Shields RK, Lee J, Buelow A, Petrie M, Dudley-Javoroski S, Cross S, Gutmann L, Nopoulos PC. Myotonic dystrophy type 1 alters muscle twitch properties, spinal reflexes, and perturbation-induced trans-cortical reflexes.
Muscle Nerve 2019;
61:205-212. [PMID:
31773755 DOI:
10.1002/mus.26767]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND
Neurophysiologic biomarkers are needed for clinical trials of therapies for myotonic dystrophy (DM1). We characterized muscle properties, spinal reflexes (H-reflexes), and trans-cortical long-latency reflexes (LLRs) in a cohort with mild/moderate DM1.
METHODS
Twenty-four people with DM1 and 25 matched controls underwent assessment of tibial nerve H-reflexes and soleus muscle twitch properties. Quadriceps LLRs were elicited by delivering an unexpected perturbation during a single-limb squat (SLS) visuomotor tracking task.
RESULTS
DM1 was associated with decreased H-reflex depression. The efficacy of doublet stimulation was enhanced, yielding an elevated double-single twitch ratio. DM1 participants demonstrated greater error during the SLS task. DM1 individuals with the least-robust LLR responses showed the greatest loss of spinal H-reflex depression.
CONCLUSIONS
DM1 is associated with abnormalities of muscle twitch properties. Co-occurring alterations of spinal and trans-cortical reflex properties underscore the central nervous system manifestations of this disorder and may assist in gauging efficacy during clinical trials.
Collapse