1
|
Franco EO, de Oliveira LB, Calchi AC, de Mello VVC, Lee DAB, Arantes PVC, Graciolli G, Machado RZ, Coelho TFSB, André MR. Genetic diversity of Bartonella spp. in vampire bats and associated Streblidae bat flies in the Brazilian Amazon. Parasitol Int 2025; 106:103019. [PMID: 39689759 DOI: 10.1016/j.parint.2024.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Among mammals, bats stand out as important reservoirs for Bartonella spp., second only to rodents. In Brazil, out of the 182 species of bats described, three are hematophagous: Desmodus rotundus, Diphylla ecaudata and Diaemus youngii. Considering that Bartonella species have been increasingly associated to disease in humans, the search for such agents in animal reservoirs and ectoparasites is crucial for understanding the epidemiology of bartonelloses. The present study aimed to investigate the occurrence and genetic diversity of Bartonella spp. in vampire bats and Streblidae bat flies in the Brazilian Amazon. For this purpose, 228 spleen samples of D. rotundus and 1 of D. youngi were collected from four states in the northern region of Brazil (Pará (n = 206/D. rotundus; n = 1/D. youngii), Roraima (n = 18/ D. rotundus), Amapá (n = 3/D. rotundus) and Amazonas (n = 1/D. rotundus). Additionally, 142 Streblidae bat flies were collected from 54 D. rotundus (23 Strebla wiedemanni and 118 Trichobius parasiticus) and one D. youngii (1 Trichobius diaemi). Seventy-three (31.9 %; 73/228) spleen samples of D. rotundus (62 from Pará, 9 from Roraima and 2 from Amapá) and 45/142 (31.7 %) Streblidae bat flies (1 T. diaemi, 8 S. wiedemanni and 36 T. parasiticus) were positive in qPCR for Bartonella spp. based on the nuoG gene. Phylogenetic analyses based on the gltA and rpoB genes positioned the sequences obtained together with genotypes previously detected in D. rotundus and bat-associated flies. High genotypic diversity was found among sequences obtained from bats and Streblidae flies (6 gtlA and 11 rpoB genotypes). The genotypes identified in D. rotundus in the present study were exclusively shared with sequences from Bartonella spp. detected in vampire bats, not overlapping with genotypes previously detected in non-hematophagous bats from Brazil. Most of the sequences detected in Streblidae bat flies formed unique genotypes for each dipteran species analyzed. The present study expanded the knowledge regarding the diversity of Bartonella genotypes in vampire bats and associated Streblidae flies.
Collapse
Affiliation(s)
- Eliz Oliveira Franco
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Laryssa Borges de Oliveira
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Victória Valente Califre de Mello
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Daniel Antonio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Paulo Vitor Cadina Arantes
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Gustavo Graciolli
- Federal University of Mato Grosso do Sul, Center for Biological and Health Sciences, Zoological Collection, Campo Grande, MS, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | | | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil.
| |
Collapse
|
2
|
de França DA, Langoni H. Prevalent zoonoses in Sao Paulo State, Brazil: the role of bats and molecular diagnosis. Rev Inst Med Trop Sao Paulo 2025; 67:e17. [PMID: 40053003 PMCID: PMC11883767 DOI: 10.1590/s1678-9946202567017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/04/2024] [Indexed: 03/10/2025] Open
Abstract
This review explores the landscape of prevalent zoonotic diseases in Sao Paulo State, Brazil, focusing on the role of bats as reservoirs and the application of molecular biology in the diagnosis. The zoonoses covered include visceral and cutaneous leishmaniasis, Chagas disease, toxoplasmosis, bartonellosis, Q fever, Brazilian spotted fever, and leptospirosis. Molecular techniques can improve public health responses by accurately identifying pathogens and tracking their transmission dynamics in populations, thus enhancing early detection, characterization of strains, and monitoring of disease outbreaks. By elucidating the epidemiology and molecular aspects of zoonoses associated with bats in Sao Paulo State, we highlight the importance of integrated surveillance systems and multidisciplinary approaches to effectively manage and prevent these diseases.
Collapse
Affiliation(s)
- Danilo Alves de França
- Universidade Estadual Paulista, Departamento de Produção Animal e Medicina Veterinária Preventiva, Botucatu, São Paulo, Brazil
| | - Helio Langoni
- Universidade Estadual Paulista, Departamento de Produção Animal e Medicina Veterinária Preventiva, Botucatu, São Paulo, Brazil
| |
Collapse
|
3
|
Gomez-Puerta LA, Ampuero-Riega J, Medrano-Uchuya N, Morales-Cauti S. Molecular detection and diversity of Bartonella spp. in non-hematophagous bats from the Peruvian Amazon. Acta Trop 2025; 262:107539. [PMID: 39889894 DOI: 10.1016/j.actatropica.2025.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
The Bartonella genus comprises a variety of species capable of infecting a wide range of mammals through hematophagous arthropods, such as fleas, ticks, flies, and lice. Domestic (dogs and cats) and wild (rodents and bats) reservoirs harbor species with zoonotic potential. This molecular study identified the diversity of Bartonella spp. in bats from the Peruvian Amazon. Blood samples from 62 bats were molecularly analyzed for the detection of Bartonella spp. by amplification of the 16S-23S internal transcribed spacer (ITS) region and the citrate synthase (gltA) gene. The ITS region amplification revealed the presence of Bartonella spp. DNA in 12 bats (19.4 %). These bats were four Carollia perspicillata, three Uroderma bilobatum, two Phyllostomus hastatus, a Platyrrhinus infuscus, and a Noctilio albiventris. Partial analysis of the gltA gene successfully assessed Bartonella genetic variants in 11 of the ITS-positive samples. Eleven genetic variants were identified, with differences ranging from 0.3 % to 18.0 % among them. Both a bat N. albiventris and a specimen of C. perspicillata exhibited two variants previously detected in N. albiventris from French Guiana and the bat fly Strebla guajiro collected from C. perspicillata in Brazil. The remaining nine variants correspond to newly identified Bartonella variants in bats. The results revealed a remarkable diversity of Bartonella spp. among bats in the Americas. These findings expand knowledge on the genetic variability of Bartonella infection in these mammals and provide new insights into the ecology of bat-borne Bartonella species.
Collapse
Affiliation(s)
- Luis A Gomez-Puerta
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 2800, Lima 15021, Peru.
| | - Juana Ampuero-Riega
- Carrera de Medicina Veterinaria, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Villa El Salvador, Lima 15067, Peru
| | - Noelia Medrano-Uchuya
- Carrera de Medicina Veterinaria, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Villa El Salvador, Lima 15067, Peru
| | - Siever Morales-Cauti
- Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 2800, Lima 15021, Peru
| |
Collapse
|
4
|
Sada JM, Kluyber D, Lee DAB, Calchi AC, Alves MH, Machado DMR, Werther K, Machado RZ, Desbiez ALJ, André MR. Molecular detection and characterization of Anaplasmataceae agents, Bartonella spp. and hemoplasmas in armadillos and anteaters from Brazil. Acta Trop 2024; 260:107477. [PMID: 39622309 DOI: 10.1016/j.actatropica.2024.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Armadillos and anteaters exhibit a wide range of interactions with various pathogens and ectoparasites, which, along with their physiological and ecological characteristics, contribute to their potential as hosts for a broad variety of pathogens with zoonotic potential. However, there has been limited research into the occurrence and diversity of vector-borne agents in this group of mammals. The present study aimed to investigate the occurrence and molecular identity of Ehrlichia spp., Anaplasma spp., Bartonella spp. and hemotropic mycoplasmas (hemoplasmas) in free-ranging armadillos and anteaters sampled in the southeast and central-west regions of Brazil. To this purpose, 167 biological samples (139 blood and 28 spleen) from Xenarthra mammals sampled in the states of São Paulo and Mato Grosso do Sul were analyzed: 48 from six-banded armadillos (Euphractus sexcinctus), 29 from giant armadillos (Priodontes maximus), 4 from nine-banded armadillos (Dasypus novemcinctus), 1 from naked-tailed armadillo (Cabassous unicinctus), 79 from giant anteaters (Myrmecophaga tridactyla) and 6 from southern tamanduas (Tamandua tetradactyla). Screening PCR assays were performed for Ehrlichia spp. based on the dsb gene, nested PCR for Anaplasma spp. and PCR for hemotropic mycoplasmas based on the 16S rRNA gene, and qPCR for Bartonella spp. based on the 16-23S rRNA intergenic region (ITS). The positive samples were additionally subjected to PCR assays targeting different molecular markers for molecular characterization. As a result, 1/48 (0.59%) blood sample from E. sexcintus was positive for Anaplasma spp., and 1/79 (0.59%) blood sample from M. tridactyla was positive for Ehrlichia spp. The 16S rRNA sequence of Anaplasma sp. detected in E. sexcintus clustered within the same clade as 'Candidatus Anaplasma brasiliensis', previously detected in T. tetradactyla. The dsb sequence of Ehrlichia sp. detected in M. tridactyla clustered within the same clade as Ehrlichia minasensis. In the PCR tests for hemoplasmas, 31/46 (64.5%) E. sexcinctus, 9/29 (65.5%) P. maximus, 2/4 (50%) D. novemcinctus, 33/79 (41.7%) M. tridactyla, and 2/6 (33.3%) T. tetradactyla tested positive. The 16S rRNA and 23S rRNA sequences of hemoplasmas found in E. sexcinctus clustered within the same clade as 'Candidatus Mycoplasma haematomaximus', which was previously detected in P. maximus in Brazil. High positivity rates were also observed for Bartonella spp., with 23/48 (47.9%) E. sexcinctus, 1/4 (25%) D. novemcinctus, 9/29 (31%) P. maximus, 21/79 (26.5%) M. tridactyla, and 3/6 (50%) T. tetradactyla showing positive results. The ftsZ sequences of Bartonella sp. detected in E. sexcinctus clustered with 'Candidatus Bartonella washoensis subsp. brasiliensis', previously identified in six-banded armadillos in Brazil. These findings reinforce the presence of 'Candidatus Anaplasma brasiliensis' and 'Candidatus Bartonella washoensis subsp. brasiliensis' in armadillos, and Ehrlichia minasensis in anteaters. This is the first report of 'Candidatus Mycoplasma haematomaximus', a hemoplasma previously described in giant armadillos, in six-banded armadillos. The zoonotic potential and real significance of infection by these agents in xenarthrans' health and conservation efforts are yet to be investigated.
Collapse
Affiliation(s)
- Jovêncio Mateus Sada
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal Campus, Via de Acesso Prof. Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, SP, CEP: 14884-900, Brazil
| | - Danilo Kluyber
- Ph.D Student at the Research and Development Institute IRD, Montpellier University, Montpellier, France; Associate Researcher Naples Zoo at the Caribbean Gardens, FL, USA
| | - Daniel Antônio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal Campus, Via de Acesso Prof. Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, SP, CEP: 14884-900, Brazil
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal Campus, Via de Acesso Prof. Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, SP, CEP: 14884-900, Brazil
| | - Mario Henrique Alves
- Institute of Wildlife Conservation (ICAS), Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Karin Werther
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal Campus, Via de Acesso Prof. Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, SP, CEP: 14884-900, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal Campus, Via de Acesso Prof. Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, SP, CEP: 14884-900, Brazil
| | | | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal Campus, Via de Acesso Prof. Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, SP, CEP: 14884-900, Brazil.
| |
Collapse
|
5
|
Franco EO, Dos Santos FCB, de Sousa Verde R, Calchi AC, de Mello VVC, Lee DB, Dias CM, Machado RZ, Carvalho AAB, Roque ALR, André MR. Bartonella spp. in bats from the Brazilian Amazon Forest. Vet Res Commun 2024; 48:4159-4168. [PMID: 39316347 DOI: 10.1007/s11259-024-10545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Despite the great diversity of bats (64 species) in the State of Acre, northwestern Brazil, there are no studies on occurrence and diversity of Bartonella spp. in bats in this region. The present study investigated the occurrence and molecular identity of Bartonella spp. in spleen samples (n = 271) from bats of 30 different species from this region, within the Amazon biome. Twenty-one out of 208 (10.1%) samples positive in the PCR for the mammalian gapdh endogenous genes were positive in the qPCR for Bartonella spp. based on the nuoG gene. The two gltA Bartonella genotypes detected grouped with those previously identified in bats from other locations, expanding the diversity of genotypes associated with bats. This study provided the first molecular evidence of the presence of Bartonella spp. in bats in the state of Acre and in bats of the species Lophostoma silvicolum, Vampyressa thyone, Tonatia saurophila and Phyllostomus elongatus.
Collapse
Affiliation(s)
- Eliz Oliveira Franco
- Departament of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), Faculty of Agrarian and Veterinary Sciences Júlio de Mesquita Filho (UNESP), 14884-900, Jaboticabal Campus, Via Prof. Access Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, São Paulo, Brazil
| | | | - Rair de Sousa Verde
- Postgraduate Program in Health and Sustainable Animal Production in the Amazon, Federal University of Acre, Rio Branco, Acre, Brazil
| | - Ana Cláudia Calchi
- Departament of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), Faculty of Agrarian and Veterinary Sciences Júlio de Mesquita Filho (UNESP), 14884-900, Jaboticabal Campus, Via Prof. Access Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, São Paulo, Brazil
| | - Victória Valente Califre de Mello
- Departament of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), Faculty of Agrarian and Veterinary Sciences Júlio de Mesquita Filho (UNESP), 14884-900, Jaboticabal Campus, Via Prof. Access Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, São Paulo, Brazil
| | - Daniel Braga Lee
- Departament of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), Faculty of Agrarian and Veterinary Sciences Júlio de Mesquita Filho (UNESP), 14884-900, Jaboticabal Campus, Via Prof. Access Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, São Paulo, Brazil
| | - Clara Morato Dias
- Departament of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), Faculty of Agrarian and Veterinary Sciences Júlio de Mesquita Filho (UNESP), 14884-900, Jaboticabal Campus, Via Prof. Access Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, São Paulo, Brazil
| | - Rosangela Zacarias Machado
- Departament of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), Faculty of Agrarian and Veterinary Sciences Júlio de Mesquita Filho (UNESP), 14884-900, Jaboticabal Campus, Via Prof. Access Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, São Paulo, Brazil
| | - Adolorata Aparecida Bianco Carvalho
- Departament of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), Faculty of Agrarian and Veterinary Sciences Júlio de Mesquita Filho (UNESP), 14884-900, Jaboticabal Campus, Via Prof. Access Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, São Paulo, Brazil
| | - André Luiz Rodrigues Roque
- Trypanosomatid Biology Laboratory, Instituto Oswaldo Cruz, (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Rogério André
- Departament of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), Faculty of Agrarian and Veterinary Sciences Júlio de Mesquita Filho (UNESP), 14884-900, Jaboticabal Campus, Via Prof. Access Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, São Paulo, Brazil.
- Departament of Pathology, Reproduction and One Health, Vector-Borne Bioagents Laboratory (VBBL), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil, 14884-900, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rura.
| |
Collapse
|
6
|
Silva-Ramos CR, Ballesteros-Ballesteros JA, Chala-Quintero SM, Matiz-González JM, Herrera-Sepúlveda MT, Faccini-Martínez ÁA, Pulido-Villamarín ADP, Hidalgo M, Pinto CM, Pérez-Torres J, Cuervo C. Genetic diversity of Bartonella spp. among cave-dwelling bats from Colombia. Acta Trop 2024; 259:107370. [PMID: 39216810 DOI: 10.1016/j.actatropica.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Bartonella is a bacterial genus that comprises arthropod-borne microorganisms. Several Bartonella isolates have been detected from bats worldwide, which are thought to be undescribed species. We aimed to test the presence of Bartonella spp. among bats from Colombia, and evaluate the genetic diversity of bat-associated Bartonella spp. through phylogenetic analyses. A total of 108 bat blood samples were collected from three bat species (Carollia perspicillata, Mormoops megalophylla, and Natalus tumidirostris) that inhabit the Macaregua cave. The Bartonella ssrA gene was targeted through real-time and end-point PCR; additionally, the gltA and rpoB genes were detected by end-point PCR. All obtained amplicons were purified and bidirectionally sequenced for phylogenetic analysis using a concatenated supermatrix and a supertree approaches. A detection frequency of 49.1 % (53/108) for Bartonella spp. was evidenced among bat blood samples, of which 59.1 % (26/44), 54.3 % (19/35) and 27.6 % (8/29) were identified in Carollia perspicillata, Natalus tumidirostris and Mormoops megalophylla respectively. A total of 35 ssrA, 5 gltA and 4 rpoB good-quality sequences were obtained which were used for phylogenetic analysis. All obtained bat sequences clustered together with sequences obtained from Neotropical bat species into two bat-restricted clades namely clade A and clade N. We detected the presence of Bartonella spp. that clustered within two different bat-associated Bartonella clades, giving the first data of the genetic diversity of these bacteria among bats from Colombia.
Collapse
Affiliation(s)
- Carlos Ramiro Silva-Ramos
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jesús A Ballesteros-Ballesteros
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sandra M Chala-Quintero
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - J Manuel Matiz-González
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá, Colombia
| | - María T Herrera-Sepúlveda
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Álvaro A Faccini-Martínez
- Servicio de Infectología, Hospital Militar Central, Bogotá, Colombia; Servicios y Asesorías en Infectología - SAI, Bogotá, Colombia; Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá, Colombia
| | - Adriana Del Pilar Pulido-Villamarín
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Marylin Hidalgo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - C Miguel Pinto
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galápagos, Ecuador
| | - Jairo Pérez-Torres
- Unidad de Ecología y Sistemática (UNESIS), Laboratorio de Ecología Funcional, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
7
|
Cruz GLT, Gonçalves-Oliveira J, de Lemos ERS, D'Andrea PS, de Andreazzi CS. From host individual traits to community structure and composition: Bartonella infection insights. Parasit Vectors 2024; 17:440. [PMID: 39468608 PMCID: PMC11514747 DOI: 10.1186/s13071-024-06523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Phylogeny, combined with trait-based measures, offers insights into parasite sharing among hosts. However, the specific traits that mediate transmission and the aspects of host community diversity that most effectively explain parasite infection rates remain unclear, even for the Bartonella genus, a vector-borne bacteria that causes persistent blood infections in vertebrates. METHODS This study investigated the association between rodent host traits and Bartonella infection, as well as how rodent community diversity affects the odds of infection in the Atlantic Forest, using generalized linear models. Additionally, we assessed how host traits and phylogenetic similarities influence Bartonella infection among mammal species in Brazil. To this end, rodents were sampled from ten municipalities in Rio de Janeiro, southeastern Brazil. Then, we calculated several diversity indices for each community, including Rényi's diversity profiles, Fisher's alpha, Rao's quadratic entropy (RaoQ), Functional Diversity (FDis), Functional Richness (FRic), and Functional Evenness (FEve). Finally, we compiled a network encompassing all known interactions between mammal species and Bartonella lineages recorded in Brazil. RESULTS We found no significant relationship between diversity indices and the odds of Bartonella infection in rodent communities. Furthermore, there was no statistical support for the influence of individual-level traits (e.g., body length, sex, and age) or species-level ecological traits (e.g., locomotor habitat, dietary guild, and activity period) on Bartonella infection in rodents. A country-scale analysis, considering all mammal species, revealed no effect of host traits or phylogeny on Bartonella infection. CONCLUSIONS This study highlighted wild mammals that share Bartonella lineages with livestock, synanthropic, and domestic animals, underscoring the complexity of their maintenance cycle within the One Health framework. A key question arising from our findings is whether molecular host-cell interactions outweigh host body mass and ecological traits in influencing Bartonella infection, potentially opening new avenues for understanding host-parasite relationships and infection ecology.
Collapse
Affiliation(s)
- Gabriella Lima Tabet Cruz
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Pró-Reitoria de Pós-Graduação, Pesquisa e Inovação (PROPGPI), Universidade Federal do Estado do Rio de Janeiro (Unirio), Rio de Janeiro, Brazil
| | - Jonathan Gonçalves-Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Laboratory for Zoonotic and Vector-Borne Diseases, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elba Regina Sampaio de Lemos
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Paulo Sergio D'Andrea
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios (LABPMR), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
- International Platform for Science, Technology and Innovation in Health, PICTIS, Fiocruz, Ílhavo, Portugal.
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Lee DAB, Fernandes Shimabukuro PH, Brilhante AF, Cadina Arantes PV, Sanches GS, Franco EO, Machado RZ, Maggi RG, Breitschwerdt EB, André MR. Bartonella spp. in Phlebotominae Sand Flies, Brazil. Emerg Infect Dis 2024; 30:2099-2107. [PMID: 39320166 PMCID: PMC11431920 DOI: 10.3201/eid3010.240397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Bartonella spp. are opportunistic, vectorborne bacteria that can cause disease in both animals and humans. We investigated the molecular occurrence of Bartonella spp. in 634 phlebotomine sand fly specimens, belonging to 44 different sand fly species, sampled during 2017-2021 in north and northeastern Brazil. We detected Bartonella sp. DNA in 8.7% (55/634) of the specimens by using a quantitative real-time PCR targeting the 16S-23S internal transcribed spacer intergenic region. Phylogenetic analysis positioned the Lutzomyia longipalpis sand fly-associated Bartonella gltA gene sequence in the same subclade as Bartonella ancashensis sequences and revealed a Bartonella sp. sequence in a Dampfomyia beltrani sand fly from Mexico. We amplified a bat-associated Bartonella nuoG sequence from a specimen of Nyssomyia antunesi sand fly. Our findings document the presence of Bartonella DNA in sand flies from Brazil, suggesting possible involvement of these insects in the epidemiologic cycle of Bartonella species.
Collapse
|
9
|
das Chagas MEM, de Mello-Oliveira VS, Guerro-de-Souza M, Calchi AC, Castro-Santiago AC, de Mello ÉM, de Suguiura IMS, Lourenço EC, Famadas KM, Dowling APG, André MR, Barros-Battesti DM, Jacinavicius FDC, Bassini-Silva R. Molecular detection of Bartonella spp. in bat-associated macronyssid mites (Acari: Macronyssidae) from Southern and Southeastern Brazil. Vet Res Commun 2024; 48:2743-2751. [PMID: 38662316 DOI: 10.1007/s11259-024-10393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Despite the worldwide occurrence and high genetic diversity of Bartonella spp. in bats, few studies investigate their occurrence in bat-associated mites. To date, 26 species of Macronyssidae mite species have been reported from Brazil, and 15 of which were found parasitizing bats. The present study aimed to investigate the presence of Bartonella DNA in bat-associated macronyssid mites from Brazil. For this purpose, 393 macronyssid specimens were selected by convenience from the tissue bank of the Acari Collection of the Instituto Butantan (IBSP). These mites were collected from 14 different bat species in three different Brazilian States (Minas Gerais, Paraná, and Rio de Janeiro). Out of 165 mites positive in the PCR for the endogenous 18S rRNA gene, only eight were positive in the qPCR for Bartonella spp. based on the nuoG gene, and we were able to obtain two sequences base in this same gene, and one sequence based on the 16S rRNA gene. The phylogenetic inference based on the nuoG gene grouped the obtained sequences with Bartonella genotypes previously detected in bats and associated bat flies, while the phylogeny based on the 16S rRNA grouped the obtained sequence in the same clade of Bartonella genotypes previously detected in Dermanyssus gallinae. These findings suggest that macronyssid mites might be associated with the maintenance of bartonellae among bats.
Collapse
Affiliation(s)
- Maria Eduarda Moraes das Chagas
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil
| | - Victor Souza de Mello-Oliveira
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil
| | - Mariane Guerro-de-Souza
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil
| | | | - Érica Munhoz de Mello
- Laboratório de Morcegos Urbanos, Centro de Controle de Zoonoses de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Elizabete Captivo Lourenço
- Laboratório de Ecologia de Mamíferos, Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Katia Maria Famadas
- Laboratório de Artrópodes Parasitos, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ashley P G Dowling
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil
| | - Darci Moraes Barros-Battesti
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil
| | | | - Ricardo Bassini-Silva
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil.
| |
Collapse
|
10
|
Alabí Córdova AS, Fecchio A, Calchi AC, Dias CM, Machado RZ, André MR. Molecular evidence of Bartonella spp. in tropical wild birds from the Brazilian Pantanal, the largest wetland in South America. Vet Res Commun 2024; 48:1631-1640. [PMID: 38443588 DOI: 10.1007/s11259-024-10341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Despite the worldwide occurrence of bartonellae in a broad range of mammal species, in which they usually cause a long-lasting erythrocytic bacteremia, few studies reported Bartonella spp. in avian hosts. The present work aimed to investigate the occurrence and molecular identity of Bartonella spp. infecting birds in the Pantanal wetland, central-western Brazil using a multigene approach. For this purpose, blood samples were collected from 517 individuals from 13 avian orders in the states of Mato Grosso and Mato Groso do Sul. DNA was extracted from avian blood and 500/517 (96.7%) samples were positive in a conventional PCR targeting the avian β-actin gene. Nineteen (3.8%) out of 500 avian blood samples were positive in a qPCR assay for Bartonella spp. based on the nuoG gene. Among 19 avian blood DNA samples positive in the qPCR for Bartonella spp., 12 were also positive in the qPCR for Bartonella based on the 16S-23S RNA Intergenic region (ITS). In the PCR assays performed for molecular characterization, one 16S rRNA, three ribC, and one nuoG sequences were obtained. Based on BLASTn results, while 1 nuoG, 2 ribC, and 2 ITS sequences showed high identity to Bartonella henselae, one 16S rRNA and 2 ITS showed high similarity to Bartonella machadoae in the sampled birds. Bartonella spp. related to B. henselae and B. machadoae were detected, for the first time, in wild birds from the Brazilian Pantanal.
Collapse
Affiliation(s)
- Amir Salvador Alabí Córdova
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil
| | - Alan Fecchio
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil
| | - Clara Morato Dias
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução E Saúde Única, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual "Júlio de Mesquita Filho", (FCAV/UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, São Paulo, Jaboticabal, CEP: 14884-900, Brazil.
| |
Collapse
|
11
|
Ferreira ACR, Colocho RAB, Pereira CR, Veira TM, Gregorin R, Lage AP, Dorneles EMS. Zoonotic bacterial pathogens in bats samples around the world: a scoping review. Prev Vet Med 2024; 225:106135. [PMID: 38394962 DOI: 10.1016/j.prevetmed.2024.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The aim of this scoping review was to describe the zoonotic bacterial pathogens already reported and their frequency in different bat species. Six databases were searched, without restriction on the year or location where the studies were carried out. Based on the inclusion and exclusion criteria, 146 studies that were published between 1964 and 2020 (most after 2005) were selected. In these studies, 102 zoonotic bacterial genera were described in different samples of fourteen bat families in 55 countries, suggesting the possible role of bats as hosts for these pathogens. The pathogens mainly identified in bats were Bartonella spp., Leptospira spp. and Staphylococcus spp. In conclusion, the information provided by this scoping review expands the knowledge about zoonotic bacterial pathogens already identified in bats, which can guide epidemiological surveillance policies for these pathogens in different countries.
Collapse
Affiliation(s)
- Amanda Carvalho Rosado Ferreira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| | - Raisa Abreu Bragança Colocho
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| | - Carine Rodrigues Pereira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| | - Thallyta Maria Veira
- Departamento de Biologia, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil.
| | - Renato Gregorin
- Centro de Biodiversidade e Recursos Genéticos, Departamento de Biologia Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| | - Andrey Pereira Lage
- Departamento de Medicina Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Elaine Maria Seles Dorneles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Pacheco TDA, Amaral RBD, Ikeda P, Maia MO, Lee DAB, Semedo TBF, de Mendonça RFB, Pedroni F, Horta MC, Rossi RV, André MR, Pacheco RDC. Molecular detection and characterization of Bartonella spp. in small mammals in the Amazonia and Cerrado biomes, midwestern Brazil. Acta Trop 2024; 251:107129. [PMID: 38266887 DOI: 10.1016/j.actatropica.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Although Bartonella spp. have been worldwide described in rodents and bats, few studies have reported these agents in marsupials. The present work aimed to investigate the occurrence and genetic diversity of Bartonella in small mammals (rodents, marsupials, and bats) and associated ectoparasites in two ecoregions (Amazonia and Cerrado biomes) in midwestern Brazil. For this purpose, DNA samples from 378 specimens of small mammals (128 rodents, 111 marsupials, and 139 bats) and 41 fleas (Siphonaptera) were screened for the Bartonella genus employing a quantitative real-time PCR assay (qPCR) based on the nuoG (nicotinamide adenine dinucleotide dehydrogenase gamma subunit) gene. Then, positive samples in qPCR were submitted to conventional PCR (cPCR) assays targeting the gltA, ftsZ, and rpoB genes. One (0.78 %) rodent, 23 (16.54 %) bats, and 3 (7.31 %) fleas showed positive results in the qPCR for Bartonella sp. After cPCR amplification and sequencing, 13 partial Bartonella DNA sequences of the following genes were obtained only from bats´ blood samples: 9 gltA (citrate synthase), 3 ftsZ (cell division protein), and 1 rpoB (RNA polymerase beta subunit). The maximum likelihood inference based on the gltA gene positioned the obtained sequences in three different clades, closely related to Bartonella genotypes previously detected in other bat species and bat flies sampled in Brazil and other countries from Latin America. Similarly, the ftsZ sequences clustered in two different clades with sequences described in bats from Brazil, other countries from Latin America, and Georgia (eastern Europe). Finally, the Bartonella rpoB from a specimen of Lophostoma silvicolum clustered with a Bartonella sp. sequence obtained from a Noctilio albiventris (KP715475) from French Guiana. The present study provided valuable insights into the diversity of Bartonella genotypes infecting bats from two ecoregions (Amazonia and Cerrado) in midwestern Brazil and emphasized that further studies should be conducted regarding the description and evaluation of different lineages of Bartonella in wild small mammals and their ectoparasites in different Brazilian biomes.
Collapse
Affiliation(s)
- Thábata Dos Anjos Pacheco
- Programa de Pós-Graduação em Ciências Veterinárias (PPGVET), Faculdade de Medicina Veterinária (FAVET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, MT, 78060900, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Campus Campo Novo do Parecis, MT, 78360000, Brazil
| | - Renan Bressianini do Amaral
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Priscila Ikeda
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Maerle Oliveira Maia
- Programa de Pós-Graduação em Ciências Veterinárias (PPGVET), Faculdade de Medicina Veterinária (FAVET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, MT, 78060900, Brazil
| | - Daniel Antônio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Thiago Borges Fernandes Semedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
| | - Ravena Fernanda Braga de Mendonça
- Laboratório de Mastozoologia, Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, MT, 78060900, Brazil
| | - Fernando Pedroni
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso (UFMT), Avenida Valdon Varjão, 6390, Barra do Garças, MT, 78605091, Brazil
| | - Maurício Claudio Horta
- Universidade Federal do Vale do Rio São Francisco, Campus de Ciências Agrárias. CMVET, Rodovia BR 407, Km 12, Lote 543 - Projeto de Irrigação Senador Nilo Coelho, s/n, Petrolina, PE, 56300990, Brazil
| | - Rogério Vieira Rossi
- Laboratório de Mastozoologia, Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, MT, 78060900, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Richard de Campos Pacheco
- Programa de Pós-Graduação em Ciências Veterinárias (PPGVET), Faculdade de Medicina Veterinária (FAVET), Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, MT, 78060900, Brazil.
| |
Collapse
|
13
|
André MR, Ikeda P, Lee DAB, do Amaral RB, Carvalho LAL, Pinheiro DG, Torres JM, de Mello VVC, Rice GK, Cer RZ, Lourenço EC, Oliveira CE, Herrera HM, Barros-Battesti DM, Machado RZ, Bishop-Lilly KA, Dalgard CL, Dumler JS. Characterization of the bacterial microbiome of non-hematophagous bats and associated ectoparasites from Brazil. Front Microbiol 2023; 14:1261156. [PMID: 37928691 PMCID: PMC10620512 DOI: 10.3389/fmicb.2023.1261156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Bats, along with their ectoparasites, harbor a wide diversity of symbiotic and potential pathogenic bacteria. Despite the enormous diversity of bats (181 species), few studies aimed to investigate the bacterial microbiome of Brazilian chiropterans and associated ectoparasites. This study aimed to characterize the bacterial microbiome of non-hematophagous bats and associated Streblidae flies and Macronyssidae and Spinturnicidae mites in the state of Mato Grosso do Sul, midwestern Brazil. Methods Oral and rectal swabs were collected from 30 bats (Artibeus lituratus [n = 13], Artibeus planirostris [n = 9], Eptesicus furinalis [n = 5], Carollia perspicillata [n = 2], and Platyrrhinus lineatus [n = 1]). In addition, a total of 58 mites (15 Macronyssidae and 43 Spinturnicidae) and 48 Streblidae bat flies were collected from the captured bats. After DNA extraction and purification, each sample's bacterial composition was analyzed with metagenomic sequencing. Results The microbiome composition of both oral and rectal bat swab samples showed that Gammaproteobacteria was the most abundant bacterial class. Spiroplasma, Wolbachia and Bartonella represented the most abundant genera in Streblidae flies. While Wolbachia (Alphaproteobacteria) was the most abundant genus found in Spinturnicidae, Arsenophonus (Gammaproteobacteria) was found in high abundance in Macronyssidae mites. In addition to characterizing the microbiome of each sample at the class and genus taxonomic levels, we identified medically significant bacteria able to infect both animals and humans in oral (Streptococcus and Anaplasma) and rectal swabs (Enterobacter, Klebsiella, Escherichia, Enterococcus, Streptococcus), Macronyssidae (Anaplasma, Bartonella, Ehrlichia) and Spinturnicidae (Anaplasma, Bartonella) mites as well as Streblidae flies (Spiroplasma, Bartonella). Discussion and conclusion Besides expanding the knowledge on the bacterial microbiome of non-hematophagous bats and Streblidae flies from Brazil, the present work showed, for the first time, the bacterial community of bat-associated Macronyssidae and Spinturnicidae mites.
Collapse
Affiliation(s)
- Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Priscila Ikeda
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Daniel Antônio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Renan Bressianini do Amaral
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lucas Amoroso Lopes Carvalho
- Departamento de Biotecnologia Ambiental e Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Biotecnologia Ambiental e Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Jaire Marinho Torres
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Victória Valente Califre de Mello
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Gregory K. Rice
- Leidos, Inc., Reston, VA, United States
- Department of Genomics and Bioinformatics, Naval Medical Research Command, Fort Detrick, Frederick, MD, United States
| | - Regina Z. Cer
- Department of Genomics and Bioinformatics, Naval Medical Research Command, Fort Detrick, Frederick, MD, United States
| | | | - Carisa Elisei Oliveira
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Heitor Miraglia Herrera
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Darci Moraes Barros-Battesti
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Jaboticabal, São Paulo, Brazil
| | - Kimberly A. Bishop-Lilly
- Department of Genomics and Bioinformatics, Naval Medical Research Command, Fort Detrick, Frederick, MD, United States
| | - Clifton L. Dalgard
- The American Genome Center, Center for Military Precision Health and Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - J. Stephen Dumler
- Department of Pathology, University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
14
|
Mongruel ACB, Medici EP, Canena ADC, Dias CM, Machado RZ, André MR. Molecular evidence of Bartonella spp. in wild lowland tapirs (Tapirus terrestris), the largest land mammals in Brazil. Comp Immunol Microbiol Infect Dis 2023; 101:102042. [PMID: 37660454 DOI: 10.1016/j.cimid.2023.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
The genus Bartonella (Hyphomicrobiales: Bartonellaceae) encompasses facultative intracellular α-proteobacteria that parasite erythrocytes and endothelial cells from a wide range of vertebrate hosts and can cause disease in animals and humans. Considering the large diversity of vertebrate species that may act as reservoirs and arthropod species that may be associated with Bartonella transmission, the exposure of animals and humans to these microorganisms is likely underestimated. The present study aimed to investigate the occurrence of Bartonella sp. in wild tapirs (Tapirus terrestris; Perissodactyla: Tapiridae) from two biomes in Brazil: Pantanal and Cerrado. Ninety-nine GPS-monitored wild tapirs were sampled in Pantanal (n = 61/99) and Cerrado (n = 38/99). A qPCR (quantitative real-time polymerase chain reaction) assay targeting the nuoG gene was used for the screening for Bartonella spp. DNA. Positive samples were additionally subjected to conventional PCR assays targeting five molecular markers (ribC, gltA, rpoB, groEL, ITS). Eight (8/99; 08,08%) animals were positive in the qPCR assay for Bartonella spp.: 7 from Cerrado (7/8; 87.5%) and 1 from Pantanal (1/8; 12.5%). The 5 Bartonella ribC sequences obtained from tapirs' blood samples grouped together with Bartonella henselae obtained from cats, humans, wild felids and Ctenocephalides felis (Siphonaptera: Pulicidae) fleas. To the best of author's knowledge, this is the first report of Bartonella sp. in Tapirus terrestris. This finding contributes to the understanding of the occurrence of B henselae in wild mammals from Brazil as well as expands the knowledge regarding the potential vector-borne pathogens that may affect wild tapis from Cerrado and Pantanal biomes.
Collapse
Affiliation(s)
- Anna Claudia Baumel Mongruel
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única - Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Emília Patrícia Medici
- Iniciativa Nacional para a Conservação da Anta Brasileira (INCAB), Instituto de Pesquisas Ecológicas (IPÊ), Campo Grande 79046-150, MS, Brazil; Escola Superior de Conservação Ambiental e Sustentabilidade (ESCAS/IPÊ), Nazaré Paulista 12960-000, SP, Brazil; IUCN SSC Tapir Specialist Group (TSG), Campo Grande 79046-150, MS, Brazil
| | - Ariel da Costa Canena
- Iniciativa Nacional para a Conservação da Anta Brasileira (INCAB), Instituto de Pesquisas Ecológicas (IPÊ), Campo Grande 79046-150, MS, Brazil
| | - Clara Morato Dias
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única - Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única - Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Reprodução e Saúde Única - Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, UNESP, Jaboticabal 14884-900, SP, Brazil.
| |
Collapse
|
15
|
Corduneanu A, Zając Z, Kulisz J, Wozniak A, Foucault-Simonin A, Moutailler S, Wu-Chuang A, Peter Á, Sándor AD, Cabezas-Cruz A. Detection of bacterial and protozoan pathogens in individual bats and their ectoparasites using high-throughput microfluidic real-time PCR. Microbiol Spectr 2023; 11:e0153123. [PMID: 37606379 PMCID: PMC10581248 DOI: 10.1128/spectrum.01531-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023] Open
Abstract
Among the most studied mammals in terms of their role in the spread of various pathogens with possible zoonotic effects are bats. These are animals with a very complex lifestyle, diet, and behavior. They are able to fly long distances, thus maintaining and spreading the pathogens they may be carrying. These pathogens also include vector-borne parasites and bacteria that can be spread by ectoparasites such as ticks and bat flies. In the present study, high-throughput screening was performed and we detected three bacterial pathogens: Bartonella spp., Neoehrlichia mikurensis and Mycoplasma spp., and a protozoan parasite: Theileria spp. in paired samples from bats (blood and ectoparasites). In the samples from the bat-arthropod pairs, we were able to detect Bartonella spp. and Mycoplasma spp. which also showed a high phylogenetic diversity, demonstrating the importance of these mammals and the arthropods associated with them in maintaining the spread of pathogens. Previous studies have also reported the presence of these pathogens, with one exception, Neoehrlichia mikurensis, for which phylogenetic analysis revealed less genetic divergence. High-throughput screening can detect more bacteria and parasites at once, reduce screening costs, and improve knowledge of bats as reservoirs of vector-borne pathogens. IMPORTANCE The increasing number of zoonotic pathogens is evident through extensive studies and expanded animal research. Bats, known for their role as reservoirs for various viruses, continue to be significant. However, new findings highlight the emergence of Bartonella spp., such as the human-infecting B. mayotimonensis from bats. Other pathogens like N. mikurensis, Mycoplasma spp., and Theileria spp. found in bat blood and ectoparasites raise concerns, as their impact remains uncertain. These discoveries underscore the urgency for heightened vigilance and proactive measures to understand and monitor zoonotic pathogens. By deepening our knowledge and collaboration, we can mitigate these risks, safeguarding human and animal well-being.
Collapse
Affiliation(s)
- Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Aneta Wozniak
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Áron Peter
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila D. Sándor
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, Hungary
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
16
|
Luna N, Muñoz M, Castillo-Castañeda A, Hernandez C, Urbano P, Shaban M, Paniz-Mondolfi A, Ramírez JD. Characterizing the blood microbiota of omnivorous and frugivorous bats (Chiroptera: Phyllostomidae) in Casanare, eastern Colombia. PeerJ 2023; 11:e15169. [PMID: 37431467 PMCID: PMC10329821 DOI: 10.7717/peerj.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2023] [Indexed: 07/12/2023] Open
Abstract
Bats are known reservoirs of seemingly-innocuous pathogenic microorganisms (including viruses, bacteria, fungi, and protozoa), which are associated with triggering disease in other zoonotic groups. The taxonomic diversity of the bats' microbiome is likely associated with species-specific phenotypic, metabolic, and immunogenic capacities. To date, few studies have described the diversity of bat blood microbial communities. Then, this study used amplicon-based next generation sequencing of the V4 hypervariable region of the 16S-rRNA gene in blood samples from omnivorous (n = 16) and frugivorous (n = 9) bats from the department of Casanare in eastern Colombia. We found the blood microbiota in bats to be composed of, among others, Bartonella and Mycoplasma bacterial genera which are associated with various disease phenotypes in other mammals. Furthermore, our results suggest that the bats' dietary habits might determine the composition and the persistence of some pathogens over others in their bloodstream. This study is among the first to describe the blood microbiota in bats, to reflect on co-infection rates of multiple pathogens in the same individual, and to consider the influence of diet as a factor affecting the animal's endogenous microbial community.
Collapse
Affiliation(s)
- Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Adriana Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernandez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Plutarco Urbano
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Universidad Internacional del Tropico Americano (Unitropico), Yopal, Colombia
| | - Maryia Shaban
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Incubadora Venezolana de la Ciencia, Caracas, Venezuela
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Incubadora Venezolana de la Ciencia, Caracas, Venezuela
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
17
|
de Mello VVC, Placa AJV, Lee DAB, Franco EO, Lima L, Teixeira MMG, Hemsley C, Titball RW, Machado RZ, André MR. Molecular detection of blood-borne agents in vampire bats from Brazil, with the first molecular evidence of Neorickettsia sp. in Desmodus rotundus and Diphylla ecaudata. Acta Trop 2023; 244:106945. [PMID: 37207993 DOI: 10.1016/j.actatropica.2023.106945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Bats (Mammalia, Chiroptera) represent the second largest group of mammals. Due to their ability to fly and adapt and colonize different niches, bats act as reservoirs of several potentially zoonotic pathogens. In this context, the present work aimed to investigate, using molecular techniques, the occurrence of blood-borne agents (Anaplasmataceae, Coxiella burnetii, hemoplasmas, hemosporidians and piroplasmids) in 198 vampire bats sampled in different regions of Brazil and belonging to the species Desmodus rotundus (n=159), Diphylla ecaudata (n=31) and Diaemus youngii (n=8). All vampire bats liver samples were negative in PCR assays for Ehrlichia spp., Anaplasma spp., piroplasmids, hemosporidians and Coxiella burnetii. However, Neorickettsia sp. was detected in liver samples of 1.51% (3/198) through nested PCR based on the 16S rRNA gene in D. rotundus and D. ecaudata. This is the first study to report Neorickettsia sp. in vampire bats. Hemoplasmas were detected in 6.06% (12/198) of the liver samples using a PCR based on the 16S rRNA gene. The two 16S rRNA sequences obtained from hemoplasmas were closely related to sequences previously identified in vampire and non-hematophagous bats from Belize, Peru and Brazil. The genotypic analysis identified a high diversity of bat-associated hemoplasma genotypes from different regions of the world, emphasizing the need for studies on this subject, in order to better understand the mechanisms of co-evolution between this group of bacteria and their vertebrate hosts. The role of neotropical bat-associated Neorickettsia sp. and bats from Brazilian in the biological cycle of such agent warrant further investigation.
Collapse
Affiliation(s)
- Victória Valente Califre de Mello
- Postgraduate Program in Agricultural Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil; Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Ana Julia Vidal Placa
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Daniel Antonio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Eliz Oliveira Franco
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Luciana Lima
- Laboratory of Trypanosomatids Taxonomy and Phylogeny, Department of Parasitology, Institute of Biomedical Sciences II, University of Sao Paulo, São Paulo, SP, Brazil
| | - Marta M G Teixeira
- Laboratory of Trypanosomatids Taxonomy and Phylogeny, Department of Parasitology, Institute of Biomedical Sciences II, University of Sao Paulo, São Paulo, SP, Brazil
| | - Claudia Hemsley
- Department of Biosciences, College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, UK
| | - Richard W Titball
- Department of Biosciences, College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, UK
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil.
| |
Collapse
|
18
|
Role of Brazilian bats in the epidemiological cycle of potentially zoonotic pathogens. Microb Pathog 2023; 177:106032. [PMID: 36804526 DOI: 10.1016/j.micpath.2023.106032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Bats (Chiroptera) are flying mammals of great biodiversity and habits. These characteristics contribute for them being natural reservoirs and part of the epidemiological cycle of several potentially zoonotic pathogens, such as viruses, protozoa, fungi and bacteria. Brazil hosts approximately 15% of the world's bat diversity, with 181 distinct species, 68 genera and 9 families. About 60% of infectious diseases in humans are of zoonotic origin and, in the last decades, the detection of zoonotic pathogens in bats and their environment has been reported, such as Rabies virus (RABV) and Histoplasma capsulatum. Thus, the aim of this work was to review the reports of zoonotic pathogens associated with bats in Brazil in the past ten years. We reviewed the main pathogenic microorganisms described and the species of bats most frequently involved in the epidemiological cycles of these zoonotic agents. The obtained data show an upward trend in the detection of zoonotic pathogens in Brazilian bats, such as RABV, Bartonella sp., Histoplasma capsulatum and Leishmania spp., with emphasis on the bat species Artibeus lituratus, Carollia perspicillata, Desmodus rotundus and Molossus molossus. These findings highlight the importance of monitoring bat-associated microrganisms to early identify pathogens that may threaten bat populations, including potentially zoonotic microrganisms, emphasizing the importance of the One Health approach to prevent and mitigate the risks of the emergence of zoonotic diseases.
Collapse
|
19
|
Genomic Characterization of Three Novel Bartonella Strains in a Rodent and Two Bat Species from Mexico. Microorganisms 2023; 11:microorganisms11020340. [PMID: 36838305 PMCID: PMC9962129 DOI: 10.3390/microorganisms11020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Rodents and bats are the most diverse mammal group that host Bartonella species. In the Americas, they were described as harboring Bartonella species; however, they were mostly characterized to the genotypic level. We describe here Bartonella isolates obtained from blood samples of one rodent (Peromyscus yucatanicus from San José Pibtuch, Yucatan) and two bat species (Desmodus rotundus from Progreso, and Pteronotus parnellii from Chamela-Cuitzmala) from Mexico. We sequenced and described the genomic features of three Bartonella strains and performed phylogenomic and pangenome analyses to decipher their phylogenetic relationships. The mouse-associated genome was closely related to Bartonella vinsonii. The two bat-associated genomes clustered into a single distinct clade in between lineages 3 and 4, suggesting to be an ancestor of the rodent-associated Bartonella clade (lineage 4). These three genomes showed <95% OrthoANI values compared to any other Bartonella genome, and therefore should be considered as novel species. In addition, our analyses suggest that the B. vinsonii complex should be revised, and all B. vinsonii subspecies need to be renamed and considered as full species. The phylogenomic clustering of the bat-associated Bartonella strains and their virulence factor profile (lack of the Vbh/TraG conjugation system remains of the T4SS) suggest that it should be considered as a new lineage clade (L5) within the Bartonella genus.
Collapse
|
20
|
Federici L, Masulli M, De Laurenzi V, Allocati N. An overview of bats microbiota and its implication in transmissible diseases. Front Microbiol 2022; 13:1012189. [PMID: 36338090 PMCID: PMC9631491 DOI: 10.3389/fmicb.2022.1012189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Recent pandemic events have raised the attention of the public on the interactions between human and environment, with particular regard to the more and more feasible transmission to humans of micro-organisms hosted by wild-type species, due to the increasing interspecies contacts originating from human’s activities. Bats, due to their being flying mammals and their increasing promiscuity with humans, have been recognized as hosts frequently capable of transmitting disease-causing microorganisms. Therefore, it is of considerable interest and importance to have a picture as clear as possible of the microorganisms that are hosted by bats. Here we focus on our current knowledge on bats microbiota. We review the most recent literature on this subject, also in view of the bat’s body compartments, their dietary preferences and their habitat. Several pathogenic bacteria, including many carrying multidrug resistance, are indeed common guests of these small mammals, underlining the importance of preserving their habitat, not only to protect them from anthropogenic activities, but also to minimize the spreading of infectious diseases.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- *Correspondence: Nerino Allocati,
| |
Collapse
|
21
|
Alcantara DMC, Ikeda P, Souza CS, de Mello VVC, Torres JM, Lourenço EC, Bassini-Silva R, Herrera HM, Machado RZ, Barros-Battesti DM, Graciolli G, André MR. Multilayer Networks Assisting to Untangle Direct and Indirect Pathogen Transmission in Bats. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02108-3. [PMID: 36166070 DOI: 10.1007/s00248-022-02108-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The importance of species that connect the different types of interactions is becoming increasingly recognized, and this role may be related to specific attributes of these species. Multilayer networks have two or more layers, which represent different types of interactions, for example, between different parasites and hosts that are nonetheless connected. The understanding of the ecological relationship between bats, ectoparasites, and vector-borne bacteria could shed some light on the complex transmission cycles of these pathogens. In this study, we investigated a multilayer network in Brazil formed by interactions between bat-bacteria, bat-ectoparasite, and ectoparasite-bacteria, and asked how these interactions overlap considering different groups and transmission modes. The multilayer network was composed of 31 nodes (12 bat species, 14 ectoparasite species, and five bacteria genera) and 334 links, distributed over three layers. The multilayer network has low modularity and shows a core-periphery organization, that is, composed of a few generalist species with many interactions and many specialist species participating in few interactions in the multilayer network. The three layers were needed to accurately describe the multilayer structure, while aggregation leads to loss of information. Our findings also demonstrated that the multilayer network is influenced by a specific set of species that can easily be connected to the behavior, life cycle, and type of existing interactions of these species. Four bat species (Artibeus lituratus, A. planirostris, Phyllostomus discolor, and Platyrrhinus lineatus), one ectoparasite species (Steatonyssus) and three bacteria genera (Ehrlichia, hemotropic Mycoplasma and Neorickettsia) are the most important species for the multilayer network structure. Finally, our study brings an ecological perspective under a multilayer network approach on the interactions between bats, ectoparasites, and pathogens. By using a multilayer approach (different types of interactions), it was possible to better understand these different ecological interactions and how they affect each other, advancing our knowledge on the role of bats and ectoparasites as potential pathogen vectors and reservoirs, as well as the modes of transmission of these pathogens.
Collapse
Affiliation(s)
| | - Priscila Ikeda
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, Brazil
| | - Camila Silveira Souza
- Departamento de Biologia Geral, Programa de Pós-Graduação em Botânica Aplicada, Universidade Estadual de Montes Claros, Montes Claros, MG, Brazil
| | - Victória Valente Califre de Mello
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, Brazil
| | - Jaire Marinho Torres
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Elizabete Captivo Lourenço
- Laboratório de Ecologia de Mamíferos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Heitor Miraglia Herrera
- Laboratório de Biologia Parasitária, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Rosangela Zacarias Machado
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, Brazil
| | - Darci Moraes Barros-Battesti
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Graciolli
- Setor de Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual "Júlio de Mesquita Filho" (UNESP), Jaboticabal, SP, Brazil.
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual "Júlio de Mesquita Filho" (UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP: 14884-900, Jaboticabal, SP, Brazil.
| |
Collapse
|
22
|
Low VL, Tan TK, Tohiran KA, Lim YAL, AbuBakar S, Nasir DM. A novel clade of bat-associated Bartonella detected in the bat fly Leptocyclopodia ferrari (Diptera: Nycteribiidae) parasitizing Cynopterus brachyotis (Chiroptera: Pteropodidae). Vet Microbiol 2021; 264:109284. [PMID: 34826649 DOI: 10.1016/j.vetmic.2021.109284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Bartonelloses are emerging infectious diseases that are common in humans and animals worldwide. Several Bartonella species associated with companion animals such as Bartonella henselae and Bartonella rochalimae are species with zoonotic implications and have become a global concern. Other Bartonella species associated with wild animals, however, remain underappreciated particularly in the developing regions of the world. To explore further on this neglected bacterial agent, Leptocyclopodia ferrari (Nycteribiidae) bat flies collected from Cynopterus brachyotis (Pteropodidae), an endemic fruit bat species in Southeast Asia, were molecularly examined for the presence of Bartonella. Both 16 S-23 S ribosomal RNA intergenic spacer region and citrate synthase gene sequences exhibited less than 95 % similarity to all previously reported Bartonella spp. Further phylogenetic analysis revealed a novel clade of this Bartonella sp. with high bootstrap support. The vectorial capacity of bat flies in transmitting this novel pathogen merits further investigation.
Collapse
Affiliation(s)
- Van Lun Low
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Tiong Kai Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Kamil Azmi Tohiran
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Dzulhelmi Muhammad Nasir
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia
| |
Collapse
|
23
|
Poofery J, Narapakdeesakul D, Riana E, Arnuphapprasert A, Nugraheni YR, Ngamprasertwong T, Wangthongchaicharoen M, Soisook P, Bhodhibundit P, Kaewthamasorn M. Molecular identification and genetic diversity of Bartonella spp. in 24 bat species from Thailand. Transbound Emerg Dis 2021; 69:e717-e733. [PMID: 34755483 DOI: 10.1111/tbed.14389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
The study of bacterial zoonoses has been under-pursued despite the fact that bacteria cause the majority of zoonotic diseases, of which 70% have a wildlife origin. More Bartonella species are being identified as the cause of human diseases, and several of them have been linked to domestic and wild animals. Bats are outstanding reservoirs for Bartonella species because of their wide distribution, mobility, roosting behaviour, and long life span. Here, we carried out a PCR-based survey on bats that were collected from 19 sampling sites in eight provinces of Thailand from February 2018 to April 2021. Bartonella infection was investigated in a total of 459 bats that belong to 24 different bat species (21 species of which had never been previously studied in Thailand). PCR diagnostics revealed that 115 out of 459 (25.5%) blood samples tested positive for Bartonella. The nucleotide identities of the Bartonella 16S rRNA sequences in this study were between 95.78-99.66% identical to those of known zoonotic species (Bartonella ancashensis, Bartonella henselae, Bartonella bacilliformis and Bartonella australis) as well as to an unidentified Bartonella spp. In addition, the citrate synthase (gltA) and RNA polymerase-beta subunit (rpoB) genes of Bartonella were sequenced and analyzed in positive samples. The gltA and rpoB gene sequences from Hipposideros gentilis and Rhinolophus coelophyllus bat samples showed low nucleotide identity (<95%) compared to those of the currently deposited sequences in the GenBank database, indicating the possibility of new Bartonella species. The phylogenetic inference and genetic diversity were generated and indicated a close relationship with other Bartonella species previously discovered in Asian bats. Overall, the current study demonstrates the primary evidence pointing to a potential novel Bartonella species in bats. This discovery also contributes to our current understanding of the geographical distribution, genetic diversity, and host ranges of bat-related Bartonella.
Collapse
Affiliation(s)
- Juthathip Poofery
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Duriyang Narapakdeesakul
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Elizabeth Riana
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudhi Ratna Nugraheni
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Songkhla, Thailand
| | - Phanaschakorn Bhodhibundit
- Sai Yok National Park, Department of National Parks, Wildlife and Plant Conservation, Kanchanaburi, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Molecular Survey and Genetic Diversity of Bartonella spp. in Small Indian Mongooses ( Urva auropunctata) and Their Fleas on Saint Kitts, West Indies. Microorganisms 2021; 9:microorganisms9071350. [PMID: 34206636 PMCID: PMC8306750 DOI: 10.3390/microorganisms9071350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
This study aimed to molecularly survey and evaluate the genetic diversity of Bartonella spp. in mongooses and their fleas from St. Kitts. Spleen (n = 54), blood (n = 71), and pooled flea samples, all identified as Ctenocephalides felis (n = 53), were submitted to TaqMan real-time quantitative PCR (qPCR) targeting Bartonella-nuoG fragment (84 bp). Positive samples underwent further conventional PCR assays targeting five loci (gltA, rpoB, fstZ, nuoG, and ITS), subsequent sequencing, and phylogenetic and haplotype analyses. The overall occurrence of Bartonella spp. in mongooses and fleas was 51.2% (64/125 [95% CI (42.1–60.2%)]) and 62.3% (33/53) [95% CI (47.9–75.2%)]), respectively. From samples sequenced across the five loci, 50.8% (33/65) were identified as Bartonella henselae, 26.2% (17/65) were 96.74–99.01% similar by BLAST analysis to an unidentified Bartonella sp. previously reported in Japanese badgers (Meles anakuma), and 23.1% (15/65) were co-infected with both species. Nucleotide polymorphism analysis showed low diversity amongst haplotypes but did concur with phylogenetic analysis, placing the unidentified species in a separate clade from B. henselae by multiple mutational events. Our data confirms that mongooses and Ctenocephalides felis fleas collected from them are not only potential reservoirs for B. henselae but also a novel Bartonella sp. which we propose be called ‘Candidatus Bartonella kittensis’.
Collapse
|
25
|
Durden LA, Bermúdez S, Vargas GA, Sanjur BE, Gillen L, Brown LD, Greiman SE, Eremeeva ME. Fleas (Siphonaptera) Parasitizing Peridomestic and Indigenous Mammals in Panamá and Screening of Selected Fleas for Vector-Borne Bacterial Pathogens. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1316-1321. [PMID: 33215205 DOI: 10.1093/jme/tjaa253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 06/11/2023]
Abstract
In total, 341 fleas belonging to 16 species were collected from 78 host mammals belonging to 10 species in Panamá from 2010 to 2016. The cat flea, Ctenocephalides felis (Bouché) predominated on domestic dogs and was also recorded from domestic cats, the raccoon, Procyon lotor (Linnaeus) and the common opossum, Didelphis marsupialis Linnaeus. The largest number of flea species (7) was recorded from D. marsupialis and the most common flea on that host was the ctenophthalmid, Adoratopsylla intermedia copha Jordan. One Oriental rat flea, Xenopsylla cheopis (Rothschild), was collected from D. marsupialis. Native rodents were parasitized by indigenous ceratophyllid, rhopalopsyllid, and stephanocircid fleas. The Mexican deermouse, Peromyscus mexicanus (Saussure), was parasitized by six species of ceratophyllids belonging to the mostly Central American genera, Baculomeris, Jellisonia, Kohlsia and Plusaetis. The long-tailed singing mouse, Scotinomys xerampelinus (Bangs), was parasitized by Plocopsylla scotinomi Tipton and Méndez, the only species of stephanocircid flea known from Central America. Twenty-six pools of extracted flea DNA representing 5 flea species (C. felis, Pulex echidnophagoides (Wagner), Pulex simulans Baker, A. intermedia copha, and P. scotinomi) and 79 individual fleas were all real-time polymerase chain reaction negative for Rickettsia felis, Rickettsia typhi, and Bartonella henselae.
Collapse
Affiliation(s)
- Lance A Durden
- Department of Biology, Georgia Southern University, Statesboro, GA
| | | | - Géminis A Vargas
- Departmento de Biología, Facultad de Ciencias Naturales y Exactes, Universidad de Chiriqui, University City, El Cabrero, David, Chiriqui, Panamá
| | - Boris E Sanjur
- Departmento de Biología, Facultad de Ciencias Naturales y Exactes, Universidad de Chiriqui, University City, El Cabrero, David, Chiriqui, Panamá
| | - Laura Gillen
- Department of Biology, Georgia Southern University, Statesboro, GA
| | - Lisa D Brown
- Department of Biology, Georgia Southern University, Statesboro, GA
| | | | - Marina E Eremeeva
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA
| |
Collapse
|
26
|
Ikeda P, Marinho Torres J, Perles L, Lourenço EC, Herrera HM, de Oliveira CE, Zacarias Machado R, André MR. Intra- and Inter-Host Assessment of Bartonella Diversity with Focus on Non-Hematophagous Bats and Associated Ectoparasites from Brazil. Microorganisms 2020; 8:E1822. [PMID: 33227996 PMCID: PMC7699196 DOI: 10.3390/microorganisms8111822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/28/2022] Open
Abstract
The relationship among bats, ectoparasites and associated microorganisms is important to investigate how humans can become exposed to zoonotic agents. Even though the diversity of Bartonella spp. in bats and ectoparasites has been previously reported, the occurrence of gltA genotypes within hosts has not been assessed so far. We aimed to investigate the genetic diversity of Bartonella spp. in non-hematophagous bats and associated ectoparasites by assessing cloned gltA Bartonella genotypes in intra- and inter-hosts levels, as well as by using three additional molecular markers. Overall, 13.5% (18/133) bat blood samples, 17.18% bat flies (11/64) and 23.8% (5/21) Macronyssidae mite pools showed to be positive for Bartonella spp. Seventeen positive samples were submitted to gltA-cloning and three clones were sequenced for each sample. We also obtained 11, seven and three sequences for nuoG, rpoB and ftsZ genes, respectively. None were positive for the other target genes. We found at least two genotypes among the three gltA-cloned sequences from each sample, and 13 between all the 51 sequences. Among the nuoG, rpoB and ftsZ sequences we found eight, five and three genotypes, respectively. In the phylogenetic analysis, the sequences were positioned mainly in groups related to Bartonella identified in rodents, bats and bat flies. Herein, we showed the genetic diversity of Bartonella in bat's blood and associated ectoparasites samples at both intra- and inter-host levels.
Collapse
Affiliation(s)
- Priscila Ikeda
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual “Júlio de Mesquita Filho”, Jaboticabal, São Paulo 14884-900, Brazil; (P.I.); (L.P.); (R.Z.M.)
| | - Jaire Marinho Torres
- Laboratório de Biologia Parasitária, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil; (J.M.T.); (H.M.H.); (C.E.d.O.)
| | - Lívia Perles
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual “Júlio de Mesquita Filho”, Jaboticabal, São Paulo 14884-900, Brazil; (P.I.); (L.P.); (R.Z.M.)
| | - Elizabete Captivo Lourenço
- Laboratório de Ecologia de Mamíferos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil;
| | - Heitor Miraglia Herrera
- Laboratório de Biologia Parasitária, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil; (J.M.T.); (H.M.H.); (C.E.d.O.)
| | - Carina Elisei de Oliveira
- Laboratório de Biologia Parasitária, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil; (J.M.T.); (H.M.H.); (C.E.d.O.)
| | - Rosangela Zacarias Machado
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual “Júlio de Mesquita Filho”, Jaboticabal, São Paulo 14884-900, Brazil; (P.I.); (L.P.); (R.Z.M.)
| | - Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Universidade Estadual “Júlio de Mesquita Filho”, Jaboticabal, São Paulo 14884-900, Brazil; (P.I.); (L.P.); (R.Z.M.)
| |
Collapse
|
27
|
Braga MDSCO, Gonçalves LR, Silva TMVD, Costa FB, Pereira JG, Santos LSD, Carvalho Neta AVD, Arruda RCND, Mesquita ETKDC, Chaves DP, Melo FA, Lopes JL, Martins RTB, Lima MS, Amaral RBD, Machado RZ, André MR. Occurrence of Bartonella genotypes in bats and associated Streblidae flies from Maranhão state, northeastern Brazil. ACTA ACUST UNITED AC 2020; 29:e014420. [PMID: 33084785 DOI: 10.1590/s1984-29612020088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Bartonella is a genus of emerging zoonotic bacteria that are mainly associated with mammalian erythrocytes and endothelial cells. Bats are natural reservoirs for a variety of important pathogens that impact human and animal health. Recent reports have highlighted the role of bats and bat flies in the maintenance of Bartonella. Here, we showed that none of the 29 bat DNA blood samples obtained from five bat species in São Luís Island, state of Maranhão, northeastern Brazil, were positive for Bartonella in qPCR assays targeting nuoG. On the other hand, three out of 15 DNA samples (20%) from flies in the family Streblidae were positive for Bartonella. The BLASTn results showed that the gltA and rpoB sequences shared identities ranging from 97.2% to 100%, with Bartonella sequences amplified from bats or bat flies from Costa Rica and Brazil. These findings were supported by phylogenetic analyses based on Bayesian inferences. The present study showed that Bartonella genotypes are present in bat flies, thus shedding some light on the distribution of bat fly-related Bartonella genotypes in South America.
Collapse
Affiliation(s)
| | - Luiz Ricardo Gonçalves
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Jaboticabal, SP, Brasil
| | - Thiago Merighi Vieira da Silva
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Jaboticabal, SP, Brasil
| | | | | | | | | | | | | | | | | | - Jady Lima Lopes
- Universidade Estadual do Maranhão - UEMA, São Luís, MA, Brasil
| | | | | | - Renan Bressianini do Amaral
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Jaboticabal, SP, Brasil
| | - Rosangela Zacarias Machado
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Jaboticabal, SP, Brasil
| | - Marcos Rogério André
- Laboratório de Imunoparasitologia, Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Jaboticabal, SP, Brasil
| |
Collapse
|
28
|
Gonçalves LR, Harrus S, Gutiérrez R, Herrera HM, de Souza Ramos IA, Porfírio GEDO, Nachum-Biala Y, de Sousa KCM, da Silva TMV, Campos JBV, Lemos W, Moraes Barros-Battesti D, Machado RZ, André MR. Molecular detection and genetic diversity of Bartonella species in large ruminants and associated ectoparasites from the Brazilian Cerrado. Transbound Emerg Dis 2020; 67:1888-1897. [PMID: 32068964 DOI: 10.1111/tbed.13517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/28/2022]
Abstract
Currently, five Bartonella species and an expanding number of Candidatus Bartonella species have globally been reported in ruminants. Likewise, different Bartonella genotypes were identified. However, studies relating to ruminant-associated Bartonella in Brazil are scarce. The current study aimed to assess the prevalence and genetic diversity of Bartonella in cattle, buffaloes and associated ectoparasites in Brazil. For this purpose, EDTA-blood samples from 75 cattle and 101 buffaloes were sampled. Additionally, 128 Rhipicephalus microplus and one Amblyomma sculptum ticks collected from cattle, and 197 R. microplus, one A. sculptum and 170 lice (Haematopinus tuberculatus) collected from buffaloes were included. Bartonella DNA was initially screened through an HRM real-time PCR assay targeting the 16S-23S internal transcribed spacer (ITS), and the positive samples were submitted to an additional HRM assay targeting the ssrA gene. The HRM-positive amplicons were sequenced, and the nucleotide identity was assessed by BLASTn. Bartonella spp.-positive DNA samples were analysed by conventional PCR assays targeting the gltA and rpoB genes, and then, the samples were cloned. Finally, the phylogenetic positioning and the genetic diversity of clones were assessed. Overall, 21 of 75 (28%) cattle blood samples and 13 of 126 (10.3%) associated ticks were positive for Bartonella bovis. Out of 101 buffaloes, 95 lice and 188 tick DNA samples, one (1%) buffalo and four (4.2%) lice were positive for Bartonella spp. Conversely, none of the ticks obtained from buffaloes were positive for Bartonella. The Bartonella sequences from buffaloes showed identity ranging from 100% (ITS and gltA) to 94% (ssrA) with B. bovis. In contrast, the Bartonella DNA sequences from lice were identical (100%) to uncultured Bartonella sp. detected in cattle tail louse (Haematopinus quadripertusus) from Israel in all amplified genes. The present study demonstrates the prevalence of new B. bovis genotypes and a cattle lice-associated Bartonella species in large ruminants and their ectoparasites from Brazil. These findings shed light on the distribution and genetic diversity of ruminant- and ectoparasite-related Bartonella in Brazil.
Collapse
Affiliation(s)
- Luiz Ricardo Gonçalves
- Graduate Program of Agricultural and Livestock Microbiology, Faculty of Agrarian and Veterinary Sciences (FCAV/UNESP), Jaboticabal, Brazil
- Department of Veterinary Pathology, Faculty of Agrarian and Veterinary Sciences (FCAV/UNESP), Jaboticabal, Brazil
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Keyla Carstens Marques de Sousa
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Wagner Lemos
- Department of Veterinary Pathology, Faculty of Agrarian and Veterinary Sciences (FCAV/UNESP), Jaboticabal, Brazil
| | - Darci Moraes Barros-Battesti
- Department of Veterinary Pathology, Faculty of Agrarian and Veterinary Sciences (FCAV/UNESP), Jaboticabal, Brazil
| | - Rosangela Zacarias Machado
- Department of Veterinary Pathology, Faculty of Agrarian and Veterinary Sciences (FCAV/UNESP), Jaboticabal, Brazil
| | - Marcos Rogério André
- Department of Veterinary Pathology, Faculty of Agrarian and Veterinary Sciences (FCAV/UNESP), Jaboticabal, Brazil
| |
Collapse
|
29
|
Müller A, Sepúlveda P, Di Cataldo S, Cevidanes A, Lisón F, Millán J. Molecular investigation of zoonotic intracellular bacteria in Chilean bats. Comp Immunol Microbiol Infect Dis 2020; 73:101541. [PMID: 32911380 DOI: 10.1016/j.cimid.2020.101541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023]
Abstract
Intracellular pathogens were investigated for the first time in 55 Chilean bats belonging to six species. Using a conventional PCR protocol targeting a fragment of the ITS region, 21 bats (38 %) were positive for DNA of Bartonella sp. Molecular characterization of fragments of the gltA, rpoB and fstZ genes and subsequent phylogenetic analysis indicated the presence of diverse genotypes related to Bartonella from bats worldwide. DNA from C. burnetii was investigated using a real-time PCR (qPCR) protocol targeting the IS1111 gene and yielded positive results for 5 individuals (9%), being the first report of C. burnetii in wildlife in Chile. All bats were negative for Rickettsia sp., evaluated by qPCR for the gltA gene, confirming that bats do not act as important reservoirs for Rickettsia. This preliminary survey calls for more comprehensive studies on the epidemiology of these agents, including larger sample sizes, the evaluation of potential transmission routes and spillover potential.
Collapse
Affiliation(s)
- Ananda Müller
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis, West Indies, Cote d'Ivoire; Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Paulina Sepúlveda
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sophia Di Cataldo
- PhD Program in Conservation Medicine, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - Aitor Cevidanes
- PhD Program in Conservation Medicine, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile
| | - Fulgencio Lisón
- Laboratorio de Ecología del Paisaje y Conservación, Departamento de Ciencias Forestales y Medioambiente, Universidad de La Frontera, P.D. Box 45-D, Temuco, Chile; Wildlife Ecology and Conservation Lab, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Javier Millán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, República 252, Santiago, Chile; Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Miguel Servet 177, 50013, Zaragoza, Spain; Fundación ARAID, Avda. de Ranillas, 50018, Zaragoza, Spain.
| |
Collapse
|
30
|
Investigation of Bartonella spp. in brazilian mammals with emphasis on rodents and bats from the Atlantic Forest. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 13:80-89. [PMID: 32904298 PMCID: PMC7452516 DOI: 10.1016/j.ijppaw.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
The Bartonella species are zoonotic agents that infect mammals and are transmitted by arthropod vectors. Approximately 18 distinct genotypes cause diseases in humans, and may be spread by both domestic and wild animals. In Brazil, Bartonella genotypes have been identified in several species of wild mammals, and in the present study, we analyzed samples from non-human primates (marmosets), marsupials, rodents, and bats, and compared them with the genotypes described in mammals from Brazil, to examine the distribution of Bartonella genotypes in two impacted areas of Rio de Janeiro state, in southeastern Brazil. We used polymerase chain reaction (PCR) methods to detect the Bartonella DNA using partial sequences of the gltA, ftsZ, and groEL genes. We generated Bayesian inference and maximum likelihood trees to characterize the positive PCR samples and infer the phylogenetic relationships of the genotypes. A total of 276 animals were captured, including 110 bats, 91 rodents, 38 marsupials, and 37 marmosets. The DNA of Bartonella was amplified from tissue samples collected from 12 (4.34%) of the animals, including eight rodents – Akodon cursor (5/44) and Nectomys squamipes (3/27) – and four bats, Artibeus lituratus (3/58) and Carollia perspicillata (1/15). We identified Bartonella genotypes closely related to those described in previous studies, as well as new genotypes in both the rodent and the bat samples. Considering the high diversity of the Bartonella genotypes and hosts identified in the present study, further research is needed to better understand the relationships between the different Bartonella genotypes and their vectors and host species. The presence of Bartonella in the wild rodents and bats from the study area indicates that the local human populations may be at risk of infection by Bartonella due to the spillover of these strains from the wild environment to domestic and peri-domestic environments. First record of wild mammals with Bartonella DNA at northwestern of Rio de Janeiro. The genotypes of Bartonella were characterized in two species of cricetid rodents and two species of phyllostomid bats from Rio de Janeiro. The genotype of Bartonella in Akodon cursor was identified closely related to B. rochalimae. This is the first report of Bartonella in C. perspicillata from Rio de Janeiro state, based on the analysis of tissue samples.
Collapse
|
31
|
Portillo A, Maggi R, Oteo JA, Bradley J, García-Álvarez L, San-Martín M, Roura X, Breitschwerdt E. Bartonella spp. Prevalence (Serology, Culture, and PCR) in Sanitary Workers in La Rioja Spain. Pathogens 2020; 9:pathogens9030189. [PMID: 32143533 PMCID: PMC7157737 DOI: 10.3390/pathogens9030189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Bartonella spp. are increasingly implicated in association with a spectrum of zoonotic infectious diseases. One hundred sanitary workers in La Rioja, Spain completed a questionnaire and provided blood specimens for Bartonella spp. serology and Bartonella alpha-Proteobacteria growth medium (BAPGM) enrichment blood culture/PCR. Six immunofluorescence assays (IFA) were performed and aseptically obtained blood specimens were inoculated into liquid BAPGM and subcultured onto blood agar plates. Bartonella DNA was amplified using conventional and real-time PCR assays. The Bartonella spp., strain, or genotype was determined by DNA sequencing. Bartonella seroreactivity was documented in 83.1% and bloodstream infection in 21.6% of participants. Bartonella henselae, B. vinsonii subsp. berkhoffii genotypes I and III, and B. quintana were identified. IFA seroreactivity and PCR positivity were not statistically associated with self-reported symptoms. Our results suggest that exposure to and non-clinical infection with Bartonella spp. may occur more often than previously suspected in the La Rioja region.
Collapse
Affiliation(s)
- Aránzazu Portillo
- Departamento de Enfermedades Infecciosas, Hospital U. San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, La Rioja, Spain; (A.P.); (J.A.O.); (L.G.-Á.)
| | - Ricardo Maggi
- Galaxy Diagnostics, Research Triangle Park, Morrisville, NC 27709, USA;
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA;
| | - José A. Oteo
- Departamento de Enfermedades Infecciosas, Hospital U. San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, La Rioja, Spain; (A.P.); (J.A.O.); (L.G.-Á.)
| | - Julie Bradley
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA;
| | - Lara García-Álvarez
- Departamento de Enfermedades Infecciosas, Hospital U. San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, La Rioja, Spain; (A.P.); (J.A.O.); (L.G.-Á.)
| | | | - Xavier Roura
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
| | - Edward Breitschwerdt
- Galaxy Diagnostics, Research Triangle Park, Morrisville, NC 27709, USA;
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA;
- Correspondence: ; Tel.: +1-919-513-8277
| |
Collapse
|