1
|
Hernández-Giottonini K, Arellano-Reynoso B, Rodríguez-Córdova RJ, de la Vega-Olivas J, Díaz-Aparicio E, Lucero-Acuña A. Enhancing Therapeutic Efficacy against Brucella canis Infection in a Murine Model Using Rifampicin-Loaded PLGA Nanoparticles. ACS OMEGA 2023; 8:49362-49371. [PMID: 38162745 PMCID: PMC10753543 DOI: 10.1021/acsomega.3c07892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
The in vivo efficacy of rifampicin encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles was evaluated for the treatment of BALB/c mice experimentally infected with Brucella canis. The PLGA nanoparticles loaded with rifampicin (RNP) were prepared using the single emulsification-solvent evaporation technique, resulting in nanoparticles with a hydrodynamic diameter of 138 ± 6 nm. The zeta potential and polydispersity index values indicated that the system was relatively stable with a narrow size distribution. The release of rifampicin from the nanoparticles was studied in phosphate buffer at pH 7.4 and 37 °C. The release profile showed an initial burst phase, followed by a slower release stage attributed to nanoparticle degradation and relaxation, which continued for approximately 30 days until complete drug release. A combined model of rifampicin release, accounting for both the initial burst and the degradation-relaxation of the nanoparticles, effectively described the experimental data. The efficacy of RNP was studied in vivo; infected mice were treated with free rifampicin at concentrations of 2 mg per kilogram of mice per day (C1) and 4 mg per kilogram of mice per day (C2), as well as equivalent doses of RNP. Administration of four doses of the nanoparticles significantly reduced the B. canis load in the spleen of infected BALB/c mice. RNP demonstrated superior effectiveness compared to the free drug in the spleen, achieving reductions of 85.4 and 49.4%, respectively, when using C1 and 93.3 and 61.8%, respectively, when using C2. These results highlight the improved efficacy of the antibiotic when delivered through nanoparticles in experimentally infected mice. Therefore, the RNP holds promise as a potential alternative for the treatment of B. canis.
Collapse
Affiliation(s)
- Karol
Yesenia Hernández-Giottonini
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad
de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma
de México, Circuito Exterior Ciudad
Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Rosalva Josefina Rodríguez-Córdova
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| | | | - Efrén Díaz-Aparicio
- CENID
Salud Animal e Inocuidad, Instituto Nacional
de Investigaciones Forestales, Agrícolas y Pecuarias, Carretera Federal México-Toluca
Km. 15.5, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Armando Lucero-Acuña
- Posgrado
en Nanotecnología, Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico
- Departamento
de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico
| |
Collapse
|
2
|
Sebzda MK, Kauffman LK. Update on Brucella canis: Understanding the Past and Preparing for the Future. Vet Clin North Am Small Anim Pract 2023:S0195-5616(23)00075-X. [PMID: 37385876 DOI: 10.1016/j.cvsm.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The genus Brucella is known by veterinarians as a primary cause of reproductive diseases. It is widely known to cause financial devastation in livestock species, and is lesser known as a problem for dog breeders and fanciers with similar reproductive diseases seen in dogs. Now there are concerns about the dispersal of Brucella canis into countries that have enjoyed a fairly low incidence, through the importation of dogs from endemic countries. B canis, much like Brucella abortus, suis or mellitensis, is zoonotic and handling or working with infected dogs can lead to human disease. Only within the last few decades has the risk of brucellosis in dogs, and the people who own and work with them, been more fully acknowledged. This review will focus on new information that has been obtained since our last B canis article in 2018. Readers are encouraged to look to that article for information not presented within this update. Current B canis epidemiology along with a complete review of diagnostic testing options will be covered. Regulations for the international movement of dogs will be discussed in addition to concerns for increased zoonosis potential. Future goals would include better management of this disease including proposed screening of all imported dogs. Canine brucellosis prevention, owner and shelter/rescue education along with proposed therapies for the future will also be explored.
Collapse
Affiliation(s)
- Mary K Sebzda
- Newport Harbor Animal Hospital, 125 Mesa Drive, Costa Mesa, CA 92627, USA; Western University of Health Sciences, Pomona, CA 91766, USA
| | - Lin K Kauffman
- Prairie View Animal Hospital, 1830 Southeast Princeton Drive Suite A, Grimes, IA 50111, USA.
| |
Collapse
|
3
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Whatmore AM, Foster JT. Emerging diversity and ongoing expansion of the genus Brucella. INFECTION GENETICS AND EVOLUTION 2021; 92:104865. [PMID: 33872784 DOI: 10.1016/j.meegid.2021.104865] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Remarkable genetic diversity and breadth of host species has been uncovered in the Brucella genus over the past decade, fundamentally changing our concept of what it means to be a Brucella. From ocean fishes and marine mammals, to pond dwelling amphibians, forest foxes, desert rodents, and cave-dwelling bats, Brucella have revealed a variety of previously unknown niches. Classical microbiological techniques have been able to help us classify many of these new strains but at times have limited our ability to see the true relationships among or within species. The closest relatives of Brucella are soil bacteria and the adaptations of Brucella spp. to live intracellularly suggest that the genus has evolved to live in vertebrate hosts. Several recently discovered species appear to have phenotypes that are intermediate between soil bacteria and core Brucella, suggesting that they may represent ancestral traits that were subsequently lost in the traditional species. Remarkably, the broad relationships among Brucella species using a variety of sequence and fragment-based approaches have been upheld when using comparative genomics with whole genomes. Nonetheless, genomes are required for fine-scale resolution of many of the relationships and for understanding the evolutionary history of the genus. We expect that the coming decades will reveal many more hosts and previously unknown diversity in a wide range of environments.
Collapse
Affiliation(s)
- Adrian M Whatmore
- OIE and FAO Brucellosis Reference Laboratory, Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, United Kingdom.
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
5
|
Canine brucellosis in Costa Rica reveals widespread Brucella canis infection and the recent introduction of foreign strains. Vet Microbiol 2021; 257:109072. [PMID: 33965789 DOI: 10.1016/j.vetmic.2021.109072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/13/2021] [Indexed: 01/31/2023]
Abstract
Brucellosis is a prevalent disease in Costa Rica (CR), with an increasing number of human infections. Close to half of homes in CR have one or more dogs, corresponding to ∼1.4 million canines, most of them in the Central Valley within or near the cities of San José, Heredia, and Alajuela. From 302 dog sera collected from this region, 19 were positive for Brucella canis antigens, and five had antibodies against smooth lipopolysaccharide, suggesting infections by both B. canis and other Brucella species. B. canis strains were isolated in the Central Valley from 26 kennel dogs and three pet dogs, all displaying clinical signs of canine brucellosis. We detected three recent introductions of different B. canis strains in kennels: two traced from Mexico and one from Panama. Multiple locus-variable number tandem repeats (MLVA-16) and whole-genome sequencing (WGSA) analyses showed that B. canis CR strains comprise three main lineages. The tree topologies obtained by WGSA and MLVA-16 just partially agreed, indicating that the latter analysis is not suitable for phylogenetic studies. The fatty acid methyl ester analysis resolved five different B. canis groups, showing less resolution power than the MLVA-16 and WGSA. Lactobacillic acid was absent in linages I and II but present in linage III, supporting the recent introductions of B. canis strains from Mexico. B. canis displaying putative functional cyclopropane synthase for the synthesis of lactobacillic acid are phylogenetically intertwined with B. canis with non-functional protein, indicating that mutations have occurred independently in the various lineages.
Collapse
|
6
|
Prevalence and Genomic Characterization of Brucella canis Strains Isolated from Kennels, Household, and Stray Dogs in Chile. Animals (Basel) 2020; 10:ani10112073. [PMID: 33182313 PMCID: PMC7695308 DOI: 10.3390/ani10112073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Canine brucellosis caused by Brucella canis is a zoonotic disease that causes reproductive alterations in dogs, such as infertility, abortion, and epididymitis. This pathogen is especially prevalent in South America, and due to the lack of official control programs and the growing trend of adopting dogs it constitutes a public health risk that must be addressed. The aim of this study was to determine the prevalence of B. canis infection in kennel, shelter, and household dogs and to characterize the genomic properties of circulating strains, including ure and virB operons and omp25/31 genes. Samples from 771 dogs were obtained, and the infection was detected by blood culture and/or serology in 7.0% of the animals. The complete ure and virB operons and the omp25/31 genes were detected. Interestingly, we found different single-nucleotide polymorphisms (SNPs) in some of the analyzed genes, which could mean a change in the fitness or virulence of these strains. This study provides further evidence about dogs as a source of B. canis strains that can infect people. This also highlights the need to implement official control programs, including the mandatory testing of dogs, especially stray dogs, before adoption.
Collapse
|
7
|
Wang Z, Zhang Y, Wang L, Wei J, Liu K, Shao D, Li B, Liu L, Widén F, Ma Z, Qiu Y. Comparative genomic analysis of Bordetella bronchiseptica isolates from the lungs of pigs with porcine respiratory disease complex (PRDC). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104258. [PMID: 32087347 DOI: 10.1016/j.meegid.2020.104258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bordetella bronchiseptica (B. bronchiseptica), as an opportunistic pathogen, can cause respiratory diseases in a variety of animals, including humans. In additional to being involved in porcine atrophic rhinitis through coinfection with Pasteurella multocida, B. bronchiseptica is associated with porcine respiratory disease complex (PRDC). While there are genomic data available from different host species, little is known about B. bronchiseptica isolates from pig lungs, especially from lungs characterized as having PRDC. RESULTS A total of five B. bronchiseptica isolates were identified from pig lungs characterized as PRDC. The draft genomes of these strains were generated. In comparison with the other reported genomes, these five isolates showed the similar general characteristic including G+C content, rRNAs/tRNA, and clusters of orthologous groups of proteins (COGs). Phylogenetic analysis of all B. Bronchiseptica isolates of different species available at GenBank based on core genome multilocus sequence typing (cgMLST) classified them into two genogroups. All five isolates from this study, with the other isolates from pigs, were placed into a subclade of genogroup I consisting of only mammalian isolates. By contrast, genogroup II contained the isolates from an avian species (turkey) and some mammals (human and dog). Moreover, genome annotation revealed the presence of antibiotic resistance genes and virulence genes among these five genomes, consistent with the similarity and variety in genomic traits. Finally, comparative analysis of insertion sequence (IS) and prophages in five genomes further showed the similarity and variety in genomic characteristic. CONCLUSIONS This is the first study to provide comparative genomics of B. bronchiseptica strains from pig lungs characterized as having PRDC. Importantly, the findings presented in this study reveal novel genomic characteristic of B. bronchiseptica, which should provide insightful information on genome evolution.
Collapse
Affiliation(s)
- Zhitao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yanbing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Lihong Liu
- Department of Virology, Immunobiology and Parasitology (VIP), The Notional Veterinary Institute (SVA), Uppsala, Sweden
| | - Frederik Widén
- Department of Virology, Immunobiology and Parasitology (VIP), The Notional Veterinary Institute (SVA), Uppsala, Sweden
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China.
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China.
| |
Collapse
|
8
|
Kauffman LK, Petersen CA. Canine Brucellosis: Old Foe and Reemerging Scourge. Vet Clin North Am Small Anim Pract 2019; 49:763-779. [PMID: 30961996 DOI: 10.1016/j.cvsm.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genus Brucella is a primary cause of reproductive diseases. Widely known as a problem in livestock, Brucella is gaining notoriety as a cause of canine reproductive disease and as a scourge to dog breeders. Only within the last few decades has the risk of severe brucellosis in dogs, and the people who own and work with them, been more fully appreciated. This review summarizes the epidemiology, clinical signs, and advances in diagnosis and management of Brucella canis. Canine brucellosis prevention, owner education, and possible therapies for the future are also discussed.
Collapse
Affiliation(s)
| | - Christine A Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, 145 North Riverside Drive, Iowa City, IA 52242, USA; Center for Emerging Infectious Diseases, University of Iowa Research Park, Coralville, IA 52241, USA.
| |
Collapse
|