1
|
HGAL inhibits lymphoma dissemination by interacting with multiple Cytoskeletal proteins. Blood Adv 2021; 5:5072-5085. [PMID: 34543391 PMCID: PMC9153012 DOI: 10.1182/bloodadvances.2021004304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022] Open
Abstract
In vivo experiments demonstrate that HGAL expression in lymphoma decreases tumor dissemination and prolongs animal survival. HGAL inhibits cell motility by interacting with multiple cytoskeletal proteins, thereby affecting cell motility by multiple mechanisms.
Human germinal center–associated lymphoma (HGAL) is an adaptor protein specifically expressed in germinal center lymphocytes. High expression of HGAL is a predictor of prolonged survival of diffuse large B-cell lymphoma (DLBCL) and classic Hodgkin lymphoma. Furthermore, HGAL expression is associated with early-stage DLBCL, thus potentially limiting lymphoma dissemination. In our previous studies, we demonstrated that HGAL regulates B-cell receptor signaling and cell motility in vitro and deciphered some molecular mechanisms underlying these effects. By using novel animal models for in vivo DLBCL dispersion, we demonstrate here that HGAL decreases lymphoma dissemination and prolongs survival. Furthermore, by using an unbiased proteomic approach, we demonstrate that HGAL may interact with multiple cytoskeletal proteins thereby implicating a multiplicity of effects in regulating lymphoma motility and spread. Specifically, we show that HGAL interacts with tubulin, and this interaction may also contribute to HGAL effects on cell motility. These findings recapitulate previous observations in humans, establish the role of HGAL in dissemination of lymphoma in vivo, and explain improved survival of patients with HGAL-expressing lymphomas.
Collapse
|
2
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Lin L, He J, Li J, Xu Y, Li J, Wu Y. Chitosan Nanoparticles Strengthen Vγ9Vδ2 T-Cell Cytotoxicity Through Upregulation Of Killing Molecules And Cytoskeleton Polarization. Int J Nanomedicine 2019; 14:9325-9336. [PMID: 31819434 PMCID: PMC6890518 DOI: 10.2147/ijn.s212898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Background During the past few years, immune cell therapy for malignant cancer has benefited a considerable amount of patients worldwide. As one of several promising candidates for immunotherapy, Vγ9Vδ2 γδ T cells have many unique biological advantages, such as non-MHC restriction and have been noted as the earliest source of IFN-γ. However, potentiating anti-tumor functions of γδ T cells has become of particular interest to researchers studying γδ T cell applications. Purpose In this study, we proposed a nanotechnology-based methodology for strengthening γδ T cell functions. Methods As a type of reliable, biocompatible material, chitosan nanoparticles (CSNPs) were used to enhance anti-tumor immunity of γδ T cells. Results First, we found that the size of prepared CSNPs distributed 50 to 100 nm, and that CSNPs had optimal immunocompatibility. Then, we observed that CSNPs could induce α-tubulin cytoskeleton polarization and rearrangement, correlating with a higher killing ability of γδ T cells. Furthermore, we revealed that CSNPs could enhance Vγ9Vδ2 T cell anti-tumor functions by upregulating killing of related receptors, including NKG2D, CD56, FasL, and perforin secretion. Conclusion Our work provided evidence of application for CSNPs based bio-carrier in immunotherapy. More importantly, we proposed a new strategy for enhancing γδ T cell anti-tumor activity using nanobiomaterial, which could benefit future clinical applications of γδ T cells.
Collapse
Affiliation(s)
- Li Lin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, People's Republic of China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Junyi He
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yan Xu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jingxia Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yangzhe Wu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, People's Republic of China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
4
|
Liu W, Wang X, Wang S, Ba X, Xu T, Wang X, Zeng X. RhoGDI2 positively regulates the Rho GTPases activation in response to the β2 outside-in signaling in T cells adhesion and migration on ICAM-1. J Leukoc Biol 2019; 106:431-446. [PMID: 31075185 DOI: 10.1002/jlb.2a0718-272rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
Cytoskeletal reorganization driven by Rho GTPases plays a crucial role in the migration of T cells, which are key regulators of immunity. The molecular mechanisms that control actin cytoskeleton remodeling during T cell movement have only partially been clarified as the function of many modulators has not been evaluated in these cells. Here, we report a new function of RhoGDI2 by showing that this protein positively regulates Rho GTPase activation during T cell adhesion and migration. RhoGDI2 knockdown significantly reduced T cell adhesion and migration. Furthermore, RhoGDI2 knockdown decreased the activation of Rac1 and Cdc42, 2 members of Rho GTPases, and the remodeling of the actin cytoskeleton. Upon P-selectin glycoprotein ligand-1 engagement, RhoGDI2 was phosphorylated at Y24 and Y153 by kinases related to β2 integrin outside-in signaling, Src, c-Abl, and Syk, resulting in the accumulation of RhoGDI2 at the cell membrane. Subsequent phosphorylation of S31 induced the opening of RhoGDI2 and the release of Rho GTPases, whereas phosphorylation of Y153 might promote the activation of Rho GTPases by recruiting Vav1. Moreover, the disruption of lipid rafts with methyl-β-cyclodextrin blocked the interaction between integrins and RhoGDI2, reducing the level of phosphorylated RhoGDI2 and the activation of downstream Rho GTPases. Based on these observations, RhoGDI2 is a target of intergrin outside-in signaling that activates Rho GTPases during T cell adhesion and migration, and RhoGDI2-mediated signal transduction is based on the lipid rafts integrity.
Collapse
Affiliation(s)
- Wenai Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xuehao Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Shan Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Tingshuang Xu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
5
|
Lafouresse F, Groom JR. A Task Force Against Local Inflammation and Cancer: Lymphocyte Trafficking to and Within the Skin. Front Immunol 2018; 9:2454. [PMID: 30405637 PMCID: PMC6207597 DOI: 10.3389/fimmu.2018.02454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 01/08/2023] Open
Abstract
The skin represents a specialized site for immune surveillance consisting of resident, inflammatory and memory populations of lymphocytes. The entry and retention of T cells, B cells, and ILCs is tightly regulated to facilitate detection of pathogens, inflammation and tumors cells. Loss of individual or multiple populations in the skin may break tolerance or increase susceptibility to tumor growth and spread. Studies have significantly advanced our understanding of the role of skin T cells and ILCs at steady state and in inflammatory settings such as viral challenge, atopy, and autoimmune inflammation. The knowledge raised by these studies can benefit to our understanding of immune cell trafficking in primary melanoma, shedding light on the mechanisms of tumor immune surveillance and to improve immunotherapy. This review will focus on the T cells, B cells, and ILCs of the skin at steady state, in inflammatory context and in melanoma. In particular, we will detail the core chemokine and adhesion molecules that regulate cell trafficking to and within the skin, which may provide therapeutic avenues to promote tumor homing for a team of lymphocytes.
Collapse
Affiliation(s)
- Fanny Lafouresse
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joanna R Groom
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Kobayashi D, Endo M, Ochi H, Hojo H, Miyasaka M, Hayasaka H. Regulation of CCR7-dependent cell migration through CCR7 homodimer formation. Sci Rep 2017; 7:8536. [PMID: 28819198 PMCID: PMC5561199 DOI: 10.1038/s41598-017-09113-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
The chemokine receptor CCR7 contributes to various physiological and pathological processes including T cell maturation, T cell migration from the blood into secondary lymphoid tissues, and tumor cell metastasis to lymph nodes. Although a previous study suggested that the efficacy of CCR7 ligand-dependent T cell migration correlates with CCR7 homo- and heterodimer formation, the exact extent of contribution of the CCR7 dimerization remains unclear. Here, by inducing or disrupting CCR7 dimers, we demonstrated a direct contribution of CCR7 homodimerization to CCR7-dependent cell migration and signaling. Induction of stable CCR7 homodimerization resulted in enhanced CCR7-dependent cell migration and CCL19 binding, whereas induction of CXCR4/CCR7 heterodimerization did not. In contrast, dissociation of CCR7 homodimerization by a novel CCR7-derived synthetic peptide attenuated CCR7-dependent cell migration, ligand-dependent CCR7 internalization, ligand-induced actin rearrangement, and Akt and Erk signaling in CCR7-expressing cells. Our study indicates that CCR7 homodimerization critically regulates CCR7 ligand-dependent cell migration and intracellular signaling in multiple cell types.
Collapse
Affiliation(s)
- Daichi Kobayashi
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Laboratory of Immune Molecular Function, Faculty of Science & Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Masataka Endo
- Laboratory of Immune Molecular Function, Faculty of Science & Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Hirotaka Ochi
- Laboratory of Immune Molecular Function, Faculty of Science & Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Masayuki Miyasaka
- Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.,MediCity Research Laboratory, University of Turku, FIN-20520, Turku, Finland.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Haruko Hayasaka
- Laboratory of Immune Molecular Function, Faculty of Science & Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
7
|
Janssen E, Tohme M, Hedayat M, Leick M, Kumari S, Ramesh N, Massaad MJ, Ullas S, Azcutia V, Goodnow CC, Randall KL, Qiao Q, Wu H, Al-Herz W, Cox D, Hartwig J, Irvine DJ, Luscinskas FW, Geha RS. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J Clin Invest 2016; 126:3837-3851. [PMID: 27599296 DOI: 10.1172/jci85774] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/28/2016] [Indexed: 11/17/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is associated with mutations in the WAS protein (WASp), which plays a critical role in the initiation of T cell receptor-driven (TCR-driven) actin polymerization. The clinical phenotype of WAS includes susceptibility to infection, allergy, autoimmunity, and malignancy and overlaps with the symptoms of dedicator of cytokinesis 8 (DOCK8) deficiency, suggesting that the 2 syndromes share common pathogenic mechanisms. Here, we demonstrated that the WASp-interacting protein (WIP) bridges DOCK8 to WASp and actin in T cells. We determined that the guanine nucleotide exchange factor activity of DOCK8 is essential for the integrity of the subcortical actin cytoskeleton as well as for TCR-driven WASp activation, F-actin assembly, immune synapse formation, actin foci formation, mechanotransduction, T cell transendothelial migration, and homing to lymph nodes, all of which also depend on WASp. These results indicate that DOCK8 and WASp are in the same signaling pathway that links TCRs to the actin cytoskeleton in TCR-driven actin assembly. Further, they provide an explanation for similarities in the clinical phenotypes of WAS and DOCK8 deficiency.
Collapse
|
8
|
Kopecki Z, Ludwig RJ, Cowin AJ. Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita. Int J Mol Sci 2016; 17:ijms17071116. [PMID: 27420054 PMCID: PMC4964491 DOI: 10.3390/ijms17071116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/10/2023] Open
Abstract
Actin remodelling proteins regulate cytoskeletal cell responses and are important in both innate and adaptive immunity. These responses play a major role in providing a fine balance in a cascade of biological events that results in either protective acute inflammation or chronic inflammation that leads to a host of diseases including autoimmune inflammation mediated epidermolysis bullosa acquisita (EBA). This review describes the role of the actin cytoskeleton and in particular the actin remodelling protein called Flightless I (Flii) in regulating cellular inflammatory responses and its subsequent effect on the autoimmune skin blistering disease EBA. It also outlines the potential of an antibody based therapy for decreasing Flii expression in vivo to ameliorate the symptoms associated with EBA.
Collapse
Affiliation(s)
- Zlatko Kopecki
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| | - Ralf J Ludwig
- Institute of Experimental Dermatology, University of Lubeck, Lubeck 23562, Germany.
| | - Allison J Cowin
- Future Industries Institute, Regenerative Medicine, University of South Australia, Mawson Lakes 5095, Adelaide, Australia.
| |
Collapse
|
9
|
Beyersdorf N, Müller N. Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation. Biol Chem 2015; 396:749-58. [DOI: 10.1515/hsz-2014-0282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/03/2015] [Indexed: 11/15/2022]
Abstract
Abstract
Host T cell activation, a key step in obtaining adaptive immunity against pathogens, is initiated by the binding of the T cell receptor to a foreign antigenic peptide presented by the major histocompatibility complex on the surface of an antigen-presenting cell and, consequently, formation of an immunological synapse. Within the immunological synapse, the engagement of the T cell receptor in cooperation with simultaneous ligation of co-stimulatory molecules induces a precisely organized cascade of signaling events and pathways that regulate clonal expansion and differentiation of naïve T cells into effector T cells contributing to pathogen clearance. The biochemical changes that underlie T cell activation and differentiation, however, not only involve proteins but also lipids. In particular, catabolic cleavage of sphingomyelin generating ceramide can substantially influence functional responses in cells of the immune system. Changes in sphingomyelin and ceramide content have been reported to directly impact on membrane physiology, thus modifying signal transmission and interfering with diverse aspects of T cell activity. In this review we will focus on sphingomyelin breakdown/ceramide generation in T cells with regard to their function and development of T cell-mediated immunity.
Collapse
|
10
|
Abstract
Here we demonstrate that interleukin-2-inducible T-cell kinase (Itk) signaling in cluster of differentiation 4-positive (CD4(+)) T cells promotes experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). We show that Itk(-/-) mice exhibit reduced disease severity, and transfer of Itk(-/-) CD4(+) T cells into T cell-deficient recipients results in lower disease severity. We observed a significant reduction of CD4(+) T cells in the CNS of Itk(-/-) mice or recipients of Itk(-/-) CD4(+) T cells during EAE, which is consistent with attenuated disease. Itk(-/-) CD4(+) T cells exhibit defective response to myelin antigen stimulation attributable to displacement of filamentous actin from the CD4(+) coreceptor. This results in inadequate transmigration of Itk(-/-) CD4(+) T cells into the CNS and across brain endothelial barriers in vitro. Finally, Itk(-/-) CD4(+) T cells show significant reduction in production of T-helper 1 (Th1) and Th17 cytokines and exhibit skewed T effector/T regulatory cell ratios. These results indicate that signaling by Itk promotes autoimmunity and CNS inflammation, suggesting that it may be a viable target for treatment of MS.
Collapse
|
11
|
Abstract
Pharmacological concentrations of H2S donors inhibit some T cell functions by inhibiting mitochondrial function, but evidence is also emerging that H2S at physiological concentrations produced via chemical sources and endogenously is a positive physiological mediator of T cell function. Expression of the H2S biosynthetic enzymes cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) is induced in response to T cell receptor signaling. Inhibiting the induction of these enzymes limits T cell activation and proliferation, which can be overcome by exposure to exogenous H2S at submicromolar concentrations. Exogenous H2S at physiological concentrations increases the ability of T cells to form an immunological synapse by altering cytoskeletal actin dynamics and increasing the reorientation of the microtubule-organizing center. Downstream, H2S enhances T cell receptor-dependent induction of CD69, CD25, and Interleukin-2 (IL-2) gene expression. The T cell stimulatory activity of H2S is enhanced under hypoxic conditions that limit its oxidative metabolism by mitochondrial and nonenzymatic processes. Studies of the receptor CD47 have revealed the first endogenous inhibitory signaling pathway that regulates H2S signaling in T cells. Binding of the secreted protein thrombospondin-1 to CD47 elicits signals that block the stimulatory activity of exogenous H2S on T cell activation and limit the induction of CSE and CBS gene expression. CD47 signaling thereby inhibits T cell receptor-mediated T cell activation.
Collapse
|
12
|
Saoudi A, Kassem S, Dejean A, Gaud G. Rho-GTPases as key regulators of T lymphocyte biology. Small GTPases 2014; 5:28208. [PMID: 24825161 DOI: 10.4161/sgtp.28208] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rho-GTPases belong to the Ras superfamily and are crucial signal transducing proteins downstream of many receptors. In general, the Rho-GTPases function as molecular switches, cycling between inactive (GDP-bound) and active (GTP-bound) states. The activated GTP bound Rho-GTPases interact with a broad spectrum of effectors to regulate a plethora of biological pathways including cytoskeletal dynamics, motility, cytokinesis, cell growth, apoptosis, transcriptional activity and nuclear signaling. Recently, gene targeting in mice allowed the selective inactivation of different Rho-GTPases and has advanced our understanding of the physiological role of these proteins, particularly in the immune system. Particularly, these proteins are key signaling molecules in T lymphocytes, which are generated in the thymus and are major players in the immune system. The scope of this review is to discuss recent data obtained in Rho-GTPases deficient mice by focusing on the role-played by Rho-GTPases in T-lymphocyte development, migration, activation and differentiation.
Collapse
Affiliation(s)
- Abdelhadi Saoudi
- Inserm; U1043; Toulouse, France; CNRS; U5282; Toulouse, France; Université de Toulouse; Centre de Physiopathologie de Toulouse Purpan; Toulouse, France
| | - Sahar Kassem
- Inserm; U1043; Toulouse, France; CNRS; U5282; Toulouse, France; Université de Toulouse; Centre de Physiopathologie de Toulouse Purpan; Toulouse, France
| | - Anne Dejean
- Inserm; U1043; Toulouse, France; CNRS; U5282; Toulouse, France; Université de Toulouse; Centre de Physiopathologie de Toulouse Purpan; Toulouse, France
| | - Guillaume Gaud
- Inserm; U1043; Toulouse, France; CNRS; U5282; Toulouse, France; Université de Toulouse; Centre de Physiopathologie de Toulouse Purpan; Toulouse, France
| |
Collapse
|
13
|
Niggli V. Insights into the mechanism for dictating polarity in migrating T-cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:201-70. [PMID: 25262243 DOI: 10.1016/b978-0-12-800178-3.00007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review is focused on mechanisms of chemokine-induced polarization of T-lymphocytes. Polarization involves, starting from spherical cells, formation of a morphologically and functionally different rear (uropod) and front (leading edge). This polarization is required for efficient random and directed T-cell migration. The addressed topics concern the specific location of cell organelles and of receptors, signaling molecules, and cytoskeletal proteins in chemokine-stimulated polarized T-cells. In chemokine-stimulated, polarized T-cells, specific proteins, signaling molecules and organelles show enrichment either in the rear, the midzone, or the front; different from the random location in spherical resting cells. Possible mechanisms involved in this asymmetric location will be discussed. A major topic is also the functional role of proteins and cell organelles in T-cell polarization and migration. Specifically, the roles of adhesion and chemokine receptors, cytoskeletal proteins, signaling molecules, scaffolding proteins, and membrane microdomains in these processes will be discussed. The polarity which is established during contact formation of T-cells with antigen-presenting cells is not discussed in detail.
Collapse
Affiliation(s)
- Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|