1
|
Pinney KA, Ross JG, Paterson AM. Assessing EDR and a novel deer repellent for reducing by-kill of white-tailed deer (Odocoileus virginianus), during aerial 1080 operations. NEW ZEALAND JOURNAL OF ZOOLOGY 2021. [DOI: 10.1080/03014223.2021.1978510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kaylyn A. Pinney
- Department of Pest-management and Conservation, Lincoln University, Canterbury, New Zealand
| | - James G. Ross
- Department of Pest-management and Conservation, Lincoln University, Canterbury, New Zealand
| | - Adrian M. Paterson
- Department of Pest-management and Conservation, Lincoln University, Canterbury, New Zealand
| |
Collapse
|
2
|
Occupational exposure and challenges in tackling M. bovis at human-animal interface: a narrative review. Int Arch Occup Environ Health 2021; 94:1147-1171. [PMID: 33725176 PMCID: PMC7961320 DOI: 10.1007/s00420-021-01677-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/12/2021] [Indexed: 01/09/2023]
Abstract
Zoonotic tuberculosis caused by Mycobacterium bovis (M. bovis), a member of Mycobacterium tuberculosis complex (MTBC) has increasingly gathered attention as a public health risk, particularly in developing countries with higher disease prevalence. M. bovis is capable of infecting multiple hosts encompassing a number of domestic animals, in particular cattle as well as a broad range of wildlife reservoirs. Humans are the incidental hosts of M. bovis whereby its transmission to humans is primarily through the consumption of cattle products such as unpasteurized milk or raw meat products that have been contaminated with M. bovis or the transmission could be due to close contact with infected cattle. Also, the transmission could occur through aerosol inhalation of infective droplets or infected body fluids or tissues in the presence of wound from infected animals. The zoonotic risk of M. bovis in humans exemplified by miscellaneous studies across different countries suggested the risk of occupational exposure towards M. bovis infection, especially those animal handlers that have close and unreserved contact with cattle and wildlife populations These animal handlers comprising of livestock farmers, abattoir workers, veterinarians and their assistants, hunters, wildlife workers as well as other animal handlers are at different risk of contracting M. bovis infection, depending on the nature of their jobs and how close is their interaction with infected animals. It is crucial to identify the underlying transmission risk factors and probable transmission pathways involved in the zoonotic transmission of M. bovis from animals to humans for better designation and development of specific preventive measures and guidelines that could reduce the risk of transmission and to protect these different occupational-related/populations at risk. Effective control and disease management of zoonotic tuberculosis caused by M. bovis in humans are also hindered by various challenges and factors involved at animal–human interface. A closer look into factors affecting proper disease control and management of M. bovis are therefore warranted. Hence, in this narrative review, we have gathered a number of different studies to highlight the risk of occupational exposure to M. bovis infection and addressed the limitations and challenges underlying this context. This review also shed lights on various components and approaches in tackling M. bovis infection at animal–human interface.
Collapse
|
3
|
Bacigalupo SA, Dixon LK, Gubbins S, Kucharski AJ, Drewe JA. Towards a unified generic framework to define and observe contacts between livestock and wildlife: a systematic review. PeerJ 2020; 8:e10221. [PMID: 33173619 PMCID: PMC7594637 DOI: 10.7717/peerj.10221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022] Open
Abstract
Wild animals are the source of many pathogens of livestock and humans. Concerns about the potential transmission of economically important and zoonotic diseases from wildlife have led to increased surveillance at the livestock-wildlife interface. Knowledge of the types, frequency and duration of contacts between livestock and wildlife is necessary to identify risk factors for disease transmission and to design possible mitigation strategies. Observing the behaviour of many wildlife species is challenging due to their cryptic nature and avoidance of humans, meaning there are relatively few studies in this area. Further, a consensus on the definition of what constitutes a 'contact' between wildlife and livestock is lacking. A systematic review was conducted to investigate which livestock-wildlife contacts have been studied and why, as well as the methods used to observe each species. Over 30,000 publications were screened, of which 122 fulfilled specific criteria for inclusion in the analysis. The majority of studies examined cattle contacts with badgers or with deer; studies involving wild pig contacts with cattle or with domestic pigs were the next most frequent. There was a range of observational methods including motion-activated cameras and global positioning system collars. As a result of the wide variation and lack of consensus in the definitions of direct and indirect contacts, we developed a unified framework to define livestock-wildlife contacts that is sufficiently flexible to be applied to most wildlife and livestock species for non-vector-borne diseases. We hope this framework will help standardise the collection and reporting of contact data; a valuable step towards being able to compare the efficacy of wildlife-livestock observation methods. In doing so, it may aid the development of better disease transmission models and improve the design and effectiveness of interventions to reduce or prevent disease transmission.
Collapse
Affiliation(s)
| | | | - Simon Gubbins
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Adam J. Kucharski
- London School of Hygiene & Tropical Medicine, University of London, London, United Kingdom
| | | |
Collapse
|
4
|
Balseiro A, Oleaga Á, Álvarez Morales LM, González Quirós P, Gortázar C, Prieto JM. Effectiveness of a calf-selective feeder in preventing wild boar access. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-019-1276-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Miller MA, Buss P, Roos EO, Hausler G, Dippenaar A, Mitchell E, van Schalkwyk L, Robbe-Austerman S, Waters WR, Sikar-Gang A, Lyashchenko KP, Parsons SDC, Warren R, van Helden P. Fatal Tuberculosis in a Free-Ranging African Elephant and One Health Implications of Human Pathogens in Wildlife. Front Vet Sci 2019; 6:18. [PMID: 30788347 PMCID: PMC6373532 DOI: 10.3389/fvets.2019.00018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) in humans is a global public health concern and the discovery of animal cases of Mycobacterium tuberculosis (Mtb) infection and disease, especially in multi-host settings, also has significant implications for public health, veterinary disease control, and conservation endeavors. This paper describes a fatal case of Mtb disease in a free-ranging African elephant (Loxodonta africana) in a high human TB burden region. Necropsy revealed extensive granulomatous pneumonia, from which Mtb was isolated and identified as a member of LAM3/F11 lineage; a common lineage found in humans in South Africa. These findings are contextualized within a framework of emerging Mtb disease in wildlife globally and highlights the importance of the One Health paradigm in addressing this anthroponotic threat to wildlife and the zoonotic implications.
Collapse
Affiliation(s)
- Michele A Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for TB Research, Stellenbosch University, Cape Town, South Africa
| | - Peter Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | - Eduard O Roos
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for TB Research, Stellenbosch University, Cape Town, South Africa
| | - Guy Hausler
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for TB Research, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for TB Research, Stellenbosch University, Cape Town, South Africa
| | - Emily Mitchell
- Department of Research and Scientific Services, National Zoological Gardens, South African Biodiversity Institute, Pretoria, South Africa.,Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Louis van Schalkwyk
- Department of Agriculture, Forestry and Fisheries, Skukuza State Veterinary Office, Skukuza, South Africa
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Animal Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - W Ray Waters
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | | | | | - Sven D C Parsons
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for TB Research, Stellenbosch University, Cape Town, South Africa
| | - Robin Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for TB Research, Stellenbosch University, Cape Town, South Africa
| | - Paul van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for TB Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
6
|
Cosgrove MK, O'Brien DJ, Ramsey DSL. Baiting and Feeding Revisited: Modeling Factors Influencing Transmission of Tuberculosis Among Deer and to Cattle. Front Vet Sci 2018; 5:306. [PMID: 30564585 PMCID: PMC6288431 DOI: 10.3389/fvets.2018.00306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022] Open
Abstract
Although tuberculosis caused by Mycobacterium bovis (bTB) is endemic in white-tailed deer (Odocoileus virginianus) in northeastern Michigan, USA, baiting and feeding of deer continue despite a regulatory ban. Previous modeling suggests aggregation at bait sites slows the rates at which harvest and/or vaccination decrease bTB prevalence, prolongs time to eradication, and increases the likelihood that once eradicated, bTB will re-establish following an incursion. However, the extent to which specific factors such as food density, attractiveness to deer, and persistence on the landscape influence bTB transmission is unknown. We used an individual-based, spatially-explicit stochastic simulation model of bTB in deer and cattle to investigate effects of feed density, attractiveness, and spatial and temporal persistence on bTB prevalence in deer and the probability of breakdowns in adjacent cattle herds. Because hunter harvest remains key to controlling bTB in deer, and harvest rates are in long term decline, we modeled these feeding-associated factors at harvest rates prevailing both when the model was developed (2003-2007) and in 2018. Food placement at randomized locations vs. fixed sites had little effect on bTB prevalence in deer, whereas increasing the probability that deer move to food piles (attractiveness) had the greatest effect of factors studied on both prevalence and herd breakdowns. Reducing food pile density reduced prevalence, but decreased herd breakdowns only modestly. Consistent availability of food over longer periods of time, as would occur with supplemental winter feeding or persistent recreational feeding, increased both prevalence in deer and cattle herd breakdowns dramatically. Though perhaps implausible to the public, altering how bait and feed for deer are used can reduce cattle herd breakdowns. Baiting and feeding bans have contributed to declining bTB prevalence, but non-compliance and continued legal sales of feed impede eradication. Requiring hunters to move food piles is unlikely to mitigate effects on transmission and is not a useful management tool. Compared to baiting, winter supplemental feeding or extended recreational feeding is likely to magnify bTB transmission by prolonging temporal availability. Because attractiveness of feed is influenced both by type of feed and deer behavior, research to quantify factors influencing deer movement to food should be a priority.
Collapse
Affiliation(s)
- Melinda K. Cosgrove
- Wildlife Disease Laboratory, Michigan Department of Natural Resources, Lansing, MI, United States
| | - Daniel J. O'Brien
- Wildlife Disease Laboratory, Michigan Department of Natural Resources, Lansing, MI, United States
| | - David S. L. Ramsey
- Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, VIC, Australia
| |
Collapse
|
7
|
VerCauteren KC, Lavelle MJ, Campa H. Persistent Spillback of Bovine Tuberculosis From White-Tailed Deer to Cattle in Michigan, USA: Status, Strategies, and Needs. Front Vet Sci 2018; 5:301. [PMID: 30555834 PMCID: PMC6281989 DOI: 10.3389/fvets.2018.00301] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Free-ranging white-tailed deer (Odocoileus virginianus) are believed to be a self-sustaining reservoir for bovine tuberculosis (bTB) in northeastern Lower Michigan, USA. Although a comprehensive control program is in place and on-farm mitigation strategies to curtail bTB transmission between cattle and deer have been implemented for over a decade, cattle and deer continue to become infected with the disease. Thus, renewed motivation to eradicate bTB is needed if that is truly the goal. Recurrent detection of bTB in cattle in the region is of mounting concern for state and federal agricultural agencies, producers, and wildlife managers. Current on-farm mitigation efforts include fencing and refined cattle feeding and watering practices. Liberal removal of antlerless deer through hunter harvest and disease control permits (DCPs) issued to cattle producers and agency sharp shooters have also been ongoing. Although these strategies have merit and efforts to reduce prevalence in deer and occurrence of positive farms are elevated, additional actions are needed. Heightened management actions to combat bTB in deer could include deer vaccination programs, strategic habitat manipulations to redistribute deer from farms, and precision removal of deer in proximity to high-risk farms. Foundational research to address development and delivery of vaccine to free-ranging deer is complete. Strategic management and habitat manipulation could reduce and disperse local concentrations of deer while better meeting wildlife, forestry, and agricultural goals. The responses of local deer populations to targeted removal of individuals are generally understood and there is potential to reduce deer activity around agricultural operations while allowing them to persist nearby on natural foods. We summarize the history and progress to date, discuss the realized merit of novel management strategies, and suggest options to rid deer and cattle in Michigan of bTB.
Collapse
Affiliation(s)
- Kurt C VerCauteren
- National Wildlife Research Center, USDA/APHIS/Wildlife Services. Fort Collins, CO, United States
| | - Michael J Lavelle
- National Wildlife Research Center, USDA/APHIS/Wildlife Services. Fort Collins, CO, United States
| | - Henry Campa
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Cross M, Heeren A, Cornicelli LJ, Fulton DC. Bovine Tuberculosis Management in Northwest Minnesota and Implications of the Risk Information Seeking and Processing (RISP) Model for Wildlife Disease Management. Front Vet Sci 2018; 5:190. [PMID: 30175104 PMCID: PMC6108062 DOI: 10.3389/fvets.2018.00190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022] Open
Abstract
Bovine tuberculosis (bTB) is an infectious, zoonotic disease caused by Mycobacterium bovis that can spread between domestic and wild animals, as well as to humans. The disease is characterized by the progressive development of lesions that compromise the victim's lungs and lymph system. The disease was first identified in northwest Minnesota in both cattle and white-tailed deer (Odocoileus virginianus) in 2005. Due to its risks to human and animal health, bTB has numerous implications related to population management, policy outcomes, stakeholder relations, and economic impacts. When dealing with complicated risks, like bTB, individuals often seek out and process information as a method to learn about, and cope, with the risk. We developed a questionnaire that adapted components of the Risk Information Seeking and Processing (RISP) model and surveyed northwest Minnesota deer hunters. Our objectives were to better understand how stakeholders perceive and act on information regarding disease management in wildlife and to understand the utility of the RISP model for such management contexts. We drew a random proportional sample of licensed deer hunters (n = 2100) from the area affected by bTB and conducted a multi-contact mail survey. We found that 43% of the variability in the information-seeking behaviors of respondents was explained by demographics, hunting importance, personal risk perceptions, attitudes, and subjective norms. However, these results are largely attributable to the factors in the RISP model encompassed by components of the Theory of Planned Behavior (i.e., attitudes, subjective norms, perceived behavioral control, and behavioral intentions). This information can help managers contextualize individuals' perceived risks to better frame communication efforts to address stakeholder concerns and develop best practices for disease communication. While the state of Minnesota is currently considered free of bTB, future outbreaks remain possible in Minnesota and elsewhere. Understanding the key factors in the processes through which deer hunters seek out information pertaining to the disease can help managers collect the data necessary to aid decisions about desired future management outcomes. In addition, testing RISP model performance in applied research improves its future use across a broad spectrum of topics throughout veterinary disease management.
Collapse
Affiliation(s)
- Megan Cross
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States
| | - Alex Heeren
- Sierra Nevada Research Institute, University of California, Merced, CA, United States
| | - Louis J Cornicelli
- Minnesota Department of Natural Resources, Division of Fish and Wildlife, St. Paul, MN, United States
| | - David C Fulton
- U.S. Geological Survey, Minnesota Cooperative Fish and Wildlife Research Unit, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|