1
|
Shen Z, Sun L, Liu Z, Li M, Cao Y, Han L, Wang J, Wu X, Sang S. Rete ridges: Morphogenesis, function, regulation, and reconstruction. Acta Biomater 2023; 155:19-34. [PMID: 36427683 DOI: 10.1016/j.actbio.2022.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Rete ridges (RRs) are distinct undulating microstructures at the junction of the dermis and epidermis in the skin of humans and certain animals. This structure is essential for enhancing the mechanical characteristics of skin and preserving homeostasis. With the development of tissue engineering and regenerative medicine, artificial skin grafts have made great progress in the field of skin healing. However, the restoration of RRs has been often disregarded or absent in artificial skin grafts, which potentially compromise the efficacy of tissue repair and regeneration. Therefore, this review collates recent research advances in understanding the structural features, function, morphogenesis, influencing factors, and reconstruction strategies pertaining to RRs. In addition, the preparation methods and limitations of tissue-engineered skin with RRs are discussed. STATEMENT OF SIGNIFICANCE: The technology for the development of tissue-engineered skin (TES) is widely studied and reported; however, the preparation of TES containing rete ridges (RRs) is often ignored, with no literature reviews on the structural reconstruction of RRs. This review focuses on the progress pertaining to RRs and focuses on the reconstruction methods for RRs. In addition, it discusses the limitations of existing reconstruction methods. Therefore, this review could be a valuable reference for transferring TES with RR structure from the laboratory to clinical applications in skin repair.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan 030809, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China; Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China.
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
3
|
Choi JE, Kwon IH, Seo SH, Kye YC, Ahn HH. Pathogenesis of Plantar Epidermal Cyst: Three-Dimensional Reconstruction Analysis. Ann Dermatol 2016; 28:133-5. [PMID: 26848239 PMCID: PMC4737825 DOI: 10.5021/ad.2016.28.1.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jae Eun Choi
- Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - In Hyuk Kwon
- Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - Soo Hong Seo
- Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - Young Chul Kye
- Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - Hyo Hyun Ahn
- Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|