitions in power-based sports and from 522 non-athletes, who were healthy university students with no history of professional sports training. Variant loci collected from databases were extracted after imputation. Subsequently, 80% of the samples were randomly selected as the training set, and the remaining 20% as the validation set. Results: Association analysis of variant loci was conducted in the training set, and individual Total Genotype Score (TGS) were calculated using genotype dosage and lnOR, followed by the establishment of a logistic model, with predictive performance evaluated in the validation set. Association analysis was performed on 2075 variant loci, and after removing linked loci (r2 > 0.2), 118 Tag SNPs (p ≤ 0.05) were identified. A logistic model built using 30 Tag SNPs (p ≤ 0.01) showed better performance in the validation set (AUC = 0.707). Conclusions: Our study identified 30 new genetic molecular markers and demonstrated that elite sprint/power athlete status is polygenic.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing 100084, China; (Y.W.)
| | - Zihong He
- Exercise Biology Research Center, China Institute of Sport Science, Beijing 100084, China
| | - Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Xiaolin Yang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Zhuangzhuang Gu
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing 100084, China; (Y.W.)
- Institute of Physical Education, Henan Normal University, Xinxiang 453007, China
| | - Zhihao Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing 100084, China; (Y.W.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| |
Collapse
|
10
|
Tarrit B, Garnier YM, Birat A, Ruas CV, Estevam E, Rance M, Morel C, Nottin S, Mattiello-Sverzut AC, Nosaka K, Blazevich AJ, Pinto RS, Ratel S. Can neuromuscular differences manifest by early adolescence in males between predominantly endurance and strength sports? Eur J Appl Physiol 2024; 124:2651-2663. [PMID: 38630264 DOI: 10.1007/s00421-024-05480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 09/02/2024]
Abstract
INTRODUCTION Although neuromuscular function varies significantly between strength and endurance-trained adult athletes, it has yet to be ascertained whether such differences manifest by early adolescence. The aim of the present study was to compare knee extensor neuromuscular characteristics between adolescent athletes who are representative of strength (wrestling) or endurance (triathlon) sports. METHODS Twenty-three triathletes (TRI), 12 wrestlers (WRE) and 12 untrained (CON) male adolescents aged 13 to 15 years participated in the present study. Maximal voluntary isometric contraction (MVIC) knee extensor (KE) torque was measured, and 100-Hz magnetic doublets were delivered to the femoral nerve during and after KE MVIC to quantify the voluntary activation level (%VA). The doublet peak torque (T100Hz) and normalized vastus lateralis (VL) and rectus femoris (RF) EMG (EMG/M-wave) activities were quantified. VL and RF muscle architecture was also assessed at rest using ultrasound. RESULTS Absolute and relative (to body mass) KE MVIC torques were significantly higher in WRE than TRI and CON (p < 0.05), but comparable between TRI and CON. No significant differences were observed between groups for %VA, T100Hz or either VL or RF muscle thickness. However, VL EMG/M-wave was higher, RF fascicle length longer, and pennation angle smaller in WRE than TRI and CON (all p < 0.05). CONCLUSION The wrestlers were stronger than triathletes and controls, potentially as a result of muscle architectural differences and a greater neural activation. Neuromuscular differences can already be detected by early adolescence in males between predominantly endurance and strength sports, which may result from selection bias and/or physical training.
Collapse
Affiliation(s)
- Baptiste Tarrit
- Université Clermont Auvergne, AME2P, 63000, Clermont-Ferrand, France
| | - Yoann M Garnier
- Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, University of Franche-Comté, 25000, Besançon, France
| | - Anthony Birat
- Université Clermont Auvergne, AME2P, 63000, Clermont-Ferrand, France
- Fédération Française Triathlon, 93210, Saint Denis, France
| | - Cassio V Ruas
- Brazilian Institute of Neuroscience and Neurotechnology-Institute of Physics Gleb Wataghin, University of Campinas, São Paulo, Brazil
| | - Ester Estevam
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Prêto, Brazil
| | - Mélanie Rance
- Centre de Ressources et d'Expertise de la Performance Sportive (CREPS), 03700, Bellerive-sur-Allier, France
| | - Claire Morel
- Centre de Ressources et d'Expertise de la Performance Sportive (CREPS), 03700, Bellerive-sur-Allier, France
| | | | | | - Kazunori Nosaka
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, WA, Australia
| | - Anthony J Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, WA, Australia
| | - Ronei S Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sébastien Ratel
- Université Clermont Auvergne, AME2P, 63000, Clermont-Ferrand, France.
| |
Collapse
|
11
|
Qi S, Yu J, Meng F, Wei Z, Liang Z. Study on the Polymorphic Loci of Explosive Strength-Related Genes in Elite Wrestlers. Genes (Basel) 2024; 15:1068. [PMID: 39202428 PMCID: PMC11353954 DOI: 10.3390/genes15081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This investigation aimed to explore the relationship between Chinese elite wrestlers and the polymorphic loci of explosive strength genes, and to further explore the feasibility of its application to athlete selection. The snapshot technique was used to resolve the polymorphic loci of explosive power genes in the wrestler group (59 elite wrestlers) and the control group (180 ordinary college students), and to analyze the genotype frequencies and allele frequencies of each group. A chi-square test was performed on the genotype and allele distribution data of each group to analyze the loci of explosive power genes that were associated with elite wrestlers. The loci that had an association with elite wrestlers were combined with the genotyping data, and the dominance ratios of the genotypes were calculated using the chi-square test to determine the dominant genotypes associated with elite wrestlers. The VDR gene rs2228570 locus exhibited statistically significant differences in genotype and allele distributions between elite wrestlers and the general population (p < 0.01). At the rs2228570 locus of the VDR gene, the difference between the CC genotype and other genotypes was statistically significant (p < 0.05). The rs2228570 locus of the VDR gene was identified as the locus associated with Chinese elite wrestlers. The polymorphism of the VDR gene can be used as a biomarker for Chinese wrestlers, and the CC genotype can be used as a molecular marker for the selection of Chinese elite athletes in this sport. However, expanding the sample size of elite athletes is necessary to further validate the scientific validity and feasibility of these findings.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan 250102, China;
| | - Jinglun Yu
- School of Sport and Health Science, Xi’an Physical Education University, Xi’an 710068, China;
| | - Fanbo Meng
- School of Sports Media and Information Technology, Shandong Sport University, Jinan 250102, China
| | - Zhen Wei
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
Shrestha A, Bashir T, Achison M, Adamson S, Akpan A, Aspray T, Avenell A, Band MM, Burton LA, Cvoro V, Donnan PT, Duncan GW, George J, Gordon AL, Gregson CL, Hapca A, Hume C, Jackson TA, Kerr S, Kilgour A, Masud T, McKenzie A, McKenzie E, Patel H, Pilvinyte K, Roberts HC, Sayer AA, Rossios C, Smith KT, Soiza RL, Steves CJ, Struthers AD, Tiwari D, Whitney J, Witham MD, Kemp PR. Association of bradykinin receptor 2 (BDKRB2) variants with physical performance and muscle mass: Findings from the LACE sarcopenia trial. PLoS One 2024; 19:e0307268. [PMID: 39093910 PMCID: PMC11296637 DOI: 10.1371/journal.pone.0307268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Understanding genetic contributors to sarcopenia (age-related loss of muscle strength and mass) is key to finding effective therapies. Variants of the bradykinin receptor 2 (BDKRB2) have been linked to athletic and muscle performance. The rs1799722-9 and rs5810761 T alleles have been shown to be overrepresented in endurance athletes, possibly due to increased transcriptional rates of the receptor. These variants have been rarely studied in older people or people with sarcopenia. METHODS We performed a post hoc sub-study of the Leucine and ACE (LACE) inhibitor trial, which enrolled 145 participants aged ≥70 years with low grip strength and low gait speed. Participants' blood samples were genotyped for rs179972 using TaqMan and rs5810761 by amplification through Hotstar Taq. Genotypes were compared with outcomes of physical performance and body composition measures. RESULTS Data from 136 individuals were included in the analysis. For rs1799722 the genotype frequency (TT: 17, CC: 48, CT: 71) remained in Hardy-Weinberg Equilibrium (HWE p = 0.248). There was no difference between the genotypes for six-Minute Walk Distance (6MWD) or Short Physical Performance Battery (SPPB). Men with the TT genotype had a significantly greater 6MWD than other genotypes (TT 400m vs CT 310m vs CC 314m, p = 0.027), and greater leg muscle mass (TT 17.59kg vs CT 15.04kg vs CC 15.65kg, p = 0.007). For rs5810761, the genotype frequency (-9-9: 31, +9+9: 43, -9+9: 60) remained in HWE (p = 0.269). The +9+9 genotype was associated with a significant change in SPPB score at 12 months (-9-9 0 vs -9+9 0 vs +9+9-1, p<0.001), suggesting an improvement. In men, the -9-9 genotype was associated with lower arm fat (-9-9 2.39kg vs -9+9 2.72kg vs +9+9 2.76kg, p = 0.019). CONCLUSION In men, the rs1799722 TT genotype was associated with longer 6MWD and greater leg muscle mass, while the rs5810761 -9-9 genotype was associated with lower arm fat mass.
Collapse
Affiliation(s)
- Alvin Shrestha
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Tufail Bashir
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Marcus Achison
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Simon Adamson
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Asangaedem Akpan
- Liverpool University Hospitals NHS FT Trust, Clinical Research Network Northwest Coast, University of Liverpool, Liverpool, United Kingdom
| | - Terry Aspray
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Cumbria Northumberland Tyne and Wear NHS Foundation Trust and Newcastle upon Tyne Hospitals NHS Trust, Translational Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alison Avenell
- Health Services Research Unit, University of Aberdeen, Aberdeen, United Kingdom
| | - Margaret M. Band
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Louise A. Burton
- Medicine for the Elderly, NHS Tayside, Dundee, United Kingdom
- Ageing and Health, University of Dundee, Dundee, United Kingdom
| | - Vera Cvoro
- Victoria Hospital, Kirkcaldy, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter T. Donnan
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Gordon W. Duncan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Medicine for the Elderly, NHS Lothian, Edinburgh, United Kingdom
| | - Jacob George
- Division of Molecular & Clinical Medicine, University of Dundee Medical School, Ninewells Hospital, Dundee, United Kingdom
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery, School of Medicine, University of Nottingham, Nottingham United Kingdom
- NIHR Nottingham Biomedical Research Centre, Department of Medicine for the Elderly, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, United Kingdom
| | - Celia L. Gregson
- Musculoskeletal Research Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Older Person’s Unit, Royal United Hospital NHS Foundation Trust Bath, Bath, United Kingdom
| | - Adrian Hapca
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Cheryl Hume
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Thomas A. Jackson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Simon Kerr
- Department of Older People’s Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Alixe Kilgour
- Medicine for the Elderly, NHS Lothian, Edinburgh, United Kingdom
- Ageing and Health Research Group, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Tahir Masud
- Clinical Gerontology Research Unit, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Andrew McKenzie
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Emma McKenzie
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Harnish Patel
- NIHR Biomedical Research Centre, University of Southampton and University Hospital Southampton NHSFT, Southampton, Hampshire, United Kingdom
| | - Kristina Pilvinyte
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Helen C. Roberts
- Academic Geriatric Medicine, Mailpoint 807 Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Avan A. Sayer
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Cumbria Northumberland Tyne and Wear NHS Foundation Trust and Newcastle upon Tyne Hospitals NHS Trust, Translational Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christos Rossios
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Karen T. Smith
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Roy L. Soiza
- Ageing & Clinical Experimental Research (ACER) Group, University of Aberdeen, Aberdeen, United Kingdom
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College London & Department of Clinical Gerontology, King’s College Hospital, London, United Kingdom
| | - Allan D. Struthers
- Division of Molecular & Clinical Medicine, University of Dundee Medical School, Ninewells Hospital, Dundee, United Kingdom
| | - Divya Tiwari
- Bournemouth University and Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Julie Whitney
- School of Population Health & Environmental Sciences, King’s College London and King’s College Hospital, London, United Kingdom
| | - Miles D. Witham
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Cumbria Northumberland Tyne and Wear NHS Foundation Trust and Newcastle upon Tyne Hospitals NHS Trust, Translational Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul R. Kemp
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
13
|
Beyene MB, Visvanathan R, Ahmed M, Benyamin B, Beard JR, Amare AT. Development and validation of an intrinsic capacity score in the UK Biobank study. Maturitas 2024; 185:107976. [PMID: 38537388 DOI: 10.1016/j.maturitas.2024.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 03/14/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND In 2015, the World Health Organization introduced the concept of intrinsic capacity (IC) to define the individual-level characteristics that enable an older person to be and do the things they value. This study developed an intrinsic capacity score for UK Biobank study participants and validated its use as a tool for health outcome prediction, understanding healthy aging trajectories, and genetic research. METHODS Our analysis included data from 45,208 UK biobank participants who had a complete record of the ten variables included in the analysis. Factor adequacy was tested using Kaiser-Meyer-Olkin, Barthelt's, and the determinant of matrix tests, and the number of factors was determined by the parallel analysis method. Exploratory and confirmatory factor analyses were employed to determine the structure and dimensionality of indicators. Finally, the intrinsic capacity score was generated, and its construct and predictive validities as well as reliability were assessed. RESULTS The factor analysis identified a multidimensional construct comprising one general factor (intrinsic capacity) and five specific factors (locomotor, vitality, cognitive, psychological, and sensory). The bifactor structure showed a better fit (comparative fit index = 0.995, Tucker Lewis index = 0.976, root mean square error of approximation = 0.025, root mean square residual = 0.009) than the conventional five-factor structure. The intrinsic capacity score generated using the bifactor confirmatory factor analysis has good construct validity, as demonstrated by an inverse association with age (lower intrinsic capacity in older age; (β) =-0.035 (95%CI: -0.036, -0.034)), frailty (lower intrinsic capacity score in prefrail participants, β = -0.104 (95%CI: (-0.114, -0.094)) and frail participants, β = -0.227 (95%CI: -0.267, -0.186) than robust participants), and comorbidity (a lower intrinsic capacity score associated with increased Charlson's comorbidity index, β =-0.019 (95%CI: -0.022, -0.015)). The intrinsic capacity score also predicted comorbidity (a one-unit increase in baseline intrinsic capacity score led to a lower Charlson's comorbidity index, β = 0.147 (95%CI: -0.173, -0.121)) and mortality (a one-unit increase in baseline intrinsic capacity score led to 25 % lower risk of death, odds ratio = 0.75(95%CI: 0.663, 0.848)). CONCLUSION The bifactor structure showed a better fit in all goodness of fit tests. The intrinsic capacity construct has strong structural, construct, and predictive validities and is a promising tool for monitoring aging trajectories.
Collapse
Affiliation(s)
- Melkamu Bedimo Beyene
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia; Adelaide Geriatrics Training and Research with Aged Care Centre (GTRAC), Faculty of Health and Medical Sciences, University of Adelaide, Woodville, SA, 5011, Australia
| | - Renuka Visvanathan
- Adelaide Geriatrics Training and Research with Aged Care Centre (GTRAC), Faculty of Health and Medical Sciences, University of Adelaide, Woodville, SA, 5011, Australia; Aged and Extended Care Services, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Muktar Ahmed
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - John R Beard
- International Longevity Centre USA, Columbia University Mailman School of Public Health, NY, USA
| | - Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia; Adelaide Geriatrics Training and Research with Aged Care Centre (GTRAC), Faculty of Health and Medical Sciences, University of Adelaide, Woodville, SA, 5011, Australia.
| |
Collapse
|
14
|
Mei T, Li Y, Li X, Yang X, Li L, Yan X, He ZH. A Genotype-Phenotype Model for Predicting Resistance Training Effects on Leg Press Performance. Int J Sports Med 2024; 45:458-472. [PMID: 38122824 DOI: 10.1055/a-2234-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study develops a comprehensive genotype-phenotype model for predicting the effects of resistance training on leg press performance. A cohort of physically inactive adults (N=193) underwent 12 weeks of resistance training, and measurements of maximum isokinetic leg press peak force, muscle mass, and thickness were taken before and after the intervention. Whole-genome genotyping was performed, and genome-wide association analysis identified 85 novel SNPs significantly associated with changes in leg press strength after training. A prediction model was constructed using stepwise linear regression, incorporating seven lead SNPs that explained 40.4% of the training effect variance. The polygenic score showed a significant positive correlation with changes in leg press strength. By integrating genomic markers and phenotypic indicators, the comprehensive prediction model explained 75.4% of the variance in the training effect. Additionally, five SNPs were found to potentially impact muscle contraction, metabolism, growth, and development through their association with REACTOME pathways. Individual responses to resistance training varied, with changes in leg press strength ranging from -55.83% to 151.20%. The study highlights the importance of genetic factors in predicting training outcomes and provides insights into the potential biological functions underlying resistance training effects. The comprehensive model offers valuable guidance for personalized fitness programs based on individual genetic profiles and phenotypic characteristics.
Collapse
Affiliation(s)
- Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Xiaoxia Li
- Department of Teaching Affairs, Shandong Sport University, Jinan, China
| | - Xiaolin Yang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Liang Li
- Academy of Sports, Sultan Idris Education University, Tanjung Malim, Malaysia
| | - Xu Yan
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Zi-Hong He
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
15
|
Ito S, Takuwa H, Kakehi S, Someya Y, Kaga H, Kumahashi N, Kuwata S, Wakatsuki T, Kadowaki M, Yamamoto S, Abe T, Takeda M, Ishikawa Y, Liu X, Otomo N, Suetsugu H, Koike Y, Hikino K, Tomizuka K, Momozawa Y, Ozaki K, Isomura M, Nabika T, Kaneko H, Ishijima M, Kawamori R, Watada H, Tamura Y, Uchio Y, Ikegawa S, Terao C. A genome-wide association study identifies a locus associated with knee extension strength in older Japanese individuals. Commun Biol 2024; 7:513. [PMID: 38769351 PMCID: PMC11106293 DOI: 10.1038/s42003-024-06108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/26/2024] [Indexed: 05/22/2024] Open
Abstract
Sarcopenia is a common skeletal muscle disease in older people. Lower limb muscle strength is a good predictive value for sarcopenia; however, little is known about its genetic components. Here, we conducted a genome-wide association study (GWAS) for knee extension strength in a total of 3452 Japanese aged 60 years or older from two independent cohorts. We identified a significant locus, rs10749438 which is an intronic variant in TACC2 (transforming acidic coiled-coil-containing 2) (P = 4.2 × 10-8). TACC2, encoding a cytoskeleton-related protein, is highly expressed in skeletal muscle, and is reported as a target of myotonic dystrophy 1-associated splicing alterations. These suggest that changes in TACC2 expression are associated with variations in muscle strength in older people. The association was consistently observed in young and middle-aged subjects. Our findings would shed light on genetic components of lower limb muscle strength and indicate TACC2 as a potential therapeutic target for sarcopenia.
Collapse
Affiliation(s)
- Shuji Ito
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Graduate School of Health and Sports Science, Juntendo University, Inzai, 270-1695, Japan
| | - Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Nobuyuki Kumahashi
- Department of Orthopedic Surgery, Matsue Red Cross Hospital, Matsue, 690-8506, Japan
| | - Suguru Kuwata
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Takuya Wakatsuki
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Masaru Kadowaki
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Soichiro Yamamoto
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Takafumi Abe
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
| | - Miwako Takeda
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nao Otomo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Hiroyuki Suetsugu
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshinao Koike
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Minoru Isomura
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
- Faculty of Human Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Toru Nabika
- The Center for Community-based Healthcare Research and Education (CoHRE), Shimane University, Izumo, 693-8501, Japan
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, 693-8501, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Muneaki Ishijima
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yuji Uchio
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, 693-8501, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, 420-8527, Japan.
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
16
|
Psatha A, Al-Mahayri ZN, Mitropoulou C, Patrinos GP. Meta-analysis of genomic variants in power and endurance sports to decode the impact of genomics on athletic performance and success. Hum Genomics 2024; 18:47. [PMID: 38760851 PMCID: PMC11102131 DOI: 10.1186/s40246-024-00621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
Association between genomic variants and athletic performance has seen a high degree of controversy, as there is often conflicting data as far as the association of genomic variants with endurance, speed and strength is concerned. Here, findings from a thorough meta-analysis from 4228 articles exploring the association of genomic variants with athletic performance in power and endurance sports are summarized, aiming to confirm or overrule the association of genetic variants with athletic performance of all types. From the 4228 articles, only 107 were eligible for further analysis, including 37 different genes. From these, there were 21 articles for the ACE gene, 29 articles for the ACTN3 gene and 8 articles for both the ACE and ACTN3 genes, including 54,382 subjects in total, from which 11,501 were endurance and power athletes and 42,881 control subjects. These data show that there is no statistically significant association between genomic variants and athletic performance either for endurance or power sports, underlying the fact that it is highly risky and even unethical to make such genetic testing services for athletic performance available to the general public. Overall, a strict regulatory monitoring should be exercised by health and other legislative authorities to protect the public from such services from an emerging discipline that still lacks the necessary scientific evidence and subsequent regulatory approval.
Collapse
Affiliation(s)
- Aikaterini Psatha
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04, Patras, Greece
| | | | - Christina Mitropoulou
- The Golden Helix Foundation, London, UK
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, 265 04, Patras, Greece.
- Clinical Bioinformatics Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
17
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
18
|
Chen K, Zhou J, Liu N, Meng X. Association of Serum Concentrations of Copper, Selenium, and Zinc with Grip Strength Based on NHANES 2013-2014. Biol Trace Elem Res 2024; 202:824-834. [PMID: 37273075 DOI: 10.1007/s12011-023-03718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Increasing evidence has found metals to be strongly associated with muscle strength, but the correlations between serum copper (Cu), selenium (Se), and zinc (Zn) with grip strength in adult populations have not yet been established. We examined the linear and non-linear associations between these three metals and grip strength via multiple linear regression and restricted cubic spline (RCS) regression using data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. A higher concentration of serum Cu was monotonically linked with lower grip strength [β = - 0.004 m2 (95% CI: - 0.005, - 0.002)], and serum Zn was positively associated with grip strength [β = 0.004 m2 (95% CI: 0.002, 0.006)]. We observed a positive association between serum Se and grip strength in the unadjusted model but not in covariate-adjusted models. Interestingly, the results of RCS regression showed that serum Cu had an L-shaped non-linear association with grip strength in all participants and subgroups. We further found a linear-increased trend between serum Zn and the grip strength in all participants. There were also non-linear associations that varied across different subgroups. Taken together, serum Cu and Zn were significantly associated with grip strength, while Se was not. This study offers new evidence to help formulate a reference concentration range for serum Cu and Zn.
Collapse
Affiliation(s)
- Kaiju Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jianli Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Nan Liu
- Institute of Environment and Health, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
19
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
20
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Bradley B, Baker J, Herbert AJ, Kelly AL. Genetic Associations With Acceleration, Change of Direction, Jump Height, and Speed in English Academy Football Players. J Strength Cond Res 2024; 38:350-359. [PMID: 38258831 DOI: 10.1519/jsc.0000000000004634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
ABSTRACT McAuley, ABT, Hughes, DC, Tsaprouni, LG, Varley, I, Suraci, B, Bradley, B, Baker, J, Herbert, AJ, and Kelly, AL. Genetic associations with acceleration, change of direction, jump height, and speed in English academy football players. J Strength Cond Res 38(2): 350-359, 2024-High-intensity movements and explosive actions are commonly assessed during athlete development in football (soccer). Although many environmental factors underpin these power-orientated traits, research suggests that there is also a sizeable genetic component. Therefore, this study examined the association of 22 single-nucleotide polymorphisms (SNPs) with acceleration, change of direction, jump height, and speed in academy football players. One hundred and forty-nine, male, under-12 to under-23 football players from 4 English academies were examined. Subjects performed 5-, 10-, 20-, and 30-m sprints, countermovement jumps (CMJs), and the 5-0-5 agility test. Simple linear regression was used to analyze individual SNP associations, whereas both unweighted and weighted total genotype scores (TGS; TWGS) were computed to measure the combined influence of all SNPs. To control for multiple testing, a Benjamini-Hochberg false discovery rate of 0.05 was applied to all genotype model comparisons. In isolation, the GALNT13 (rs10196189) G allele and IL6 (rs1800795) G/G genotype were associated with faster (∼4%) 5-, 10-, and 20-m sprints and higher (∼16%) CMJs, respectively (p < 0.001). Furthermore, the TGS and TWGS significantly correlated with all performance assessments, explaining between 6 and 33% of the variance (p < 0.001). This study demonstrates that some genetic variants are associated with power-orientated phenotypes in youth football players and may add value toward a future polygenic profile of physical performance.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth, Bournemouth, United Kingdom; and
| | - Ben Bradley
- Academy Coaching Department, AFC Bournemouth, Bournemouth, United Kingdom; and
| | - Joseph Baker
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, West Midlands, United Kingdom
| |
Collapse
|
21
|
Beyene MB, Visvanathan R, Amare AT. Intrinsic Capacity and Its Biological Basis: A Scoping Review. J Frailty Aging 2024; 13:193-202. [PMID: 39082762 DOI: 10.14283/jfa.2024.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
BACKGROUND In 2015, the World Health Organization (WHO) introduced the concept of intrinsic capacity (IC) to define healthy aging based on functional capacity. In this scoping review, we summarized available evidence on the development and validation of IC index scores, the association of IC with health-related factors, and its biological basis. The review specifically focused on identifying current research gaps, proposed strategies to leverage biobank datasets, and opportunities to study the genetic mechanisms and gene-environment interactions underlying IC. METHODS The literature search was conducted across six databases, including PubMed, CINAHL, Web of Science, Scopus, AgeLine, and PsycINFO, using keywords related to IC. RESULTS This review included 84 articles, and most of them (n=38) adopted the 5-domains approach to operationalize IC, utilizing correlated five factors or bifactor structures. Intrinsic capacity has consistently shown significant associations with socio-demographic and health-related outcomes, including age, sex, wealth index, nutrition, exercise, smoking, alcohol use, ADL, IADL, frailty, multimorbidity, and mortality. While studies on the biological basis of the composite IC are limited, with only one study finding a significant association with the ApoE gene variants, studies on specific IC domains - locomotor, vitality, cognitive, psychological, and sensory suggest a heritability of 20-85% of IC and several genetic variants associated with these subdomains have been identified. However, evidence on how genetic and environmental factors influence IC is still lacking, with no available study to date. CONCLUSION Our review found that there was inconsistency in the use of standardized IC measurement tools and indicators, but the IC indices had shown good construct and predictive validity. Research into the genetic and gene-to-environment interactions underlying IC is still lacking, which calls for the use of resources from large biobank datasets in the future.
Collapse
Affiliation(s)
- M B Beyene
- Azmeraw T. Amare, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia, Tel: +61 8 83137438, E-Mail:
| | | | | |
Collapse
|
22
|
Lv Z, Zhao Y, Cui J, Zhang J. Genetically Proxied Sarcopenia-Related Muscle Traits and Depression: Evidence from the FinnGen Cohort. Am J Geriatr Psychiatry 2024; 32:32-41. [PMID: 37640577 DOI: 10.1016/j.jagp.2023.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Sarcopenia and depression are common and often coexist in the elderly. This study aims to determine the impact of sarcopenia-related muscle traits on depression. METHODS A two-sample Mendelian randomization (MR) study was performed on the summary-level data from the FinnGen cohort to estimate the causal association of appendicular lean mass (ALM), walking pace, or low hand grip strength with depression. Additionally, multivariable MR (MVMR) was performed to assess the dependence of each muscle trait in the causality and adjust the effect of body mass index (BMI). Supplementary backward MR analyses were performed to estimate the effect of depression on sarcopenia-related muscle traits. RESULTS Univariable MR analyses demonstrated that there were causal associations of ALM (odds ratio [OR]: 0.94; 95% confidence interval [CI]: 0.88-0.99), walking pace (OR: 0.53; 95% CI: 0.32-0.88), and low hand grip strength (OR: 1.20; 95% CI: 1.05-1.38) with depression. MVMR analyses showed that ALM was the only trait that had a significant causal relationship with depression (OR: 0.91; 95% CI: 0.85-0.98) after accounting for the other two muscle traits. Moreover, the independent association of ALM with depression remained (OR: 0.92; 95% CI: 0.85-0.99) after being adjusted by BMI. The backward MR analyses showed no causal associations of depression with any sarcopenia-related muscle traits. CONCLUSION Low muscle mass independently increases the risk of depression. This study determined the muscle-related risk factors of depression, which may help establish the causality between sarcopenia and depression and provide evidence-based recommendations for improving mental health in the elderly.
Collapse
Affiliation(s)
- Zhengtao Lv
- Department of Orthopedics (ZL, JZ), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhao
- Cancer Center (YZ), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Radiation Oncology (YZ), Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiarui Cui
- Longhua Hospital (JC), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaming Zhang
- Department of Orthopedics (ZL, JZ), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Ahn SH, Park EB, Seo S, Cho Y, Seo DH, Kim SH, Suh YJ, Hong S. Familial Correlation and Heritability of Hand Grip Strength in Korean Adults (Korea National Health and Nutrition Examination Survey 2014 to 2019). Endocrinol Metab (Seoul) 2023; 38:709-719. [PMID: 37933110 PMCID: PMC10765004 DOI: 10.3803/enm.2023.1740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGRUOUND The onset and progression of sarcopenia are highly variable among individuals owing to genetic and environmental factors. However, there are a limited number of studies measuring the heritability of muscle strength in large numbers of parent-adult offspring pairs. We aimed to investigate the familial correlation and heritability of hand grip strength (HGS) among Korean adults. METHODS This family-based cohort study on data from the Korea National Health and Nutrition Examination Survey (2014 to 2019) included 5,004 Koreans aged ≥19 years from 1,527 families. HGS was measured using a digital grip strength dynamometer. Familial correlations of HGS were calculated in different pairs of relatives. Variance component methods were used to estimate heritability. RESULTS The heritability estimate of HGS among Korean adults was 0.154 (standard error, 0.066). Correlation coefficient estimates for HGS between parent-offspring, sibling, and spouse pairs were significant at 0.07, 0.10, and 0.23 (P<0.001, P=0.041, and P<0.001, respectively). The total variance in the HGS phenotype was explained by additive genetic (15.4%), shared environmental (11.0%), and unique environmental (73.6%) influences. The odds of weak HGS significantly increased in the offspring of parents with weak HGS (odds ratio [OR], 1.69-3.10; P=0.027-0.038), especially in daughters (OR, 2.04-4.64; P=0.029-0.034). CONCLUSION HGS exhibits a familial correlation and significant heritable tendency in Korean adults. Therefore, Asian adults, especially women, who have parents with weak HGS, need to pay special attention to their muscle health with the help of healthy environmental stimuli.
Collapse
Affiliation(s)
- Seong Hee Ahn
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Eun Byeol Park
- Department of Biostatistics, Korea University College of Medicine, Seoul, Korea
| | - Seongha Seo
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Yongin Cho
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Da Hea Seo
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - So Hun Kim
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Young Ju Suh
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Korea
| | - Seongbin Hong
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
24
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
25
|
Konopka MJ, Sperlich B, Rietjens G, Zeegers MP. Genetics and athletic performance: a systematic SWOT analysis of non-systematic reviews. Front Genet 2023; 14:1232987. [PMID: 37621703 PMCID: PMC10445150 DOI: 10.3389/fgene.2023.1232987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Exercise genetics/genomics is a growing research discipline comprising several Strengths and Opportunities but also deals with Weaknesses and Threats. This "systematic SWOT overview of non-systematic reviews" (sSWOT) aimed to identify the Strengths, Weaknesses, Opportunities, and Threats linked to exercise genetics/genomics. A systematic search was conducted in the Medline and Embase databases for non-systematic reviews to provide a comprehensive overview of the current literature/research area. The extracted data was thematically analyzed, coded, and categorized into SWOT clusters. In the 45 included reviews five Strengths, nine Weaknesses, six Opportunities, and three Threats were identified. The cluster of Strengths included "advances in technology", "empirical evidence", "growing research discipline", the "establishment of consortia", and the "acceptance/accessibility of genetic testing". The Weaknesses were linked to a "low research quality", the "complexity of exercise-related traits", "low generalizability", "high costs", "genotype scores", "reporting bias", "invasive methods", "research progress", and "causality". The Opportunities comprised of "precision exercise", "omics", "multicenter studies", as well as "genetic testing" as "commercial"-, "screening"-, and "anti-doping" detection tool. The Threats were related to "ethical issues", "direct-to-consumer genetic testing companies", and "gene doping". This overview of the present state of the art research in sport genetics/genomics indicates a field with great potential, while also drawing attention to the necessity for additional advancement in methodological and ethical guidance to mitigate the recognized Weaknesses and Threats. The recognized Strengths and Opportunities substantiate the capability of genetics/genomics to make significant contributions to the performance and wellbeing of athletes.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Billy Sperlich
- Integrative and Experimental Exercise Science and Training, Institute of Sport Science, University of Würzburg, Würzburg, Germany
| | - Gerard Rietjens
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
26
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
27
|
Identification of LRRK2 gene related to sarcopenia and neuroticism using weighted gene co-expression network analysis. J Affect Disord 2023; 325:675-681. [PMID: 36690080 DOI: 10.1016/j.jad.2023.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Sarcopenia is reported to be associated with neuroticism, but the mechanisms are not fully understood. Thus, it's of vital importance to elucidate the molecular mechanism of sarcopenia and neuroticism and to explore the potential molecular target of medical therapies for sarcopenia and neuroticism. METHODS The expression datasets (sarcopenia: GSE111006 and neuroticism: GSE60491) were downloaded from the Gene Expression Omnibus. Weighted gene co-expression network analysis (WGCNA) was used to build the gene co-expression network, screen important modules, and filter the hub genes. Genes with significance over 0.2 and a module membership over 0.8 were hub genes. The overlapped hub genes between sarcopenia and neuroticism were defined as key genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the genes in modules with clinical interest. RESULTS In this study, we identified 28 gene modules for sarcopenia and 7 for neuroticism by WGCNA. The key modules of sarcopenia and neuroticism were the tan and turquoise modules, respectively. Hub genes of sarcopenia and neuroticism were 20 genes and 107 genes, respectively. The function enrichment found that apoptosis was the common pathway for sarcopenia and neuroticism. Finally, LRRK2 was identified as key genes. LIMITATIONS The sarcopenia dataset contained fewer samples. CONCLUSION Based on WGCNA, our study identified apoptosis pathway and LRRK2 that acted as essential components in the etiology of sarcopenia and neuroticism, which may enhance our fundamental knowledge of the molecular mechanisms underlying the disease.
Collapse
|
28
|
Bulgay C, Kasakolu A, Kazan HH, Mijaica R, Zorba E, Akman O, Bayraktar I, Ekmekci R, Koncagul S, Ulucan K, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Balint L, Badicu G, Ahmetov II, Ergun MA. Exome-Wide Association Study of Competitive Performance in Elite Athletes. Genes (Basel) 2023; 14:genes14030660. [PMID: 36980932 PMCID: PMC10048216 DOI: 10.3390/genes14030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
The aim of the study was to identify genetic variants associated with personal best scores in Turkish track and field athletes and to compare allelic frequencies between sprint/power and endurance athletes and controls using a whole-exome sequencing (WES) approach, followed by replication studies in independent cohorts. The discovery phase involved 60 elite Turkish athletes (31 sprint/power and 29 endurance) and 20 ethnically matched controls. The replication phase involved 1132 individuals (115 elite Russian sprinters, 373 elite Russian endurance athletes (of which 75 athletes were with VO2max measurements), 209 controls, 148 Russian and 287 Finnish individuals with muscle fiber composition and cross-sectional area (CSA) data). None of the single nucleotide polymorphisms (SNPs) reached an exome-wide significance level (p < 2.3 × 10−7) in genotype–phenotype and case–control studies of Turkish athletes. However, of the 53 nominally (p < 0.05) associated SNPs, four functional variants were replicated. The SIRT1 rs41299232 G allele was significantly over-represented in Turkish (p = 0.047) and Russian (p = 0.018) endurance athletes compared to sprint/power athletes and was associated with increased VO2max (p = 0.037) and a greater proportion of slow-twitch muscle fibers (p = 0.035). The NUP210 rs2280084 A allele was significantly over-represented in Turkish (p = 0.044) and Russian (p = 0.012) endurance athletes compared to sprint/power athletes. The TRPM2 rs1785440 G allele was significantly over-represented in Turkish endurance athletes compared to sprint/power athletes (p = 0.034) and was associated with increased VO2max (p = 0.008). The AGRN rs4074992 C allele was significantly over-represented in Turkish sprint/power athletes compared to endurance athletes (p = 0.037) and was associated with a greater CSA of fast-twitch muscle fibers (p = 0.024). In conclusion, we present the first WES study of athletes showing that this approach can be used to identify novel genetic markers associated with exercise- and sport-related phenotypes.
Collapse
Affiliation(s)
- Celal Bulgay
- Sports Science Faculty, Bingol University, 12000 Bingol, Turkey
| | - Anıl Kasakolu
- Faculty of Agriculture, Ankara University, 06000 Ankara, Turkey
| | - Hasan Hüseyin Kazan
- Medical Genetics Department, Faculty of Medicine, Near East University, 1010–1107 Nicosia, Cyprus
- DESAM Institute, Near East University, 1010–1107 Nicosia, Cyprus
| | - Raluca Mijaica
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Braşov, Romania
- Correspondence:
| | - Erdal Zorba
- Sports Science Faculty, Gazi University, 06560 Ankara, Turkey
| | - Onur Akman
- Sports Science Faculty, Bayburt University, 69000 Bayburt, Turkey
| | - Isık Bayraktar
- Sports Science Faculty, Alanya Alaaddin Keykubat University, 07450 Alanya, Turkey
| | - Rıdvan Ekmekci
- Sports Science Faculty, Pamukkale University, 20160 Denizli, Turkey
| | | | - Korkut Ulucan
- Sports Department of Medical Biology and Genetics, Marmara University, 34722 Istanbul, Turkey
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Nikolay A. Kulemin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Lorand Balint
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Braşov, Romania
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Braşov, Romania
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Mehmet Ali Ergun
- Department of Medical Genetics, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| |
Collapse
|
29
|
Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients 2023; 15:nu15030758. [PMID: 36771461 PMCID: PMC9920138 DOI: 10.3390/nu15030758] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The substantial decline in skeletal muscle mass, strength, and gait speed is a sign of severe sarcopenia, which may partly depend on genetic risk factors. So far, hundreds of genome-wide significant single nucleotide polymorphisms (SNPs) associated with handgrip strength, lean mass and walking pace have been identified in the UK Biobank cohort; however, their pleiotropic effects on all three phenotypes have not been investigated. By combining summary statistics of genome-wide association studies (GWAS) of handgrip strength, lean mass and walking pace, we have identified 78 independent SNPs (from 73 loci) associated with all three traits with consistent effect directions. Of the 78 SNPs, 55 polymorphisms were also associated with body fat percentage and 25 polymorphisms with type 2 diabetes (T2D), indicating that sarcopenia, obesity and T2D share many common risk alleles. Follow-up bioinformatic analysis revealed that sarcopenia risk alleles were associated with tiredness, falls in the last year, neuroticism, alcohol intake frequency, smoking, time spent watching television, higher salt, white bread, and processed meat intake; whereas protective alleles were positively associated with bone mineral density, serum testosterone, IGF1, and 25-hydroxyvitamin D levels, height, intelligence, cognitive performance, educational attainment, income, physical activity, ground coffee drinking and healthier diet (muesli, cereal, wholemeal or wholegrain bread, potassium, magnesium, cheese, oily fish, protein, water, fruit, and vegetable intake). Furthermore, the literature data suggest that single-bout resistance exercise may induce significant changes in the expression of 26 of the 73 implicated genes in m. vastus lateralis, which may partly explain beneficial effects of strength training in the prevention and treatment of sarcopenia. In conclusion, we have identified and characterized 78 SNPs associated with sarcopenia and 55 SNPs with sarcopenic obesity in European-ancestry individuals from the UK Biobank.
Collapse
|
30
|
Kumagai H, Miller B, Kim SJ, Leelaprachakul N, Kikuchi N, Yen K, Cohen P. Novel Insights into Mitochondrial DNA: Mitochondrial Microproteins and mtDNA Variants Modulate Athletic Performance and Age-Related Diseases. Genes (Basel) 2023; 14:286. [PMID: 36833212 PMCID: PMC9956216 DOI: 10.3390/genes14020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Sports genetics research began in the late 1990s and over 200 variants have been reported as athletic performance- and sports injuries-related genetic polymorphisms. Genetic polymorphisms in the α-actinin-3 (ACTN3) and angiotensin-converting enzyme (ACE) genes are well-established for athletic performance, while collagen-, inflammation-, and estrogen-related genetic polymorphisms are reported as genetic markers for sports injuries. Although the Human Genome Project was completed in the early 2000s, recent studies have discovered previously unannotated microproteins encoded in small open reading frames. Mitochondrial microproteins (also called mitochondrial-derived peptides) are encoded in the mtDNA, and ten mitochondrial microproteins, such as humanin, MOTS-c (mitochondrial ORF of the 12S rRNA type-c), SHLPs 1-6 (small humanin-like peptides 1 to 6), SHMOOSE (Small Human Mitochondrial ORF Over SErine tRNA), and Gau (gene antisense ubiquitous in mtDNAs) have been identified to date. Some of those microproteins have crucial roles in human biology by regulating mitochondrial function, and those, including those to be discovered in the future, could contribute to a better understanding of human biology. This review describes a basic concept of mitochondrial microproteins and discusses recent findings about the potential roles of mitochondrial microproteins in athletic performance as well as age-related diseases.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya-ku, Tokyo 158-8508, Japan
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
31
|
Pratt J, Whitton L, Ryan A, Juliusdottir T, Dolan J, Conroy J, Narici M, De Vito G, Boreham C. Genes encoding agrin (AGRN) and neurotrypsin (PRSS12) are associated with muscle mass, strength and plasma C-terminal agrin fragment concentration. GeroScience 2023:10.1007/s11357-022-00721-1. [PMID: 36609795 PMCID: PMC10400504 DOI: 10.1007/s11357-022-00721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Although physiological data suggest that neuromuscular junction (NMJ) dysfunction is a principal mechanism underpinning sarcopenia, genetic studies have implicated few genes involved in NMJ function. Accordingly, we explored whether genes encoding agrin (AGRN) and neurotrypsin (PRSS12) were associated with sarcopenia phenotypes: muscle mass, strength and plasma C-terminal agrin fragment (CAF). PhenoScanner was used to determine if AGRN and/or PRSS12 variants had previously been implicated with sarcopenia phenotypes. For replication, we combined genotype from whole genome sequencing with phenotypic data from 6715 GenoFit participants aged 18-83 years. Dual energy X-ray absorptiometry assessed whole body lean mass (WBLM) and appendicular lean mass (ALM), hand dynamometry determined grip strength and ELISA measured plasma CAF in a subgroup (n = 260). Follow-up analyses included eQTL analyses, carrier analyses, single-variant and gene-burden tests. rs2710873 (AGRN) and rs71608359 (PRSS12) associate with muscle mass and strength phenotypes, respectively, in the UKBB (p = 8.9 × 10-6 and p = 8.4 × 10-6) and GenoFit cohort (p = 0.019 and p = 0.014). rs2710873 and rs71608359 are eQTLs for AGRN and PRSS12, respectively, in ≥ three tissues. Compared to non-carriers, carriers of rs2710873 had 4.0% higher WBLM and ALM (both p < 0.001), and 9.5% lower CAF concentrations (p < 0.001), while carriers of rs71608359 had 2.3% lower grip strength (p = 0.034). AGRN and PRSS12 are associated with muscle strength and mass in single-variant analyses, while PRSS12 has further associations with muscle strength in gene-burden tests. Our findings provide novel evidence of the relevance of AGRN and PRSS12 to sarcopenia phenotypes and support existing physiological data illustrating the importance of the NMJ in maintaining muscle health during ageing.
Collapse
Affiliation(s)
- Jedd Pratt
- Institute for Sport and Health, University College Dublin, Dublin, Ireland. .,Genuity Science, Dublin, Ireland. .,Department of Biomedical Sciences, CIR-Myo Myology Centre, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy.
| | | | | | | | | | | | - Marco Narici
- Department of Biomedical Sciences, CIR-Myo Myology Centre, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, CIR-Myo Myology Centre, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Zhang T, Ji L, Luo J, Wang W, Tian X, Duan H, Xu C, Zhang D. A genetic correlation and bivariate genome-wide association study of grip strength and depression. PLoS One 2022; 17:e0278392. [PMID: 36520780 PMCID: PMC9754196 DOI: 10.1371/journal.pone.0278392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Grip strength is an important biomarker reflecting muscle strength, and depression is a psychiatric disorder all over the world. Several studies found a significant inverse association between grip strength and depression, and there is also evidence for common physiological mechanisms between them. We used twin data from Qingdao, China to calculate genetic correlations, and we performed a bivariate GWAS to explore potential SNPs, genes, and pathways in common between grip strength and depression. 139 pairs of Dizygotic twins were used for bivariate GWAS. VEAGSE2 and PASCAL software were used for gene-based analysis and pathway enrichment analysis, respectively. And the resulting SNPs were subjected to eQTL analysis and pleiotropy analysis. The genetic correlation coefficient between grip strength and depression was -0.41 (-0.96, -0.15). In SNP-based analysis, 7 SNPs exceeded the genome-wide significance level (P<5×10-8) and a total of 336 SNPs reached the level of suggestive significance (P<1×10-5). Gene-based analysis and pathway-based analysis identified genes and pathways related to muscle strength and the nervous system. The results of eQTL analysis were mainly enriched in tissues such as the brain, thyroid, and skeletal muscle. Pleiotropy analysis shows that 9 of the 15 top SNPs were associated with both grip strength and depression. In conclusion, this bivariate GWAS identified potentially common pleiotropic SNPs, genes, and pathways in grip strength and depression.
Collapse
Affiliation(s)
- Tianhao Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong Province, China
| | - Lujun Ji
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong Province, China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong Province, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong Province, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
33
|
ALDH2 gene polymorphism is associated with fitness in the elderly Japanese population. J Physiol Anthropol 2022; 41:38. [PMID: 36335382 PMCID: PMC9636683 DOI: 10.1186/s40101-022-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism, which is exclusive to the Asian population, is related to many diseases. A high reactive oxygen species production in mitochondria, and low muscle strength in athletes and non-athletes, has been observed, as our previous study demonstrated. The purpose of this research was to investigate the influence of ALDH2 rs671 on the loss of muscle strength with aging and replicate our previous study in non-athletes. METHODS Healthy Japanese individuals (n = 1804) aged 23-94 years were genotyped using DNA extracted from saliva. Muscle strength was assessed using grip strength and chair stand test (CST). The interaction between age and genotypes was analyzed by two-way analysis of covariance (ANCOVA) adjusted for sex, body mass index (BMI), and exercise habit. RESULTS Individuals aged ≧55 with the AA genotype had a lower performance than those with the GG + GA genotype in the grip strength test (28.1 ± 9.1 kg vs. 29.1 ± 8.3 kg, p = 0.021). There was an interaction between age and genotype, where individuals with ≧55 years old AA genotype had a higher loss of strength compared to GG + GA genotypes in the CST (0.025). No interaction in other models and no sex differences were found. CONCLUSION This study replicated previous results of the relationship between the AA genotype with lower muscle strength and as a novelty showed that this genotype is associated with a higher age-related loss of strength.
Collapse
|
34
|
Herranen P, Palviainen T, Rantanen T, Tiainen K, Viljanen A, Kaprio J, Sillanpää E. A Polygenic Risk Score for Hand Grip Strength Predicts Muscle Strength and Proximal and Distal Functional Outcomes among Older Women. Med Sci Sports Exerc 2022; 54:1889-1896. [PMID: 35776845 DOI: 10.1249/mss.0000000000002981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Hand grip strength (HGS) is a widely used indicator of overall muscle strength and general health. We computed a polygenic risk score (PRS) for HGS and examined whether it predicted muscle strength, functional capacity, and disability outcomes. METHODS Genomewide association study summary statistics for HGS from the Pan-UK Biobank was used. PRS were calculated in the Finnish Twin Study on Aging ( N = 429 women, 63-76 yr). Strength tests included HGS, isometric knee extension, and ankle plantarflexion strength. Functional capacity was examined with the Timed Up and Go, 6-min and 10-m walk tests, and dual-task tests. Disabilities in the basic activities of daily living (ADL) and instrumental ADL (IADL) were investigated with questionnaires. The proportion of variation in outcomes accounted for by PRS HGS was examined using linear mixed models and extended logistic regression. RESULTS The measured HGS increased linearly over increasing PRS ( β = 4.8, SE = 0.93, P < 0.001). PRS HGS independently accounted for 6.1% of the variation in the measured HGS ( β = 14.2, SE = 3.1, P < 0.001), 5.4% of the variation in knee extension strength ( β = 19.6, SE = 4.7, P < 0.001), 1.2% of the variation in ankle plantarflexion strength ( β = 9.4, SE = 4.2, P = 0.027), and 0.1%-1.5% of the variation in functional capacity tests ( P = 0.016-0.133). Further, participants with higher PRS HGS were less likely to have ADL/IADL disabilities (odds ratio = 0.74-0.76). CONCLUSIONS Older women with genetic risk for low muscle strength were significantly weaker than those with genetic susceptibility for high muscle strength. PRS HGS was also systematically associated with overall muscle strength and proximal and distal functional outcomes that require muscle strength.
Collapse
Affiliation(s)
- Päivi Herranen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | | | - Taina Rantanen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - Kristina Tiainen
- Gerontology Research Center, Faculty of Social Sciences, Health Sciences, Tampere University, Tampere, FINLAND
| | - Anne Viljanen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, Helsinki, FINLAND
| | | |
Collapse
|
35
|
McAuley AB, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Baker J, Herbert AJ, Kelly AL. Genetic Variations between Youth and Professional Development Phase English Academy Football Players. Genes (Basel) 2022; 13:genes13112001. [PMID: 36360238 PMCID: PMC9689905 DOI: 10.3390/genes13112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to examine differences in the genotype frequency distribution of thirty-three single nucleotide variants (SNVs) between youth development phase (YDP) and professional development phase (PDP) academy football players. One hundred and sixty-six male football players from two Category 1 and Category 3 English academies were examined within their specific age phase: YDP (n = 92; aged 13.84 ± 1.63 years) and PDP (n = 74; aged 18.09 ± 1.51 years). Fisher's exact tests were used to compare individual genotype frequencies, whereas unweighted and weighted total genotype scores (TGS; TWGS) were computed to assess differences in polygenic profiles. In isolation, the IL6 (rs1800795) G allele was overrepresented in PDP players (90.5%) compared to YDP players (77.2%; p = 0.023), whereby PDP players had nearly three times the odds of possessing a G allele (OR = 2.83, 95% CI: 1.13-7.09). The TGS (p = 0.001) and TWGS (p < 0.001) were significant, but poor, in distinguishing YDP and PDP players (AUC = 0.643-0.694), with PDP players exhibiting an overall more power-orientated polygenic profile. If validated in larger independent youth football cohorts, these findings may have important implications for future studies examining genetic associations in youth football.
Collapse
Affiliation(s)
- Alexander B.T. McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
- Correspondence:
| | - David C. Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Loukia G. Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth, Bournemouth BH7 7AF, UK
| | - Joseph Baker
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Adam J. Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| | - Adam L. Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| |
Collapse
|
36
|
Saito A, Saito M, de Almeida KY, Homma H, Deguchi M, Kozuma A, Kobatake N, Okamoto T, Nakazato K, Kikuchi N. The Association between the ALDH2 rs671 Polymorphism and Athletic Performance in Japanese Power and Strength Athletes. Genes (Basel) 2022; 13:1735. [PMID: 36292620 PMCID: PMC9601891 DOI: 10.3390/genes13101735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 09/12/2023] Open
Abstract
The rs671 polymorphism is associated with the enzymatic activity of aldehyde dehydrogenase 2 (ALDH2), which is weakened by the A allele in East Asians. We recently reported the association of this polymorphism with the athletic status in athletic cohorts and the muscle strength of non-athletic cohorts. Therefore, we hypothesized the association of ALDH2 rs671 polymorphism with the performance in power/strength athletes. We aimed to clarify the relationship between the ALDH2 rs671 polymorphism and performance in power/strength athletes. Participants comprising 253 power/strength athletes (167 men and 86 women) and 721 healthy controls (303 men and 418 women) were investigated. The power/strength athletes were divided into classic powerlifting (n = 84) and weightlifting (n = 169). No differences in the genotypes and allele frequencies of the ALDH2 rs671 polymorphism and an association between performance and the ALDH2 rs671 genotype were observed in weightlifters. However, the relative values per body weight of the total record were lower in powerlifters with the GA + AA genotype than those with the GG genotype (7.1 ± 1.2 vs. 7.8 ± 1.0; p = 0.010, partial η2 = 0.08). Our results collectively indicate a role of the ALDH2 rs671 polymorphism in strength performance in powerlifters.
Collapse
Affiliation(s)
- Aoto Saito
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Mika Saito
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Kathleen Y. de Almeida
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Hiroki Homma
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Minoru Deguchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Ayumu Kozuma
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Naoyuki Kobatake
- Faculty of Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Takanobu Okamoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
- Faculty of Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
- Faculty of Medical Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
- Faculty of Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| |
Collapse
|
37
|
Outcomes of Genetic Testing-Based Cardiac Rehabilitation Program in Patients with Acute Myocardial Infarction after Percutaneous Coronary Intervention. Cardiol Res Pract 2022; 2022:9742071. [PMID: 36032316 PMCID: PMC9402363 DOI: 10.1155/2022/9742071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective There can be extreme variability between individual responses to exercise training, and the identification of genetic variants associated with individual variabilities in exercise-related traits could guide individualized exercise programs. We aimed to screen the exercise-related gene sensitivity of patients with acute myocardial infarction after PCI by establishing the gene spectrum of aerobic exercise and cardiopulmonary function sensitivity, test the effect of individualized precision exercise therapy, and provide evidence for the establishment of a precision medicine program for clinical research. Methods Aerobic exercise- and cardiopulmonary function-related genes and single-nucleotide polymorphisms (SNPs) were obtained by data mining utilizing a major publicly available biomedical repository, the NCBI PubMed database. Biological samples from all participants underwent DNA testing. We performed SNP detection using Samtools. A total of 122 patients who underwent PCI were enrolled in the study. We screened the first 24 cases with a high mutation frequency for aerobic exercise- and cardiopulmonary function-related genes and the last 24 cases with a low mutation frequency and separated them into two groups for the exercise intervention experiment. Results In both the low mutation frequency group and the high mutation frequency group, after 8 weeks of exercise intervention, 6 MWT distance, 6 MWT%, VO2/kg at peak, and VO2/kg at AT were significantly improved, and the effect in the high mutation frequency group was significantly higher than that in the low mutation frequency group (6 MWT distance: 468 vs. 439, P=0.003; 6 MWT%: 85 vs. 77, P=0.002, VO2/kg at peak: 14.7 vs. 13.3, P=0.002; VO2/kg at AT: 11.9 vs. 13.3, P=0.003). Conclusions There is extreme variability between individual responses to exercise training. The identification of genetic variants associated with individual variabilities in exercise-related traits could guide individualized exercise programs. We found that the subjects with a high mutation frequency in aerobic exercise and cardiopulmonary function-related genes achieved more cardiorespiratory fitness benefits in the aerobic exercise rehabilitation program and provided evidence for the establishment of a precision medicine program for clinical research.
Collapse
|
38
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
39
|
Kikuchi N, Moreland E, Homma H, Semenova EA, Saito M, Larin AK, Kobatake N, Yusupov RA, Okamoto T, Nakazato K, Williams AG, Generozov EV, Ahmetov II. Genes and Weightlifting Performance. Genes (Basel) 2021; 13:25. [PMID: 35052366 PMCID: PMC8775245 DOI: 10.3390/genes13010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
A recent case-control study identified 28 DNA polymorphisms associated with strength athlete status. However, studies of genotype-phenotype design are required to support those findings. The aim of the present study was to investigate both individually and in combination the association of 28 genetic markers with weightlifting performance in Russian athletes and to replicate the most significant findings in an independent cohort of Japanese athletes. Genomic DNA was collected from 53 elite Russian (31 men and 22 women, 23.3 ± 4.1 years) and 100 sub-elite Japanese (53 men and 47 women, 21.4 ± 4.2 years) weightlifters, and then genotyped using PCR or micro-array analysis. Out of 28 DNA polymorphisms, LRPPRC rs10186876 A, MMS22L rs9320823 T, MTHFR rs1801131 C, and PHACTR1 rs6905419 C alleles positively correlated (p < 0.05) with weightlifting performance (i.e., total lifts in snatch and clean and jerk in official competitions adjusted for sex and body mass) in Russian athletes. Next, using a polygenic approach, we found that carriers of a high (6-8) number of strength-related alleles had better competition results than carriers of a low (0-5) number of strength-related alleles (264.2 (14.7) vs. 239.1 (21.9) points; p = 0.009). These findings were replicated in the study of Japanese athletes. More specifically, Japanese carriers of a high number of strength-related alleles were stronger than carriers of a low number of strength-related alleles (212.9 (22.6) vs. 199.1 (17.2) points; p = 0.0016). In conclusion, we identified four common gene polymorphisms individually or in combination associated with weightlifting performance in athletes from East European and East Asian geographic ancestries.
Collapse
Affiliation(s)
- Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
- Faculty of Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan;
| | - Ethan Moreland
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
| | - Hiroki Homma
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420010 Kazan, Russia
| | - Mika Saito
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
| | - Naoyuki Kobatake
- Faculty of Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan;
| | - Rinat A. Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia;
| | - Takanobu Okamoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
- Faculty of Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan;
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan; (N.K.); (H.H.); (M.S.); (T.O.); (K.N.)
- Faculty of Medical Science, Nippon Sport Science University, Tokyo 158-8508, Japan
| | - Alun G. Williams
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK;
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
| | - Ildus I. Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK;
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Laboratory of Molecular Genetics, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
40
|
Wei Q. ACE and ACTN3 Gene Polymorphisms and Genetic Traits of Rowing Athletes in the Northern Han Chinese Population. Front Genet 2021; 12:736876. [PMID: 34721527 PMCID: PMC8551674 DOI: 10.3389/fgene.2021.736876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
This investigation aimed to explore the effects of ACE I/D and ACTN3 R577X gene polymorphisms on specific quantitative variables, including height, weight, arm span, biacromial breadth, forced vital capacity (FVC), FVC/weight, maximal oxygen uptake (VO2max), prone bench pull (PBP), loaded barbell squat (LBS), and 3,000-m run, in 243 Chinese rowing athletes. The ACE and ACTN3 genotypes were obtained for each athlete via polymerase chain reaction on saliva samples, and the genotype frequency was analyzed. The ACE genotype frequency of rowing athletes were 45.8% II, 42.2% ID, and 12% DD for males and 33.6% II, 48% ID, and 18.4% DD for females. There were significant differences in weight in male athletes, PBP in female athletes, and ACE genotypes. A linear regression analysis using PBP and LBS as different dependent variables and ACE genotypes as independent variables based on the ACE I allele additive genetic effect showed a statistical significance in female athletes (p < 0.05). There was a significant difference in the distribution of the three genotypes among male athletes (36.7% XX, 38.5% RX, and 24.8% RR, χ2 = 5.191, df = 2, p = 0.022 < 0.05). There were no significant differences in the distribution of the three genotypes among female athletes (23.8% XX, 47.8% RX, 28.4% RR, χ 2 = 0.24, df = 2, p = 0.619 > 0.05). The ACTN3 gene polymorphism of male rowing athletes was dominated by the ACTN3 577X allele. There were significant differences in the χ 2 test between groups of male athletes. The ACTN3 R577 allele was dominant in female athletes. There were significant differences between PBP and FVC/body weight and ACTN3 genotypes in male athletes by ANOVA, respectively (p < 0.05). A linear regression analysis using FVC and FVC/body weight as dependent variables and ACTN3 genotypes as independent variables based on the ACTN3 577X allele recessive genetic effect showed statistical significance in male athletes (p < 0.05). These results suggested that ACE and ACTN3 gene polymorphisms may be used as biomarkers of genetic traits in Chinese rowing athletes.
Collapse
Affiliation(s)
- Qi Wei
- Key Laboratory of General Administration of Sport of China, Wuhan, China
- Hubei Institute of Sports Science, Wuhan, China
| |
Collapse
|
41
|
Ginevičienė V, Jakaitienė A, Utkus A, Hall ECR, Semenova EA, Andryushchenko LB, Larin AK, Moreland E, Generozov EV, Ahmetov II. CKM Gene rs8111989 Polymorphism and Power Athlete Status. Genes (Basel) 2021; 12:1499. [PMID: 34680894 PMCID: PMC8536047 DOI: 10.3390/genes12101499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple genetic variants are known to influence athletic performance. These include polymorphisms of the muscle-specific creatine kinase (CKM) gene, which have been associated with endurance and/or power phenotypes. However, independent replication is required to support those findings. The aim of the present study was to determine whether the CKM (rs8111989, c.*800A>G) polymorphism is associated with power athlete status in professional Russian and Lithuanian competitors. Genomic DNA was collected from 693 national and international standard athletes from Russia (n = 458) and Lithuania (n = 235), and 500 healthy non-athlete subjects from Russia (n = 291) and Lithuania (n = 209). Genotyping for the CKM rs8111989 (A/G) polymorphism was performed using PCR or micro-array analysis. Genotype and allele frequencies were compared between all athletes and non-athletes, and between non-athletes and athletes, segregated according to population and sporting discipline (from anaerobic-type events). No statistically significant differences in genotype or allele frequencies were observed between non-athletes and power athletes (strength-, sprint- and speed/strength-oriented) athletes. The present study reports the non-association of the CKM rs8111989 with elite status in athletes from sports in which anaerobic energy pathways determine success.
Collapse
Affiliation(s)
- Valentina Ginevičienė
- Department of Human and Medical Genetics, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania; (V.G.); (A.J.); (A.U.)
| | - Audronė Jakaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania; (V.G.); (A.J.); (A.U.)
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Science, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania; (V.G.); (A.J.); (A.U.)
| | - Elliott C. R. Hall
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK; (E.C.R.H.); (E.M.)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420010 Kazan, Russia
| | - Liliya B. Andryushchenko
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia;
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
| | - Ethan Moreland
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK; (E.C.R.H.); (E.M.)
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
| | - Ildus I. Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK; (E.C.R.H.); (E.M.)
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (E.A.S.); (A.K.L.); (E.V.G.)
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia;
- Laboratory of Molecular Genetics, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
42
|
Ericsson YB, McGuigan FE, Akesson KE. Knee pain in young adult women- associations with muscle strength, body composition and physical activity. BMC Musculoskelet Disord 2021; 22:715. [PMID: 34419011 PMCID: PMC8380389 DOI: 10.1186/s12891-021-04517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Knee pain is studied mostly in older age groups, although in young adults it may be an indicator of future impaired musculoskeletal health. Therefore, the aim of this study was to examine the longitudinal association between knee pain and thigh muscle strength in young adult women and to explore the associations between muscle strength, body composition, physical activity and knee pain. METHODS The PEAK-25 cohort consists of women aged 25 at baseline (N=1064). At the 10-year follow-up n=728 attended for DXA-measured body composition and muscle strength assessment and n=797 answered the questionnaire on health and lifestyle. Independent samples t-test was used to compare women with and without knee pain, Spearman correlation was used to test the longitudinal association between strength and knee pain. RESULTS Knee pain was reported by one third of the women at follow-up (n=260, 33%), although physical activity levels were similar in those with and without pain (high level 50 vs 45 % (p= 0.18). Body composition differed, however. Women with knee pain had higher BMI (25.6 vs 24.1), fat mass index (9.2 vs 8.2) and % total body fat mass (34.7 vs 33.2). Simultaneously, they had lower % lean mass (total body 61.5 vs 62.8; legs 20.6 vs 21.0) and lower thigh muscle strength (extensors 184.9 vs 196.8, flexors 96.6 vs 100.9, p<0.05), but slightly higher hamstrings-to -quadriceps ratio (0.53 vs 0.51, p=0.04). Muscle strength at baseline weakly correlated with knee pain at follow-up (extensor rs= -0.04; flexor -0.02, p>0.2). Overweight women had higher absolute thigh muscle strength, but lower weight-adjusted strength than normal weight women (p<0.001). Leg lean mass explained 26-34% of the variation in muscle strength and adjustment for physical activity level had little effect. CONCLUSION Knee pain is already common among women in their mid-thirties. Lower thigh muscle strength in the mid-twenties was not associated with future knee pain, however women with knee pain tended to have lower thigh muscle strength and a body composition of higher body fat combined with lower lean mass. Maintaining a healthy body composition and adequate thigh muscle strength may be beneficial for knee joint health.
Collapse
Affiliation(s)
- Ylva B Ericsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Ortopedics, Skane University Hospital, 205 02, Malmö, Sweden
| | | | - Kristina E Akesson
- Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Department of Ortopedics, Skane University Hospital, 205 02, Malmö, Sweden.
| |
Collapse
|
43
|
Association between physical activity, grip strength and sedentary behaviour with incidence of malignant melanoma: results from the UK Biobank. Br J Cancer 2021; 125:593-600. [PMID: 34059803 PMCID: PMC8368160 DOI: 10.1038/s41416-021-01443-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Physical activity has been positively related to malignant melanoma. However, that association may be confounded by ultraviolet radiation (UV), a variable closely related to both outdoor physical activity and malignant melanoma. We examined physical activity, grip strength and sedentary behaviour in relation to risk of malignant melanoma, accounting for relevant confounders using data from a prospective cohort study. METHODS In 350,512 UK Biobank participants aged 38-73 years at baseline, physical activity was assessed with a modified version of the International Physical Activity Questionnaire Short Form, grip strength was measured with a hand dynamometer, and sedentary behaviour was recorded with three specific questions. Multivariable hazard ratios (HR) and corresponding 95% confidence intervals (CI) were estimated using Cox proportional hazards regression. RESULTS During 7 years of follow-up, 1239 incident malignant melanoma diagnoses were recorded. Physical activity and sedentary behaviour were unrelated to malignant melanoma (HRs 1.01 (95% CI 0.95-1.07) and 1.04 (95% CI 0.97-1.12), respectively), and the initially positive association with grip strength in the basic model (HR 1.23, 95% CI 1.08-1.40) was attenuated after full adjustment (HR 1.10, 95% CI 0.96-1.26). CONCLUSION Physical activity, grip strength and sedentary behaviour are not associated with malignant melanoma risk.
Collapse
|
44
|
Sarnowski C, Chen H, Biggs ML, Wassertheil-Smoller S, Bressler J, Irvin MR, Ryan KA, Karasik D, Arnett DK, Cupples LA, Fardo DW, Gogarten SM, Heavner BD, Jain D, Kang HM, Kooperberg C, Mainous AG, Mitchell BD, Morrison AC, O’Connell JR, Psaty BM, Rice K, Smith AV, Vasan RS, Windham BG, Kiel DP, Murabito JM, Lunetta KL. Identification of novel and rare variants associated with handgrip strength using whole genome sequence data from the NHLBI Trans-Omics in Precision Medicine (TOPMed) Program. PLoS One 2021; 16:e0253611. [PMID: 34214102 PMCID: PMC8253404 DOI: 10.1371/journal.pone.0253611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Handgrip strength is a widely used measure of muscle strength and a predictor of a range of morbidities including cardiovascular diseases and all-cause mortality. Previous genome-wide association studies of handgrip strength have focused on common variants primarily in persons of European descent. We aimed to identify rare and ancestry-specific genetic variants associated with handgrip strength by conducting whole-genome sequence association analyses using 13,552 participants from six studies representing diverse population groups from the Trans-Omics in Precision Medicine (TOPMed) Program. By leveraging multiple handgrip strength measures performed in study participants over time, we increased our effective sample size by 7-12%. Single-variant analyses identified ten handgrip strength loci among African-Americans: four rare variants, five low-frequency variants, and one common variant. One significant and four suggestive genes were identified associated with handgrip strength when aggregating rare and functional variants; all associations were ancestry-specific. We additionally leveraged the different ancestries available in the UK Biobank to further explore the ancestry-specific association signals from the single-variant association analyses. In conclusion, our study identified 11 new loci associated with handgrip strength with rare and/or ancestry-specific genetic variations, highlighting the added value of whole-genome sequencing in diverse samples. Several of the associations identified using single-variant or aggregate analyses lie in genes with a function relevant to the brain or muscle or were reported to be associated with muscle or age-related traits. Further studies in samples with sequence data and diverse ancestries are needed to confirm these findings.
Collapse
Affiliation(s)
- Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Mary L. Biggs
- Cardiovascular Health Unit, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, United States of America
| | - Kathleen A. Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - David Karasik
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States of America
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Donna K. Arnett
- University of Kentucky, College of Public Health, Lexington, KY, United States of America
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
- National Heart Lung and Blood Institute and Boston University’s Framingham Heart Study, Framingham, MA, United States of America
| | - David W. Fardo
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America
| | - Stephanie M. Gogarten
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Benjamin D. Heavner
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Arch G. Mainous
- Department of Health Services Research, Management and Policy, University of Florida, Gainesville, FL, United States of America
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Bruce M. Psaty
- Cardiovascular Health Unit, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Departments of Epidemiology and Health Services, University of Washington, Seattle, WA, United States of America
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States of America
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Albert V. Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America
| | - Ramachandran S. Vasan
- National Heart Lung and Blood Institute and Boston University’s Framingham Heart Study, Framingham, MA, United States of America
- Section of Preventive Medicine and Epidemiology, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
- Whitaker Cardiovascular Institute and Cardiology Section, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - B. Gwen Windham
- The MIND Center, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Douglas P. Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States of America
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Broad Institute of Harvard & MIT, Cambridge, MA, United States of America
| | - Joanne M. Murabito
- National Heart Lung and Blood Institute and Boston University’s Framingham Heart Study, Framingham, MA, United States of America
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, United States of America
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America
| | | | | |
Collapse
|
45
|
Gustafsson T, Ulfhake B. Sarcopenia: What Is the Origin of This Aging-Induced Disorder? Front Genet 2021; 12:688526. [PMID: 34276788 PMCID: PMC8285098 DOI: 10.3389/fgene.2021.688526] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
We here review the loss of muscle function and mass (sarcopenia) in the framework of human healthspan and lifespan, and mechanisms involved in aging. The rapidly changing composition of the human population will impact the incidence and the prevalence of aging-induced disorders such as sarcopenia and, henceforth, efforts to narrow the gap between healthspan and lifespan should have top priority. There are substantial knowledge gaps in our understanding of aging. Heritability is estimated to account for only 25% of lifespan length. However, as we push the expected lifespan at birth toward those that we consider long-lived, the genetics of aging may become increasingly important. Linkage studies of genetic polymorphisms to both the susceptibility and aggressiveness of sarcopenia are still missing. Such information is needed to shed light on the large variability in clinical outcomes between individuals and why some respond to interventions while others do not. We here make a case for the concept that sarcopenia has a neurogenic origin and that in manifest sarcopenia, nerve and myofibers enter into a vicious cycle that will escalate the disease progression. We point to gaps in knowledge, for example the crosstalk between the motor axon, terminal Schwann cell, and myofiber in the denervation processes that leads to a loss of motor units and muscle weakness. Further, we argue that the operational definition of sarcopenia should be complemented with dynamic metrics that, along with validated biomarkers, may facilitate early preclinical diagnosis of individuals vulnerable to develop advanced sarcopenia. We argue that preventive measures are likely to be more effective to counter act aging-induced disorders than efforts to treat manifest clinical conditions. To achieve compliance with a prescription of preventive measures that may be life-long, we need to identify reliable predictors to design rational and convincing interventions.
Collapse
Affiliation(s)
- Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brun Ulfhake
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Zhang L, Sun J, Li Z, Zhang D. The relationship between serum folate and grip strength in American adults. Arch Osteoporos 2021; 16:97. [PMID: 34148134 DOI: 10.1007/s11657-021-00937-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED We used data from NHANES to explore the associations between serum folate and grip strength, and found that high levels of serum folate were associated with increased grip strength among females rather than males. It is recommended to maintain a proper level of serum folate, especially in women. PURPOSE Associations and dose-response relationships between serum total folate, 5-methyltetrahydrofolate, and grip strength in general adults were unknown. Thus, we conducted this analysis for further exploration. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) database of 2011-2014 cycle were used. The independent variables including serum total folate, combined total folate (total folate plus Mefox), and 5-methyltetrahydrofolate. The dependent variable was BMI-corrected grip strength. Linear regression and the restricted cubic splines were used in our analyses. RESULTS A total of 9079 adults aged over 20 years were included. In multivariate-adjusted model 2, compared with quartile (Q) 1, grip strength increased in Q3 of combined total folate and total folate, and the weighted β values with 95% confidence intervals (CIs) of grip strength were 0.06 (0.01, 0.12) and 0.06 (0.00, 0.10) for combined total folate and total folate, respectively. In the stratified analysis by gender, positive relationships between combined total folate, total folate, and 5-methyltetrahydrofolate and grip strength were found only in females, with β (95% CIs) of 0.07 (0.02, 0.12), 0.07 (0.03, 0.12), and 0.09 (0.05, 0.13) for combined total folate, total folate, and 5-methyltetrahydrofolate in Q4, respectively. Non-linear positive dose-response relationships between serum folate and grip strength were also found only in females, not in males. CONCLUSION Our study suggested a positive association between serum folate and grip strength, while this positive association was only found in females; besides, the dose-response relationships were in a non-linear trend. Thus, it is recommended to maintain a proper serum folate level to keep better muscle strength, especially for women.
Collapse
Affiliation(s)
- Liming Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China
| | - Jing Sun
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China
| | - Zhaoying Li
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266021, China.
| |
Collapse
|
47
|
He H, Lu H, Liu S, Cai J, Tang X, Mo C, Xu X, Chen Q, Xu M, Nong C, Liu Q, Zhang J, Qin J, Zhang Z. Effects of the association between APOE rs405509 polymorphisms and gene-environment interactions on hand grip strength among middle-aged and elderly people in a rural population in southern China. J Orthop Surg Res 2021; 16:372. [PMID: 34116692 PMCID: PMC8194121 DOI: 10.1186/s13018-021-02522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/03/2021] [Indexed: 08/30/2023] Open
Abstract
Background Hand grip strength is a complex phenotype. The current study aimed to identify the effects of the association between APOE rs405509 polymorphisms and gene-environment interactions on hand grip strength among middle-aged and elderly people in a rural population in Gongcheng, southern China. Methods APOE rs405509 polymorphisms in 1724 participants (695 men and 1029 women, aged 45–97 years old) were genotyped using the Sequenom MassARRAY platform. Statistical analysis was conducted using SPSS 21.0 and Plink 1.90. Results The APOE rs405509 G allele was associated with lower hand grip strength in all participants (β = −1.04, P value <0.001), and the correlation seemed to be even stronger among women. A significant gene-environment interaction was observed between APOE rs405509 and smoking, especially in men. The hand grip strength of male smokers carrying the GG genotype was significantly higher than that of nonsmokers (P value = 0.004). Conclusions APOE rs405509 polymorphisms might be genetic factors that affect hand grip strength in a rural population in Gongcheng, southern China. The APOE rs405509-smoking interaction has an impact on hand grip strength.
Collapse
Affiliation(s)
- Haoyu He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Quality Management, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Huaxiang Lu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Guangxi Science and Technology Major Project, Guangxi Zhuang Autonomous Region Center for Diseases Control and Prevention, 18 Jinzhou Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shuzhen Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiansheng Cai
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chunbao Mo
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xia Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quanhui Chen
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Min Xu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuntao Nong
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qiumei Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Junling Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Zhiyong Zhang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, China. .,School of Public Health, Guilin Medical University, 20 Lequn Road, Guilin, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
48
|
Gleason BH, Hornsby WG, Suarez DG, Nein MA, Stone MH. Troubleshooting a Nonresponder: Guidance for the Strength and Conditioning Coach. Sports (Basel) 2021; 9:sports9060083. [PMID: 34198730 PMCID: PMC8227041 DOI: 10.3390/sports9060083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Ideally an athlete would continue to improve performance indefinitely over time, however improvement slows as the athlete approaches their genetic limits. Measuring performance is complex—performance may be temporarily depressed following aggressive training for multiple reasons, physiological and psychosocial. This reality may be vexing to the strength and conditioning coach, who, as a service provider, must answer to sport coaches about an athlete’s progress. Recently an evaluation mechanism for strength and conditioning coaches was proposed, in part to help coaches establish their effectiveness within the organization. Without formal guidance and realistic expectations, if an athlete is not bigger, leaner, stronger, etc. as a result of training within a specified timeframe, blame is often placed upon the strength and conditioning coach. The purpose of this article is to explore possible causes of what may be perceived as athlete non-responses to training and to provide guidance for the coach on how to handle those issues within their domain. A process of investigation is recommended, along with resources to assist coaches as they consider a broad range of issues, including enhancing existing testing methods, improving athlete behaviors, and adjusting processes designed to bring about performance improvement.
Collapse
Affiliation(s)
- Benjamin H. Gleason
- Department of Kinesiology, Louisiana Tech University, Ruston, LA 71272, USA
- Correspondence:
| | - William G. Hornsby
- College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, WV 26505, USA;
| | - Dylan G. Suarez
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, & Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.S.); (M.H.S.)
| | - Matthew A. Nein
- Department of Athletics, Salisbury University, Salisbury, MD 21801, USA;
| | - Michael H. Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, & Kinesiology, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.S.); (M.H.S.)
| |
Collapse
|
49
|
Montazeri-Najababady N, Dabbaghmanesh MH, Nasimi N, Sohrabi Z, Chatrabnous N. The association between TP53 rs1625895 polymorphism and the risk of sarcopenic obesity in Iranian older adults: a case-control study. BMC Musculoskelet Disord 2021; 22:438. [PMID: 33985476 PMCID: PMC8120782 DOI: 10.1186/s12891-021-04314-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/30/2021] [Indexed: 01/30/2023] Open
Abstract
Background Aging and obesity are the two major global health concerns. Sarcopenia, an age-linked disease, wherein a progressive loss of muscle volume, muscle strength, and physical activity occurs. In this study we evaluated the association of TP53 rs1625895 polymorphism with the susceptibility to sarcopenic obesity in Iranian old-age subjects. Methods Total of 176 old individuals (45 sarcopenic and 131 healthy) were recruited in this research and genotyped by PCR–RFLP. BMI, Skeletal Muscle Mass Index, body composition, Handgrip Strength, Gait Speed (GS), and biochemical parameters were measured. Chi-square test was done for genotypes and alleles frequency. Linear regression was applied to find the correlation between TP53 rs1625895 polymorphism, and biochemical and anthropometric parameters. The correlation between TP53 rs1625895 and the risk of sarcopenia and sarcopenic obesity was investigated by logistic regression. Results G allele was significantly higher in sarcopenic obesity group [P = 0.037, OR (CI 95%) = 1.9 (1.03–3.5)] compared to A allele. BMI (P = 0.049) and LDL (P = 0.04) were significantly differed between genotypes when GG was compared to AA/AG genotype. The results revealed when GG genotype compared to AA/AG genotype in adjusted model for age, the risk of sarcopenic obesity [P value = 0.011, OR (CI 95%); 2.72 (1.25–5.91)] increased. Similarly, GG/AG genotype increased the risk of sarcopenic obesity [P value = 0.028, OR (CI 95%); 2.43 (1.10–5.36)] in adjusted model for age compared to AA genotype. Conclusions We suggested that TP53 rs1625895 polymorphism may increase the risk of sarcopenic obesity in Iranian population.
Collapse
Affiliation(s)
| | | | - Nasrin Nasimi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sohrabi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
50
|
Brener A, Waksman Y, Rosenfeld T, Levy S, Peleg I, Raviv A, Interator H, Lebenthal Y. The heritability of body composition. BMC Pediatr 2021; 21:225. [PMID: 33964919 PMCID: PMC8105919 DOI: 10.1186/s12887-021-02695-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Physical growth during childhood and adolescence is influenced by both genetic and environmental factors. Heritability, the proportion of phenotypic variance explained by genetic factors, has been demonstrated for stature and weight status. The aim of this study was to explore the heritability of body composition. METHODS A real-life, observational study of the children and adolescents referred to the Endocrine Unit in a tertiary medical center. In January 2018, body composition by means of bioimpedance analysis (BIA) was implemented as part of the standard intake assessment of subjects referred for endocrine consultation. The clinic BIA database was searched for subjects with the term "observation of growth" as the sole reason for referral. BIA of 114 triads of healthy subjects aged 5-18 years and their parents were analyzed. The BIA report included the following data: fat mass, fat percentage, truncal fat percentage and muscle mass. Calculated variables included: appendicular skeletal muscle mass (ASMM = the sum of muscle mass of four limbs), muscle-to-fat ratio [MFR = ASMM (kg)/fat mass (kg)] and sarcopenic index [(SI = ASMM(kg)/height (meter)²]. Data collection from medical files included pubertal stage and home address for socioeconomic position grading. RESULTS There were sex differences in body composition parameters in both the prepubertal and pubertal subjects. The boys among the prepubertal subjects had a lower fat percentage on average than girls (p = 0.020). Among the adolescents, boys on average had lower fat percentage (p = 0.011), higher sarcopenic index (p = 0.021), and higher muscle-to-fat ratio (p < 0.001), than adolescent girls. Correlation analyses between body composition parameters of all participants revealed significant correlations in the sarcopenic index of prepubertal children and their parents (boys-fathers: r = 0.380, p = 0.050; boys-mothers: r = 0.435, p = 0.026; girls-fathers: r = 0.462, p = 0.012; girls-mothers: r = 0.365, p = 0.050) and adiposity indices (fat percentage, truncal fat percentage and muscle-to-fat ratio) of prepubertal boys and their mothers (r = 0.438, p = 0.025; r = 0.420, p = 0.033, and r = 0.478, p = 0.014, respectively). There were no associations between body composition parameters of adolescents and their parents. Socioeconomic position adversely affected fat percentage in adolescent girls and mothers. CONCLUSIONS Heritable body composition traits were demonstrated in childhood but not in adolescence, suggesting that environmental influence has a more telling effect during teenage years.
Collapse
Affiliation(s)
- Avivit Brener
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Yarden Waksman
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talya Rosenfeld
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Nutrition & Dietetics Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sigal Levy
- Statistical Education Unit, The Academic College of Tel Aviv Yaffo, Tel Aviv, Israel
| | - Itai Peleg
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Raviv
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Interator
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Nutrition & Dietetics Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Lebenthal
- Pediatric Endocrinology and Diabetes Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|