1
|
Sanchez-Mazas A, Nunes JM. The most frequent HLA alleles around the world: A fundamental synopsis. Best Pract Res Clin Haematol 2024; 37:101559. [PMID: 39098805 DOI: 10.1016/j.beha.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
A comprehensive knowledge of human leukocyte antigen (HLA) molecular variation worldwide is essential in human population genetics research and disease association studies and is also indispensable for clinical applications such as allogeneic hematopoietic cell transplantation, where ensuring HLA compatibility between donors and recipients is paramount. Enormous progress has been made in this field thanks to several decades of HLA population studies allowing the development of helpful databases and bioinformatics tools. However, it is still difficult to appraise the global HLA population diversity in a synthetic way. We thus introduce here a novel approach, based on approximately 2000 data sets, to assess this complexity by providing a fundamental synopsis of the most frequent HLA alleles observed in different regions of the world. This new knowledge will be useful not only as a fundamental reference for basic research, but also as an efficient guide for clinicians working in the field of transplantation.
Collapse
Affiliation(s)
- Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution & Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland.
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution & Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland.
| |
Collapse
|
2
|
D'Atanasio E, Risi F, Ravasini F, Montinaro F, Hajiesmaeil M, Bonucci B, Pistacchia L, Amoako-Sakyi D, Bonito M, Onidi S, Colombo G, Semino O, Destro Bisol G, Anagnostou P, Metspalu M, Tambets K, Trombetta B, Cruciani F. The genomic echoes of the last Green Sahara on the Fulani and Sahelian people. Curr Biol 2023; 33:5495-5504.e4. [PMID: 37995693 DOI: 10.1016/j.cub.2023.10.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The population history of the Sahara/Sahelian belt is understudied, despite previous work highlighting complex dynamics.1,2,3,4,5,6,7 The Sahelian Fulani, i.e., the largest nomadic pastoral population in the world,8 represent an interesting case because they show a non-negligible proportion of an Eurasian genetic component, usually explained by recent admixture with northern Africans.1,2,5,6,7,9,10,11,12 Nevertheless, their origins are largely unknown, although several hypotheses have been proposed, including a possible link to ancient peoples settled in the Sahara during its last humid phase (Green Sahara, 12,000-5,000 years before present [BP]).13,14,15 To shed light about the Fulani ancient genetic roots, we produced 23 high-coverage (30×) whole genomes from Fulani individuals from 8 Sahelian countries, plus 17 samples from other African groups and 3 from Europeans as controls, for a total of 43 new whole genomes. These data have been compared with 814 published modern whole genomes2,16,17,18 and with relevant published ancient sequences (> 1,800 samples).19 These analyses showed some evidence that the non-sub-Saharan genetic ancestry component of the Fulani might have also been shaped by older events,1,5,6 possibly tracing the Fulani origins to unsampled ancient Green Saharan population(s). The joint analysis of modern and ancient samples allowed us to shed light on the genetic ancestry composition of such ancient Saharans, suggesting a similarity with Late Neolithic Moroccans and possibly pointing to a link with the spread of cattle herding. We also identified two different Fulani clusters whose admixture pattern may be informative about the historical Fulani movements and their later involvement in the western African empires.
Collapse
Affiliation(s)
- Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| | - Flavia Risi
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Ravasini
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Montinaro
- Department of Biology, University of Bari, 70121 Bari, Italy; Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Mogge Hajiesmaeil
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Letizia Pistacchia
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy; Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniel Amoako-Sakyi
- Department of Microbiology and Immunology, University of Cape Coast, Cape Coast, Ghana
| | - Maria Bonito
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Onidi
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Colombo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Destro Bisol
- Department of Enviromental Biology, Sapienza University of Rome, 00185 Rome, Italy; Istituto Italiano di Antropologia, 00185 Rome, Italy
| | - Paolo Anagnostou
- Department of Enviromental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | | | - Beniamino Trombetta
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Fulvio Cruciani
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy; Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
3
|
Černý V, Priehodová E, Fortes-Lima C. A Population Genetic Perspective on Subsistence Systems in the Sahel/Savannah Belt of Africa and the Historical Role of Pastoralism. Genes (Basel) 2023; 14:genes14030758. [PMID: 36981029 PMCID: PMC10048103 DOI: 10.3390/genes14030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
This review focuses on the Sahel/Savannah belt, a large region of Africa where two alternative subsistence systems (pastoralism and agriculture), nowadays, interact. It is a long-standing question whether the pastoralists became isolated here from other populations after cattle began to spread into Africa (~8 thousand years ago, kya) or, rather, began to merge with other populations, such as agropastoralists, after the domestication of sorghum and pearl millet (~5 kya) and with the subsequent spread of agriculture. If we look at lactase persistence, a trait closely associated with pastoral lifestyle, we see that its variants in current pastoralists distinguish them from their farmer neighbours. Most other (mostly neutral) genetic polymorphisms do not, however, indicate such clear differentiation between these groups; they suggest a common origin and/or an extensive gene flow. Genetic affinity and ecological symbiosis between the two subsistence systems can help us better understand the population history of this African region. In this review, we show that genomic datasets of modern Sahel/Savannah belt populations properly collected in local populations can complement the still insufficient archaeological research of this region, especially when dealing with the prehistory of mobile populations with perishable material culture and therefore precarious archaeological visibility.
Collapse
Affiliation(s)
- Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Letenská 1, 118 01 Prague, Czech Republic
| | - Edita Priehodová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Letenská 1, 118 01 Prague, Czech Republic
| | - Cesar Fortes-Lima
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| |
Collapse
|
4
|
Analysis of HLA gene polymorphisms in East Africans reveals evidence of gene flow in two Semitic populations from Sudan. Eur J Hum Genet 2021; 29:1259-1271. [PMID: 33753913 PMCID: PMC8384866 DOI: 10.1038/s41431-021-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/28/2020] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Sudan, a northeastern African country, is characterized by high levels of cultural, linguistic, and genetic diversity, which is believed to be affected by continuous migration from neighboring countries. Consistent with such demographic effect, genome-wide SNP data revealed a shared ancestral component among Sudanese Afro-Asiatic speaking groups and non-African populations, mainly from West Asia. Although this component is shared among all Afro-Asiatic speaking groups, the extent of this sharing in Semitic groups, such as Sudanese Arab, is still unknown. Using genotypes of six polymorphic human leukocyte antigen (HLA) genes (i.e., HLA-A, -C, -B, -DRB1, -DQB1, and -DPB1), we examined the genetic structure of eight East African ethnic groups with origins in Sudan, South Sudan, and Ethiopia. We identified informative HLA alleles using principal component analysis, which revealed that the two Semitic groups (Gaalien and Shokrya) constituted a distinct cluster from the other Afro-Asiatic speaking groups in this study. The HLA alleles that distinguished Semitic Arabs co-exist in the same extended HLA haplotype, and those alleles are in strong linkage disequilibrium. Interestingly, we find the four-locus haplotype "C*12:02-B*52:01-DRB1*15:02-DQB1*06:01" exclusively in non-African populations and it is widely spread across Asia. The identification of this haplotype suggests a gene flow from Asia, and likely these haplotypes were brought to Africa through back migration from the Near East. These findings will be of interest to biomedical and anthropological studies that examine the demographic history of northeast Africa.
Collapse
|
5
|
Sjödin P, McKenna J, Jakobsson M. Estimating divergence times from DNA sequences. Genetics 2021; 217:iyab008. [PMID: 33769498 PMCID: PMC8049563 DOI: 10.1093/genetics/iyab008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
The patterns of genetic variation within and among individuals and populations can be used to make inferences about the evolutionary forces that generated those patterns. Numerous population genetic approaches have been developed in order to infer evolutionary history. Here, we present the "Two-Two (TT)" and the "Two-Two-outgroup (TTo)" methods; two closely related approaches for estimating divergence time based in coalescent theory. They rely on sequence data from two haploid genomes (or a single diploid individual) from each of two populations. Under a simple population-divergence model, we derive the probabilities of the possible sample configurations. These probabilities form a set of equations that can be solved to obtain estimates of the model parameters, including population split times, directly from the sequence data. This transparent and computationally efficient approach to infer population divergence time makes it possible to estimate time scaled in generations (assuming a mutation rate), and not as a compound parameter of genetic drift. Using simulations under a range of demographic scenarios, we show that the method is relatively robust to migration and that the TTo method can alleviate biases that can appear from drastic ancestral population size changes. We illustrate the utility of the approaches with some examples, including estimating split times for pairs of human populations as well as providing further evidence for the complex relationship among Neandertals and Denisovans and their ancestors.
Collapse
Affiliation(s)
- Per Sjödin
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, Uppsala 752 36, Sweden
| | - James McKenna
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, Uppsala 752 36, Sweden
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, Uppsala 752 36, Sweden
- Science for Life Laboratory, Uppsala University, Norbyvägen 18 A, Uppsala 752 36, Sweden
| |
Collapse
|
6
|
Campbell MC, Ranciaro A. Human adaptation, demography and cattle domestication: an overview of the complexity of lactase persistence in Africa. Hum Mol Genet 2021; 30:R98-R109. [PMID: 33847744 DOI: 10.1093/hmg/ddab027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
Lactase persistence (LP) is a genetically-determined trait that is prevalent in African, European and Arab populations with a tradition of animal herding and milk consumption. To date, genetic analyses have identified several common variants that are associated with LP. Furthermore, data have indicated that these functional alleles likely have been maintained in pastoralist populations due to the action of recent selection, exemplifying the ongoing evolution of anatomically modern humans. Additionally, demographic history has also played a role in the geographic distribution of LP and associated alleles in Africa. In particular, the migration of ancestral herders and their subsequent admixture with local populations were integral to the spread of LP alleles and the culture of pastoralism across the continent. The timing of these demographic events was often correlated with known major environmental changes and/or the ability of domesticated cattle to resist/avoid infectious diseases. This review summarizes recent advances in our understanding of the genetic basis and evolutionary history of LP, as well as the factors that influenced the origin and spread of pastoralism in Africa.
Collapse
Affiliation(s)
- Michael C Campbell
- Department of Biology, Howard University, EE Just Hall Biology Building, 415 College Street NW, Washington, DC 20059, USA
| | - Alessia Ranciaro
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Nováčková J, Čížková M, Mokhtar MG, Duda P, Stenzl V, Tříska P, Hofmanová Z, Černý V. Subsistence strategy was the main factor driving population differentiation in the bidirectional corridor of the African Sahel. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:496-508. [DOI: 10.1002/ajpa.24001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Jana Nováčková
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Martina Čížková
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | | | - Pavel Duda
- Department of Zoology, Faculty of ScienceUniversity of South Bohemia České Budějovice Czech Republic
| | - Vlastimil Stenzl
- Department of Forensic GeneticsInstitute of Criminalistics Prague Czech Republic
| | - Petr Tříska
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Zuzana Hofmanová
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Viktor Černý
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| |
Collapse
|
8
|
Vicente M, Priehodová E, Diallo I, Podgorná E, Poloni ES, Černý V, Schlebusch CM. Population history and genetic adaptation of the Fulani nomads: inferences from genome-wide data and the lactase persistence trait. BMC Genomics 2019; 20:915. [PMID: 31791255 PMCID: PMC6888939 DOI: 10.1186/s12864-019-6296-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/15/2019] [Indexed: 01/13/2023] Open
Abstract
Background Human population history in the Holocene was profoundly impacted by changes in lifestyle following the invention and adoption of food-production practices. These changes triggered significant increases in population sizes and expansions over large distances. Here we investigate the population history of the Fulani, a pastoral population extending throughout the African Sahel/Savannah belt. Results Based on genome-wide analyses we propose that ancestors of the Fulani population experienced admixture between a West African group and a group carrying both European and North African ancestries. This admixture was likely coupled with newly adopted herding practices, as it resulted in signatures of genetic adaptation in contemporary Fulani genomes, including the control element of the LCT gene enabling carriers to digest lactose throughout their lives. The lactase persistence (LP) trait in the Fulani is conferred by the presence of the allele T-13910, which is also present at high frequencies in Europe. We establish that the T-13910 LP allele in Fulani individuals analysed in this study lies on a European haplotype background thus excluding parallel convergent evolution. We furthermore directly link the T-13910 haplotype with the Lactase Persistence phenotype through a Genome Wide Association study (GWAS) and identify another genomic region in the vicinity of the SPRY2 gene associated with glycaemic measurements after lactose intake. Conclusions Our findings suggest that Eurasian admixture and the European LP allele was introduced into the Fulani through contact with a North African population/s. We furthermore confirm the link between the lactose digestion phenotype in the Fulani to the MCM6/LCT locus by reporting the first GWAS of the lactase persistence trait. We also explored other signals of recent adaptation in the Fulani and identified additional candidates for selection to adapt to herding life-styles.
Collapse
Affiliation(s)
- Mário Vicente
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Edita Priehodová
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Issa Diallo
- Département de Linguistique et Langues Nationales, Institut des Sciences des Sociétés, CNRST, Ouagadougou, Burkina Faso
| | - Eliška Podgorná
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Estella S Poloni
- Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden. .,Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa. .,SciLifeLab Uppsala, Uppsala, Sweden.
| |
Collapse
|
9
|
Kleisner K, Pokorný Š, Čížková M, Froment A, Černý V. Nomadic pastoralists and sedentary farmers of the Sahel/Savannah Belt of Africa in the light of geometric morphometrics based on facial portraits. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:632-645. [DOI: 10.1002/ajpa.23845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Karel Kleisner
- Department of Philosophy and History of Science, Faculty of ScienceCharles University Prague Czech Republic
| | - Šimon Pokorný
- Department of Philosophy and History of Science, Faculty of ScienceCharles University Prague Czech Republic
| | - Martina Čížková
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| | - Alain Froment
- UMR 208‐PalocIRD‐MNHN, Musée de l'Homme Paris France
| | - Viktor Černý
- Department of Anthropology and Human Genetics, Faculty of ScienceCharles University Prague Czech Republic
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Prague Czech Republic
| |
Collapse
|