1
|
Cebrián-Ponce Á, Marini E, Stagi S, Castizo-Olier J, Carrasco-Marginet M, Garnacho-Castaño MV, Noriega Z, Espasa-Labrador J, Irurtia A. Body fluids and muscle changes in trail runners of various distances. PeerJ 2023; 11:e16563. [PMID: 38054016 PMCID: PMC10695110 DOI: 10.7717/peerj.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Background This study aims to investigate body fluids and muscle changes evoked by different trail races using anthropometric, bioelectrical, and creatine kinase (CK) measurements. Methods A total of 92 subjects (55 men, 37 women) participating in three different races of 14, 35, and 52 km were evaluated before (PRE) and after (POST) the races. Classic bioelectrical impedance vector analysis was applied at the whole-body level (WB-BIVA). Additionally, muscle-localized bioelectrical assessments (ML-BIVA) were performed in a subgroup of 11 men (in the quadriceps, hamstrings, and calves). PRE-POST differences and correlations between bioelectrical values and CK, running time and race distance were tested. Results Changes in whole-body vectors and phase angles disclosed an inclination towards dehydration among men in the 14, 35, and 52 km groups (p < 0.001), as well as among women in the 35 and 52 km groups (p < 0.001). PRE Z/H was negatively correlated with running time in the 35 km men group and 14 km women group (r = -0.377, p = 0.048; r = -0.751, p = 0.001; respectively). POST Z/H was negatively correlated with running time in the 14 km women group (r = -0.593, p = 0.02). CK was positively correlated with distance in men and women (p < 0.001) and negatively correlated with reactance and vector length in the 14 km men group (p < 0.05). ML-BIVA echoed the same tendency as the WB-BIVA in the 35 and 52 km runners, with the most notable changes occurring in the calves (p < 0.001). Conclusions WB-BIVA and CK measurements underscored a conspicuous trend towards post-race dehydration and muscle damage, displaying a weak association with performance. Notably, ML-BIVA detected substantial alterations primarily in the calves. The study underscores the utility of BIVA as a technique to assess athlete's body composition changes.
Collapse
Affiliation(s)
- Álex Cebrián-Ponce
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| | - Elisabetta Marini
- Department of Life and Environmental Sciences. Neuroscience and Anthropology Section, University of Cagliari, Cagliari, Italy
| | - Silvia Stagi
- Department of Life and Environmental Sciences. Neuroscience and Anthropology Section, University of Cagliari, Cagliari, Italy
| | - Jorge Castizo-Olier
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
- DAFNiS Research Group (Pain, Physical Activity, Nutrition and Health), Campus Docent Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Marta Carrasco-Marginet
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| | - Manuel Vicente Garnacho-Castaño
- DAFNiS Research Group (Pain, Physical Activity, Nutrition and Health), Campus Docent Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Faculty of Health Sciences, Valencian International University (VIU), Valencia, Spain
| | - Zeasseska Noriega
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| | - Javier Espasa-Labrador
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| | - Alfredo Irurtia
- INEFC-Barcelona Sports Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC). University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Souron R, Carayol M, Martin V, Piponnier E, Duché P, Gruet M. Differences in time to task failure and fatigability between children and young adults: A systematic review and meta-analysis. Front Physiol 2022; 13:1026012. [DOI: 10.3389/fphys.2022.1026012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
The transition from childhood to adulthood is characterized by many physiological processes impacting exercise performance. Performance fatigability and time to task failure are commonly used to capture exercise performance. This review aimed to determine the differences in fatigability and TTF between youth (including both children and adolescents) and young adults, and to evaluate the influence of exercise modalities (i.e., exercise duration and type of exercise) on these differences. Medline, SPORTDiscus and Cochrane Library were searched. Thirty-four studies were included. The meta-analyses revealed that both children (SMD −1.15; p < 0.001) and adolescents (SMD −1.26; p = 0.022) were less fatigable than adults. Additional analysis revealed that children were less fatigable during dynamic exercises (SMD −1.58; p < 0.001) with no differences during isometric ones (SMD –0.46; p = 0.22). Children (SMD 0.89; p = 0.018) but not adolescents (SMD 0.75; p = 0.090) had longer TTF than adults. Additional analyses revealed 1) that children had longer TTF for isometric (SMD 1.25; p < 0.001) but not dynamic exercises (SMD −0.27; p = 0.83), and 2) that TTF differences between children and adults were larger for short- (SMD 1.46; p = 0.028) than long-duration exercises (SMD 0.20; p = 0.64). Children have higher endurance and are less fatigable than adults. These differences are influenced by the exercise modality, suggesting distinct physiological functioning during exercise between children and adults. The low number of studies comparing these outcomes between adolescents versus children and adults prevents robust conclusions and warrants further investigations in adolescent individuals.
Collapse
|
3
|
Tiller NB, Wheatley-Guy CM, Fermoyle CC, Robach P, Ziegler B, Gavet A, Schwartz JC, Taylor BJ, Constantini K, Murdock R, Johnson BD, Stewart GM. Sex-Specific Physiological Responses to Ultramarathon. Med Sci Sports Exerc 2022; 54:1647-1656. [PMID: 35653262 DOI: 10.1249/mss.0000000000002962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Despite a growing body of literature on the physiological responses to ultramarathon, there is a paucity of data in females. This study assessed the female physiological response to ultramarathon and compared the frequency of perturbations to a group of race- and time-matched males. METHODS Data were collected from 53 contestants of an ultramarathon trail race at the Ultra-Trail du Mont-Blanc (UTMB®) in 2018/19. Before and within 2 h of the finish, participants underwent physiological assessments, including blood sampling for biomarkers (creatine kinase-MB isoenzyme [CK-MB], cardiac troponin I [cTnI], brain natriuretic peptide [BNP], and creatinine [Cr]), pulmonary function testing (spirometry, exhaled NO, diffusing capacities, and mouth pressures), and transthoracic ultrasound (lung comet tails, cardiac function). Data from eight female finishers (age = 36.6 ± 6.9 yr; finish time = 30:57 ± 11:36 h:min) were compared with a group of eight time-matched males (age = 40.3 ± 8.3 yr; finish time = 30:46 ± 10:32 h:min). RESULTS Females exhibited significant pre- to postrace increases in BNP (25.8 ± 14.6 vs 140.9 ± 102.7 pg·mL -1 ; P = 0.007) and CK-MB (3.3 ± 2.4 vs 74.6 ± 49.6 IU·L -1 ; P = 0.005), whereas males exhibited significant pre- to postrace increases in BNP (26.6 ± 17.5 vs 96.4 ± 51.9 pg·mL -1 ; P = 0.002), CK-MB (7.2 ± 3.9 vs 108.8 ± 37.4 IU·L -1 ; P = 0.002), and Cr (1.06 ± 0.19 vs 1.23 ± 0.24 mg·dL -1 ; P = 0.028). Lung function declined in both groups, but males exhibited additional reductions in lung diffusing capacities (DL CO = 34.4 ± 5.7 vs 29.2 ± 6.9 mL⋅min -1 ⋅mm Hg -1 , P = 0.004; DL NO = 179.1 ± 26.2 vs 152.8 ± 33.4 mL⋅min -1 ⋅mm Hg -1 , P = 0.002) and pulmonary capillary blood volumes (77.4 ± 16.7 vs 57.3 ± 16.1 mL; P = 0.002). Males, but not females, exhibited evidence of mild postrace pulmonary edema. Pooled effect sizes for within-group pre- to postrace changes, for all variables, were generally larger in males versus females ( d = 0.86 vs 0.63). CONCLUSIONS Ultramarathon negatively affects a range of physiological functions but generally evokes more frequent perturbations, with larger effect sizes, in males compared to females with similar race performances.
Collapse
Affiliation(s)
- Nicholas B Tiller
- Institute of Respiratory Medicine and Exercise Physiology, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | | | | | - Paul Robach
- Ecole Nationale des Sports de Montagne, Chamonix, FRANCE
| | - Briana Ziegler
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Alice Gavet
- Ecole Nationale des Sports de Montagne, Chamonix, FRANCE
| | - Jesse C Schwartz
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ
| | - Bryan J Taylor
- Department of Cardiovascular Diseases, Mayo Clinic, Jacksonville, FL
| | - Keren Constantini
- School of Public Health, Sackler Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, ISRAEL
| | | | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
4
|
Fouré A, Besson T, Stauffer E, Skinner SC, Bouvier J, Féasson L, Connes P, Hautier CA, Millet GY. Sex-related differences and effects of short and long trail running races on resting muscle-tendon mechanical properties. Scand J Med Sci Sports 2022; 32:1477-1492. [PMID: 35730335 DOI: 10.1111/sms.14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/13/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
The purpose of the study was to assess sex-related differences in resting mechanical properties and adaptations of skeletal muscles and tendons in response to trail running races of different distances using multi-site shear wave elastography assessments of the lower limb, force capacity and blood analyses. Sex differences in resting mechanical properties of knee extensor and plantar flexor muscles and tendons were characterized by shear wave velocity measurements in healthy males (N=42) and females (N=25) trained in long distance running. Effects of running distance on muscle and tendon properties were assessed in short (<60km, N=23) vs. long (>100km, N=26) distance races. Changes in isometric maximal voluntary contraction torque, serum C-reactive protein and creatine kinase activity were also quantified after running races. Higher shear wave velocity of relaxed triceps surae muscle was detected in females as compared to males before running races (+4.8%, p=0.006), but the significant increases in triceps surae muscle group (+7.0%, p=0.001) and patellar tendon shear wave velocity (+15.4%, p=0.001) after short-distance races were independent of sex. A significant decrease in triceps surae muscle shear wave velocity was found after long-distance races in the whole experimental population (-3.1%, p=0.049). Post-races increase in C-reactive protein and creatine kinase activity were significantly correlated to the relative decreases in triceps surae and quadriceps femoris skeletal muscle shear wave velocity (ρ=-0.56, p=0.001 and ρ=-0.51, p=0.001, respectively). Resting mechanical properties of muscles and tendons are affected by sex, and that adaptations to trail races are related to running distance. Exercise-induced changes in resting skeletal muscle mechanical properties are associated with enhanced indirect markers of inflammation and muscle damage.
Collapse
Affiliation(s)
- Alexandre Fouré
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France
| | - Thibault Besson
- Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Campus Santé Innovations-IRMIS, Saint Priest en Jarez, France
| | - Emeric Stauffer
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France.,Hospices Civils de Lyon, Exploration Fonctionnelle Respiratoire, Médecine du Sport et de l'Activité Physique, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Sarah C Skinner
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Jérémie Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France
| | - Léonard Féasson
- Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Campus Santé Innovations-IRMIS, Saint Priest en Jarez, France.,CHU St Etienne, Unité de Myologie, Centre Référent Maladies Neuromusculaires Rares, Euro-NmD, Saint-Etienne, France
| | - Philippe Connes
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Institut Universitaire de France, Paris, France
| | - Christophe A Hautier
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France
| | - Guillaume Y Millet
- Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Campus Santé Innovations-IRMIS, Saint Priest en Jarez, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
5
|
Lecina M, Castellar C, Pradas F, López-Laval I. 768-km Multi-Stage Ultra-Trail Case Study-Muscle Damage, Biochemical Alterations and Strength Loss on Lower Limbs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020876. [PMID: 35055697 PMCID: PMC8776162 DOI: 10.3390/ijerph19020876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/12/2023]
Abstract
A series of case studies aimed to evaluate muscular fatigue in running a 768-km ultra-trail race in 11 days. Four non-professional athletes (four males) were enrolled. Muscle damage blood biomarkers (creatine kinase (CK), lactodeshydrogenase (LDH), aspartate transaminase (AST) and alanine aminotransferase (ALT) and lower limb strength were evaluated by using Bosco jumps test; squat jump (SJ), countermovement jump (CMJ) and Abalakov jump (ABA) were assessed before (pre), after the race (post) and for two and nine days during the recovery period (rec2 and rec9), respectively. Results showed: pre-post SJ = −28%, CMJ = −36% and ABA = −21%. Values returned to basal during rec9: SJ = −1%, CMJ = −2% or even exceeded pre-values ABA = +3%. On the contrary, muscle damage blood biomarkers values increased at post; CK = +888%, LDH = +172%, AST = +167% and ALT = +159% and the values returned gradually to baseline at rec9 except for AST = +226% and ALT = +103% which remained higher. Nonparametric bivariate Spearman’s test showed strong correlations (Rs ≥ 0.8) between some jumps and muscle damage biomarkers at post (SJ-LDH Rs = 0.80, SJ-AST Rs = 0.8, ABA-LD H Rs = 0.80 and ABA-AST Rs = 0.80), at rec2 (SJ-CK Rs = 0.80 and SJ-ALT Rs = 0.80) and even during rec9 (ABA-CK). Similarly, some parameters such as accumulated elevation and training volume showed a strong correlation with LDH values after finishing the ultra-trail race. The alteration induced by completing an ultra-trail event in the muscle affects lower limb strength and may in some circumstances result in serious medical conditions including post- exertional rhabdomyolysis.
Collapse
Affiliation(s)
- Miguel Lecina
- Faculty of Health and Sports Sciences, University of Zaragoza, 22001 Huesca, Spain;
| | - Carlos Castellar
- ENFYRED Research Group, University of Zaragoza, 22001 Huesca, Spain; (C.C.); (F.P.)
| | - Francisco Pradas
- ENFYRED Research Group, University of Zaragoza, 22001 Huesca, Spain; (C.C.); (F.P.)
| | - Isaac López-Laval
- Faculty of Health and Sports Sciences, University of Zaragoza, 22001 Huesca, Spain;
- Movimiento Humano Research Group, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence:
| |
Collapse
|