1
|
Yun IH, Yang J. Mechanisms of allorecognition and xenorecognition in transplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:273-293. [PMID: 39743230 PMCID: PMC11732770 DOI: 10.4285/ctr.24.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025]
Abstract
Foreign antigen recognition is the ability of immune cells to distinguish self from nonself, which is crucial for immune responses in both invertebrates and vertebrates. In vertebrates, T cells play a pivotal role in graft rejection by recognizing alloantigens presented by antigen-presenting cells through direct, indirect, or semidirect pathways. B cells also significantly contribute to the indirect presentation of antigens to T cells. Innate immune cells, such as dendritic cells, identify pathogen- or danger-associated molecular patterns through pattern recognition receptors, thereby facilitating effective antigen presentation to T cells. Recent studies have shown that innate immune cells, including macrophages and NK cells, can recognize allogeneic or xenogeneic antigens using immune receptors like CD47 or activating NK receptors, instead of pattern recognition receptors. Additionally, macrophages and NK cells are capable of exhibiting memory responses to alloantigens, although these responses are shorter than those of adaptive memory. T cells also recognize xenoantigens through either direct or indirect presentation. Notably, macrophages and NK cells can directly recognize xenoantigens via surface immune receptors in an antibody-independent manner, or they can be activated in an antibody-dependent manner. Advances in our understanding of the recognition mechanisms of adaptive and innate immunity against allogeneic and xenogeneic antigens may improve our understanding of graft rejection.
Collapse
Affiliation(s)
- Il Hee Yun
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Heterologous Immunity of Virus-Specific T Cells Leading to Alloreactivity: Possible Implications for Solid Organ Transplantation. Viruses 2021; 13:v13122359. [PMID: 34960628 PMCID: PMC8706157 DOI: 10.3390/v13122359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Exposure of the adaptive immune system to a pathogen can result in the activation and expansion of T cells capable of recognizing not only the specific antigen but also different unrelated antigens, a process which is commonly referred to as heterologous immunity. While such cross-reactivity is favourable in amplifying protective immune responses to pathogens, induction of T cell-mediated heterologous immune responses to allo-antigens in the setting of solid organ transplantation can potentially lead to allograft rejection. In this review, we provide an overview of murine and human studies investigating the incidence and functional properties of virus-specific memory T cells cross-reacting with allo-antigens and discuss their potential relevance in the context of solid organ transplantation.
Collapse
|
3
|
Son ET, Faridi P, Paul-Heng M, Leong ML, English K, Ramarathinam SH, Braun A, Dudek NL, Alexander IE, Lisowski L, Bertolino P, Bowen DG, Purcell AW, Mifsud NA, Sharland AF. The self-peptide repertoire plays a critical role in transplant tolerance induction. J Clin Invest 2021; 131:e146771. [PMID: 34428180 PMCID: PMC8553557 DOI: 10.1172/jci146771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
While direct allorecognition underpins both solid organ allograft rejection and tolerance induction, the specific molecular targets of most directly alloreactive CD8+ T cells have not been defined. In this study, we used a combination of genetically engineered major histocompatibility complex class I (MHC I) constructs, mice with a hepatocyte-specific mutation in the class I antigen-presentation pathway, and immunopeptidomic analysis to provide definitive evidence for the contribution of the peptide cargo of allogeneic MHC I molecules to transplant tolerance induction. We established a systematic approach for the discovery of directly recognized pMHC epitopes and identified 17 strongly immunogenic H-2Kb-associated peptides recognized by CD8+ T cells from B10.BR (H-2k) mice, 13 of which were also recognized by BALB/c (H-2d) mice. As few as 5 different tetramers used together were able to identify a high proportion of alloreactive T cells within a polyclonal population, suggesting that there are immunodominant allogeneic MHC-peptide complexes that can account for a large component of the alloresponse.
Collapse
Affiliation(s)
- Eric T. Son
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Pouya Faridi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Moumita Paul-Heng
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Mario L. Leong
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Kieran English
- Liver Immunology Group and AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Sri H. Ramarathinam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Asolina Braun
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nadine L. Dudek
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute, The University of Sydney, Faculty of Medicine and Health and Sydney Children’s Hospitals Network, Westmead, New South Wales, Australia
- The University of Sydney, Sydney Medical School, Discipline of Child and Adolescent Health, Westmead, New South Wales, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Vector and Genome Engineering Facility, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Warsaw, Poland
| | - Patrick Bertolino
- Liver Immunology Group and AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - David G. Bowen
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Liver Immunology Group and AW Morrow Gastroenterology and Liver Centre, The University of Sydney and Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Alexandra F. Sharland
- Transplantation Immunobiology Group, University of Sydney Central Clinical School, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Abdelsamed HA, Lakkis FG. The role of self-peptides in direct T cell allorecognition. J Clin Invest 2021; 131:154096. [PMID: 34720090 DOI: 10.1172/jci154096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Direct allorecognition, the ability of host T cells to recognize intact allogeneic MHC molecules on transplanted tissues, is often assumed to be less dependent on the peptide bound to the MHC molecule than are other antigen recognition pathways. In this issue of the JCI, Son et al. provide unequivocal, in vivo evidence that direct allorecognition depends on the self-peptides bound to the non-self MHC molecule. The authors demonstrate that the induction of allospecific tolerance required the presentation of self-peptides by the non-self MHC molecule, and that only a handful of these peptides accounted for a sizeable proportion of the immunogenicity of the MHC antigen. These are important findings for transplant immunologists because they provide molecular insights into the biology of direct allorecognition, the prime driver of the alloimmune response to MHC-mismatched grafts, and much-needed tools, peptide-MHC multimers, to track and study polyclonal alloreactive T cells.
Collapse
Affiliation(s)
- Hossam A Abdelsamed
- Thomas E. Starzl Transplantation Institute, Department of Surgery.,Pittsburgh Liver Research Center
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, Department of Surgery.,Department of Immunology, and.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Iwasaki K, Hamana H, Kishi H, Yamamoto T, Hiramitsu T, Okad M, Tomosugi T, Takeda A, Narumi S, Watarai Y, Miwa Y, Okumura M, Matsuoka Y, Horimi K, Muraguchi A, Kobayash T. The suppressive effect on CD4 T cell alloresponse against endothelial HLA-DR via PD-L1 induced by anti-A/B ligation. Clin Exp Immunol 2020; 202:249-261. [PMID: 32578199 DOI: 10.1111/cei.13482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
While donor-specific human leukocyte antigen (HLA) antibodies are a frequent cause for chronic antibody-mediated rejection in organ transplantation, this is not the case for antibodies targeting blood group antigens, as ABO-incompatible (ABO-I) organ transplantation has been associated with a favorable graft outcome. Here, we explored the role of CD4 T cell-mediated alloresponses against endothelial HLA-D-related (DR) in the presence of anti-HLA class I or anti-A/B antibodies. CD4 T cells, notably CD45RA-memory CD4 T cells, undergo extensive proliferation in response to endothelial HLA-DR. The CD4 T cell proliferative response was enhanced in the presence of anti-HLA class I, but attenuated in the presence of anti-A/B antibodies. Microarray analysis and molecular profiling demonstrated that the expression of CD274 programmed cell death ligand 1 (PD-L1) increased in response to anti-A/B ligation-mediated extracellular signal-regulated kinase (ERK) inactivation in endothelial cells that were detected even in the presence of interferon-γ stimulation. Anti-PD-1 antibody enhanced CD4 T cell proliferation, and blocked the suppressive effect of the anti-A/B antibodies. Educated CD25+ CD127- regulatory T cells (edu.Tregs ) were more effective at preventing CD4 T cell alloresponses to endothelial cells compared with naive Treg ; anti-A/B antibodies were not involved in the Treg -mediated events. Finally, amplified expression of transcript encoding PD-L1 was observed in biopsy samples from ABO-I renal transplants when compared with those from ABO-identical/compatible transplants. Taken together, our findings identified a possible factor that might prevent graft rejection and thus contribute to a favorable outcome in ABO-I renal transplantation.
Collapse
Affiliation(s)
- K Iwasaki
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - H Hamana
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - H Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - T Yamamoto
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - T Hiramitsu
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - M Okad
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - T Tomosugi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - A Takeda
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - S Narumi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Y Watarai
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Y Miwa
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - M Okumura
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Y Matsuoka
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - K Horimi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - A Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - T Kobayash
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
6
|
D'Orsogna LJ, Almeida CAM, van Miert P, Zoet YM, Anholts JDH, Chopra A, Watson M, Witt C, John M, Claas FHJ. Drug-induced alloreactivity: A new paradigm for allorecognition. Am J Transplant 2019; 19:2606-2613. [PMID: 31125485 DOI: 10.1111/ajt.15470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/18/2019] [Accepted: 05/04/2019] [Indexed: 01/25/2023]
Abstract
Abacavir administration is associated with drug-induced hypersensitivity reactions in HIV+ individuals expressing the HLA-B*57:01 allele. However, the immunological effects of abacavir administration in an HLA-B57 mismatched transplantation setting have not been studied. We hypothesized that abacavir exposure could induce de novo HLA-B57-specific allorecognition. HIV-specific CD8 T cell clones were generated from HIV+ individuals, using single cell sorting based on HIV peptide/HLA tetramer staining. The T cell clones were assayed for alloreactivity against a panel of single HLA-expressing cell lines, in the presence or absence of abacavir. Cytokine assay, CD137 upregulation, and cytotoxicity were used as readout. Abacavir exposure can induce de novo HLA-B57 allorecognition by HIV-specific T cells. A HIV Gag RK9/HLA-A3-specific T cell did exhibit interferon-γ production, CD137 upregulation, and cytolytic effector function against allogeneic HLA-B57, but only in the presence of abacavir. Allorecognition was specific to the virus specificity, HLA restriction, and T cell receptor TRBV use of the T cell. We provide proof-of-principle evidence that administration of a drug could induce specific allorecognition of mismatched HLA molecules in the transplant setting. We suggest that HIV-seropositive recipients of an HLA-B57 mismatched graft should not receive abacavir until further studies are completed.
Collapse
Affiliation(s)
- Lloyd J D'Orsogna
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Coral-Ann M Almeida
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Paula van Miert
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yvonne M Zoet
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jacqueline D H Anholts
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abha Chopra
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia
| | - Mark Watson
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia
| | - Campbell Witt
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, Australia
| | - Mina John
- Department of Clinical Immunology and Pathwest, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
7
|
Pando A, Reagan JL, Nevola M, Fast LD. Induction of anti-leukemic responses by stimulation of leukemic CD3+ cells with allogeneic stimulator cells. Exp Hematol Oncol 2018; 7:25. [PMID: 30323982 PMCID: PMC6172765 DOI: 10.1186/s40164-018-0118-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023] Open
Abstract
Background Immunotherapeutic protocols have focused on identification of stimuli that induce effective anti-leukemic immune responses. One potent immune stimulus is the encounter with allogeneic cells. Our group previously showed that the infusion of haploidentical donor white blood cells (1-2 × 108 CD3+ cells/kg) into patients with refractory hematological malignancies induced responses of varying magnitude in over half of the patients. Because donor cells were eliminated within 2 weeks in these patients, it is presumed that the responses of recipient lymphocytes were critically important in achieving prolonged anti-leukemic responses. Methods The role of patient CD3+ cells in anti-leukemic responses was examined by isolating peripheral blood mononuclear cells from newly diagnosed leukemic patients. Immunophenotyping was performed on these peripheral blood mononuclear cells. CD3+ cells were isolated from the peripheral blood mononuclear cells and tested for their ability to proliferate and lyse autologous leukemic cells when stimulated with unrelated allogeneic cells. Results Allostimulated CD3+ cells effectively generated cytolytic responses to autologous CD3-cells in 11/21 patients. Increased numbers of CD4+ cells expressing high levels of granzyme A, B and perforin and CD8+CD39+ cells were found in nonresponsive CD3+ cells. Conclusions These results indicate that CD3+ cells from leukemic patients are capable of generating anti-leukemic responses when stimulated with unrelated allogeneic cells. This model can be used to identify approaches using alloreactive responses by patient lymphocytes to enhance in vivo anti-leukemic responses.
Collapse
Affiliation(s)
- Alejandro Pando
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - John L Reagan
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - Martha Nevola
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - Loren D Fast
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| |
Collapse
|
8
|
Fast LD. Harnessing alloreactivity to achieve anti-leukemic responses. Leuk Suppl 2014; 3:S11. [PMID: 27175261 DOI: 10.1038/leusup.2014.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- L D Fast
- Division of Hematology/Oncology, Rhode Island Hospital and Warren Alpert School of Medicine at Brown University, Providence, RI , USA
| |
Collapse
|
9
|
Tiercy JM. HLA-C Incompatibilities in Allogeneic Unrelated Hematopoietic Stem Cell Transplantation. Front Immunol 2014; 5:216. [PMID: 24904572 PMCID: PMC4032933 DOI: 10.3389/fimmu.2014.00216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/29/2014] [Indexed: 11/14/2022] Open
Abstract
An increasingly larger fraction of patients with hematological diseases are treated by hematopoietic stem cells transplantation (HSCT) from HLA matched unrelated donors. Polymorphisms of HLA genes represent a major barrier to HSCT because HLA-A, -B, -C and DRB1 incompatibilities confer a higher risk of acute graft-versus-host disease (aGVHD) and mortality. Although >22 million volunteer HLA-typed donors are available worldwide, still a significant number of patients do not find a highly matched HSC donor. Because of the large haplotypic diversity in HLA-B–C associations, incompatibilities occur most frequently at HLA-C, so that unrelated donors with a single HLA-C mismatch often represent the only possible choice. The ratio of HLA-C-mismatched HSCT over the total number of transplants varies from 15 to 30%, as determined in 12 multicenter studies. Six multicenter studies involving >1800 patients have reported a 21–43% increase in mortality risk. By using in vitro cellular assays, a large heterogeneity in T-cell allorecognition has been observed. Yet the permissiveness of individual HLA-C mismatches remains poorly defined. It could be linked to the position and nature of the mismatched residues on HLA-C molecules, but also to variability in the expression levels of the mismatched alleles. The permissive C*03:03–03:04 mismatch is characterized by full compatibility at residues 9, 97, 99, 116, 152, 156, and 163 reported to be key positions influencing T-cell allorecognition. With a single difference among these seven key residues the C*07:01–07:02 mismatch might also be considered by analogy as permissive. High variability of HLA-C expression as determined by quantitative RT-PCR has been observed within individual allotypes and shows some correlation with A–B–C–DRB1 haplotypes. Thus in addition to the position of mismatched amino acid residues, expression level of patient’s mismatched HLA-C allotype might influence T-cell allorecognition, with patients low expression-C alleles representing possible permissive mismatches.
Collapse
Affiliation(s)
- Jean-Marie Tiercy
- Transplantation Immunology Unit, National Reference Laboratory for Histocompatibility, Department of Genetics and Laboratory Medicine, University Hospital of Geneva, University of Geneva , Geneva , Switzerland
| |
Collapse
|
10
|
Cellular Immunotherapy: Using Alloreactivity to Induce Anti-Leukemic Responses without Prolonged Persistence of Donor Cells. Med Sci (Basel) 2013. [DOI: 10.3390/medsci1010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Fuji S, Kapp M, Einsele H. Alloreactivity of virus-specific T cells: possible implication of graft-versus-host disease and graft-versus-leukemia effects. Front Immunol 2013; 4:330. [PMID: 24133497 PMCID: PMC3796284 DOI: 10.3389/fimmu.2013.00330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/02/2022] Open
Abstract
Immune reconstitution of functional virus-specific T cells after allogeneic hematopoietic stem cell transplantation (HSCT) has been intensively investigated. However, the possible role of crossreactivity of these virus-specific T cells against allogeneic targets is still unclear. Theoretically, as in the field of organ transplantation, virus-specific T cells possess crossreactivity potential after allogeneic HSCT. Such crossreactivity is assumed to play a role in graft-versus-host disease and graft-versus-leukemia effects. In this article, we aim to give a comprehensive overview of current understanding about crossreactivity of virus-specific T cells.
Collapse
Affiliation(s)
- Shigeo Fuji
- Department of Internal Medicine II, Division of Hematology, University Hospital of Würzburg , Würzburg , Germany ; Division of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital , Tokyo , Japan
| | | | | |
Collapse
|
12
|
Battle R, Woodroofe N, Clench M, Clark B. The relationship of HLA-class I derived leader peptide mismatch and renal function within the first 12 months post-renal transplant. ACTA ACUST UNITED AC 2013; 82:291-2. [PMID: 24033130 DOI: 10.1111/tan.12191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 11/29/2022]
Affiliation(s)
- R Battle
- Transplant Immunology, St James University Hospital, Leeds, UK; Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | | | |
Collapse
|
13
|
Wooldridge L. Individual MHCI-Restricted T-Cell Receptors are Characterized by a Unique Peptide Recognition Signature. Front Immunol 2013; 4:199. [PMID: 23888160 PMCID: PMC3719040 DOI: 10.3389/fimmu.2013.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/03/2013] [Indexed: 11/13/2022] Open
Abstract
Effective immunity requires that a limited TCR repertoire is able to recognize a vast number of foreign peptide-MHCI (peptide-major histocompatibility complex class I) molecules. This challenge is overcome by the ability of individual TCRs to recognize large numbers of peptides. Recently, it was demonstrated that MHCI-restricted TCRs can recognize up to 106 peptides of a defined length. Astonishingly, this remarkable level of promiscuity does not extend to peptides of different lengths, a fundamental observation that has broad implications for CD8+ T-cell immunity. In particular, the findings suggest that effective immunity can only be achieved by mobilization of “length-matched” CD8+ T-cell clonotypes. Overall, recent findings suggest that every TCR is specific for a unique set of peptides, which can be described as a unique “peptide recognition signature” (PRS) and consists of three components: (1) peptide length preference, (2) number of peptides recognized; and, (3) sequence identity (e.g., self versus pathogen derived). In future, the ability to de-convolute peptide recognition signatures across the normal and pathogenic repertoire will be essential for understanding the system requirements for effective CD8+ T-cell immunity and elucidating mechanisms which underlie CD8+ T-cell mediated disease.
Collapse
Affiliation(s)
- Linda Wooldridge
- Institute of Infection and Immunity, Cardiff University School of Medicine , Heath Park, Cardiff , UK
| |
Collapse
|