1
|
Deng Z, Zhao J, Cai S, Qi Y, Yu Q, Martin MP, Gao X, Chen R, Zhuo J, Zhen J, Zhang M, Zhang G, He L, Zou H, Lu L, Zhu W, Hong W, Carrington M, Norman PJ. Natural Killer Cells Offer Differential Protection From Leukemia in Chinese Southern Han. Front Immunol 2019; 10:1646. [PMID: 31379844 PMCID: PMC6646668 DOI: 10.3389/fimmu.2019.01646] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Interactions of human natural killer (NK) cell inhibitory receptors with polymorphic HLA-A, -B and -C molecules educate NK cells for immune surveillance against tumor cells. The KIR A haplotype encodes a distinctive set of HLA-specific NK cell inhibiting receptors having strong influence on immunity. We observed higher frequency of KIR A homozygosity among 745 healthy Chinese Southern Han than 836 adult patients representing three types of leukemia: ALL (OR = 0.68, 95% CI = 0.52-0.89, p = 0.004), AML (OR = 0.76, 95% CI = 0.59-0.98, p = 0.034), and CML (OR = 0.72 95% CI = 0.51-1.0, ns). We observed the same trend for NHL (OR = 0.47 95% CI = 0.26-0.88 p = 0.017). For ALL, the protective effect of the KIR AA genotype was greater in the presence of KIR ligands C1 (Pc = 0.01) and Bw4 (Pc = 0.001), which are tightly linked in East Asians. By contrast, the C2 ligand strengthened protection from CML (Pc = 0.004). NK cells isolated from KIR AA individuals were significantly more cytotoxic toward leukemic cells than those from other KIR genotypes (p < 0.0001). These data suggest KIR allotypes encoded by East Asian KIR A haplotypes are strongly inhibitory, arming NK cells to respond to leukemogenic cells having altered HLA expression. Thus, the study of populations with distinct KIR and HLA distributions enlightens understanding of immune mechanisms that significantly impact leukemia pathogenesis.
Collapse
Affiliation(s)
- Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Jun Zhao
- School of Ophthalmology and Optometry, Shenzhen Eye Hospital, Shenzhen University, Shenzhen, China
| | - Siqi Cai
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Ying Qi
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Qiong Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Xiaojiang Gao
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rui Chen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Jiacai Zhuo
- Department of Hematology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jianxin Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
- Central Laboratory, Baoan Maternal and Child Health Hospital, Shenzhen, China
| | - Mingjie Zhang
- Research and Development Department, Shenzhen Hank Bioengineering Institute, Shenzhen, China
| | - Guobin Zhang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Liumei He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Hongyan Zou
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Liang Lu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Weigang Zhu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Wenxu Hong
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- Ragon Institute of MGH MIT and Harvard, Cambridge, MA, United States
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Leaton LA, Shortt J, Kichula KM, Tao S, Nemat-Gorgani N, Mentzer AJ, Oppenheimer SJ, Deng Z, Hollenbach JA, Gignoux CR, Guethlein LA, Parham P, Carrington M, Norman PJ. Conservation, Extensive Heterozygosity, and Convergence of Signaling Potential All Indicate a Critical Role for KIR3DL3 in Higher Primates. Front Immunol 2019; 10:24. [PMID: 30745901 PMCID: PMC6360152 DOI: 10.3389/fimmu.2019.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/07/2019] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cell functions are modulated by polymorphic killer cell immunoglobulin-like receptors (KIR). Among 13 human KIR genes, which vary by presence and copy number, KIR3DL3 is ubiquitously present in every individual across diverse populations. No ligand or function is known for KIR3DL3, but limited knowledge of expression suggests involvement in reproduction, likely during placentation. With 157 human alleles, KIR3DL3 is also highly polymorphic and we show heterozygosity exceeds that of HLA-B in many populations. The external domains of catarrhine primate KIR3DL3 evolved as a conserved lineage distinct from other KIR. Accordingly, and in contrast to other KIR, we show the focus of natural selection does not correspond exclusively to known ligand binding sites. Instead, a strong signal for diversifying selection occurs in the D1 Ig domain at a site involved in receptor aggregation, which we show is polymorphic in humans worldwide, suggesting differential ability for receptor aggregation. Meanwhile in the cytoplasmic tail, the first of two inhibitory tyrosine motifs (ITIM) is conserved, whereas independent genomic events have mutated the second ITIM of KIR3DL3 alleles in all great apes. Together, these findings suggest that KIR3DL3 binds a conserved ligand, and a function requiring both receptor aggregation and inhibitory signal attenuation. In this model KIR3DL3 resembles other NK cell inhibitory receptors having only one ITIM, which interact with bivalent downstream signaling proteins through dimerization. Due to the extensive conservation across species, selection, and other unusual properties, we consider elucidating the ligand and function of KIR3DL3 to be a pressing question.
Collapse
Affiliation(s)
- Laura A. Leaton
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
| | - Jonathan Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
| | - Sudan Tao
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
- Blood Center of Zhejiang Province, Hangzhou, China
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Alexander J. Mentzer
- Wellcome Trust Centre for Human Genetics, and Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Stephen J. Oppenheimer
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| | - Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher R. Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
| | - Lisbeth A. Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- Ragon Institute of the Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Microbiology & Immunology, University of Colorado, Aurora, CO, United States
| |
Collapse
|