1
|
Despotovic M, de Nies L, Busi SB, Wilmes P. Reservoirs of antimicrobial resistance in the context of One Health. Curr Opin Microbiol 2023; 73:102291. [PMID: 36913905 DOI: 10.1016/j.mib.2023.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
The emergence and spread of antimicrobial resistance (AMR) and resistant bacteria, are a global public health challenge. Through horizontal gene transfer, potential pathogens can acquire antimicrobial resistance genes (ARGs) that can subsequently be spread between human, animal, and environmental reservoirs. To understand the dissemination of ARGs and linked microbial taxa, it is necessary to map the resistome within different microbial reservoirs. By integrating knowledge on ARGs in the different reservoirs, the One Health approach is crucial to our understanding of the complex mechanisms and epidemiology of AMR. Here, we highlight the latest insights into the emergence and spread of AMR from the One Health perspective, providing a baseline of understanding for future scientific investigations into this constantly growing global health threat.
Collapse
Affiliation(s)
- Milena Despotovic
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Laura de Nies
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, 7 Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L-4367, Luxembourg.
| |
Collapse
|
2
|
Sodagari HR, Shrestha RD, Agunos A, Gow SP, Varga C. Comparison of antimicrobial resistance among Salmonella enterica serovars isolated from Canadian turkey flocks, 2013-2021. Poult Sci 2023; 102:102655. [PMID: 37030258 PMCID: PMC10113892 DOI: 10.1016/j.psj.2023.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) in Salmonella from turkeys has raised a food safety concern in Canada as certain serovars have been implicated in human salmonellosis outbreaks in recent years. While several studies evaluated AMR in broiler chickens in Canada, there are limited studies that assess AMR in turkey flocks. This study analyzed data collected between 2013 and 2021 by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) farm turkey surveillance program to determine the prevalence of AMR and differences in resistance patterns among Salmonella serovars recovered from turkey flocks. Salmonella isolates were tested for susceptibility to 14 antimicrobials using a microbroth dilution method. Hierarchical clustering dendrograms were constructed to compare the individual AMR status of Salmonella serovars. Differences in the probability of resistance between Salmonella serovars were determined using generalized estimating equation logistic regression models to account for farm-level clustering. Of the 1,367 Salmonella isolates detected, 55.3% were resistant to at least one antimicrobial and 25.3% were multidrug resistant (MDR) (resistant to ≥3 antimicrobial classes). The Salmonella isolates exhibited high resistance to tetracycline (43.3%), streptomycin (47.2%), and sulfisoxazole (29.1%). The 3 most frequently occurring serovars were S. Uganda (22.9%), S. Hadar (13.5%), and S. Reading (12.0%). Streptomycin-sulfisoxazole-tetracycline (n = 204) was the most frequent MDR pattern identified. Heatmaps showed that S. Reading exhibited coresistance to the quinolone class antimicrobials, ciprofloxacin, and nalidixic acid; S. Heidelberg to gentamicin and sulfisoxazole; and S. Agona to ampicillin and ceftriaxone. Salmonella Hadar isolates had higher odds of resistance to tetracycline (OR: 152.1, 95% CI: 70.6-327.4) while the probability of being resistant to gentamicin and ampicillin was significantly higher in S. Senftenberg than in all the other serovars. Moreover, S. Uganda had the highest odds of being MDR (OR: 4.7, 95% CI: 3.7-6.1). The high resistance observed warrants a reassessment of the drivers for AMR, including AMU strategies and other production factors. Differences in AMR patterns highlight the need to implement serovar-specific mitigation strategies.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rima D Shrestha
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Agnes Agunos
- Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Sheryl P Gow
- Public Health Agency of Canada, Saskatoon, Saskatchewan, Canada
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Teng KTY, Aerts M, Jaspers S, Ugarte-Ruiz M, Moreno MA, Saez JL, Collado S, de Frutos C, Dominguez L, Alvarez J. Patterns of antimicrobial resistance in Salmonella isolates from fattening pigs in Spain. BMC Vet Res 2022; 18:333. [PMID: 36057710 PMCID: PMC9440507 DOI: 10.1186/s12917-022-03377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Swine are considered a major source of foodborne salmonellosis, a public health issue further complicated by the circulation of multidrug-resistant Salmonella strains that threaten the safety of the food chain. The current study aimed to identify patterns that can help to understand the epidemiology of antimicrobial resistance (AMR) in Salmonella in pigs in Spain through the application of several multivariate statistical methods to data from the AMR national surveillance programs from 2001 to 2017. Results A total of 1,318 pig Salmonella isolates belonging to 63 different serotypes were isolated and their AMR profiles were determined. Tetracycline resistance across provinces in Spain was the highest among all antimicrobials and ranged from 66.7% to 95.8%, followed by sulfamethoxazole resistance (range: 42.5% − 77.8%), streptomycin resistance (range: 45.7% − 76.7%), ampicillin resistance (range: 24.3% − 66.7%, with a lower percentage of resistance in the South-East of Spain), and chloramphenicol resistance (range: 8.5% − 41.1%). A significant increase in the percentage of resistant isolates to chloramphenicol, sulfamethoxazole, ampicillin and trimethoprim from 2013 to 2017 was observed. Bayesian network analysis showed the existence of dependencies between resistance to antimicrobials of the same but also different families, with chloramphenicol and sulfamethoxazole in the centre of the networks. In the networks, the conditional probability for an isolate susceptible to ciprofloxacin that was also susceptible to nalidixic acid was 0.999 but for an isolate resistant to ciprofloxacin that was also resistant to nalidixic acid was only 0.779. An isolate susceptible to florfenicol would be expected to be susceptible to chloramphenicol, whereas an isolate resistant to chloramphenicol had a conditional probability of being resistant to florfenicol at only 0.221. Hierarchical clustering further demonstrated the linkage between certain resistances (and serotypes). For example, a higher likelihood of multidrug-resistance in isolates belonging to 1,4,[5],12:i:- serotype was found, and in the cluster where all isolates were resistant to tetracycline, chloramphenicol and florfenicol, 86.9% (n = 53) of the isolates were Typhimurium. Conclusion Our study demonstrated the power of multivariate statistical methods in discovering trends and patterns of AMR and found the existence of serotype-specific AMR patterns for serotypes of public health concern in Salmonella isolates in pigs in Spain. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03377-3.
Collapse
Affiliation(s)
- Kendy Tzu-Yun Teng
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain. .,Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan.
| | - Marc Aerts
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.,Data Science Institute, Hasselt University, Diepenbeek, Belgium
| | - Stijn Jaspers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.,Data Science Institute, Hasselt University, Diepenbeek, Belgium
| | - Maria Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| | - Miguel A Moreno
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, Madrid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de La Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Soledad Collado
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de La Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Lucas Dominguez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
4
|
Marouf S, Ibrahim HM, El-Naggar MS, Swelum AA, Alqhtani AH, El-Saadony MT, El-Tarabily KA, Salem HM. Inactivated pentavalent vaccine against mycoplasmosis and salmonellosis for chickens. Poult Sci 2022; 101:102139. [PMID: 36240526 PMCID: PMC9574717 DOI: 10.1016/j.psj.2022.102139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Mycoplasma and Salmonella are serious pathogens threaten the poultry industry. This study aimed to prepare and evaluate an inactivated pentavalent vaccine targeting bacteria, including Salmonella enterica serovar Typhimurium (ST), Salmonella enterica serovar Enteritidis (SE), Salmonella enterica serovar Kentucky (SK), Mycoplasma gallisepticum (MG), and Mycoplasma synoviae (MS), from locally isolated strains. The prepared vaccine was adjuvanted with Montanide ISA70 oil and then tested for safety, sterility, and potency. The vaccine efficacy was evaluated in 110 specific pathogen-free, 1-day-old chicks, which were divided into three groups as follows: 1) vaccinated group (50 birds), which was subdivided into five subgroups of ten birds each; 2) control positive (challenged) group (50 birds), which was subdivided into five subgroups of ten birds each; and 3) control negative (blank) group, which included ten birds. Chicks in group 1 were administered the first dose of vaccine at 7 d of age followed by a booster dose after 3 wk. At 3 wk after booster vaccination, the chicks who were administered the booster dose were challenged and kept under observation until the end of the experiment when the chicks were approximately 10 wk. Details of clinical symptoms, daily mortality, weights, and postmortem lesions; serum samples; cloacal swabs; and nasal swabs were collected during the experiment. The humoral immune response to the prepared pentavalent vaccine was assessed using enzyme-linked immunosorbent assay. Our findings revealed that the prepared vaccine showed high protective antibody titers against Salmonella and Mycoplasma with 100% efficacy and no mortalities (100% survival rate) were recorded in vaccinated and challenged birds. The vaccine reduced both clinical signs and bacterial shedding post challenge in vaccinated birds in comparison with control positive group. The prepared vaccine did not affect the body weight gain of the vaccinated birds in comparison with control negative birds. The current study concluded that locally manufactured inactivated pentavalent vaccine offers protection to birds and could be employed as an effective tool along with biosecurity measures to overcome mycoplasmosis and salmonellosis in layer and breeder chicken farms in Egypt.
Collapse
Affiliation(s)
- Sherif Marouf
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hazem M Ibrahim
- Veterinary Serum and Vaccine Research Institute, Agricultural Research Center, Egypt
| | - Muhammed S El-Naggar
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| | - Heba M Salem
- Poultry Diseases Department, Faculty of Veterinary, Medicine Cairo University, Giza, 12211, Egypt
| |
Collapse
|
5
|
Samper-Cativiela C, Diéguez-Roda B, Trigo da Roza F, Ugarte-Ruiz M, Elnekave E, Lim S, Hernández M, Abad D, Collado S, Sáez JL, de Frutos C, Agüero M, Moreno MÁ, Escudero JA, Álvarez J. Genomic characterization of multidrug-resistant Salmonella serovar Kentucky ST198 isolated in poultry flocks in Spain (2011-2017). Microb Genom 2022; 8. [PMID: 35259085 PMCID: PMC9176280 DOI: 10.1099/mgen.0.000773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Salmonella Kentucky is commonly found in poultry and rarely associated with human disease. However, a multidrug-resistant (MDR) S. Kentucky clone [sequence type (ST)198] has been increasingly reported globally in humans and animals. Our aim here was to assess if the recently reported increase of S. Kentucky in poultry in Spain was associated with the ST198 clone and to characterize this MDR clone and its distribution in Spain. Sixty-six isolates retrieved from turkey, laying hen and broiler in 2011–2017 were subjected to whole-genome sequencing to assess their sequence type, genetic relatedness, and presence of antimicrobial resistance genes (ARGs), plasmid replicons and virulence factors. Thirteen strains were further analysed using long-read sequencing technologies to characterize the genetic background associated with ARGs. All isolates belonged to the ST198 clone and were grouped in three clades associated with the presence of a specific point mutation in the gyrA gene, their geographical origin and isolation year. All strains carried between one and 16 ARGs whose presence correlated with the resistance phenotype to between two and eight antimicrobials. The ARGs were located in the Salmonella genomic island (SGI-1) and in some cases (blaSHV-12, catA1, cmlA1, dfrA and multiple aminoglycoside-resistance genes) in IncHI2/IncI1 plasmids, some of which were consistently detected in different years/farms in certain regions, suggesting they could persist over time. Our results indicate that the MDR S. Kentucky ST198 is present in all investigated poultry hosts in Spain, and that certain strains also carry additional plasmid-mediated ARGs, thus increasing its potential public health significance.
Collapse
Affiliation(s)
- Clara Samper-Cativiela
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Filipa Trigo da Roza
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.,Molecular Basis of Adaptation, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ehud Elnekave
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Seunghyun Lim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55455, USA.,Bioinformatics and Computational Biology Program, University of Minnesota, Rochester, MN 55455, 55455 Minnesota, USA
| | - Marta Hernández
- Molecular Biology and Microbiology Laboratory, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, 47009 Valladolid, Spain
| | - David Abad
- Molecular Biology and Microbiology Laboratory, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Junta de Castilla y León, 47009 Valladolid, Spain
| | - Soledad Collado
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, 28010 Madrid, Spain
| | - José Luis Sáez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, 28010 Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, 28110 Madrid, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Ministerio de Agricultura, Pesca y Alimentación, 28110 Madrid, Spain
| | - Miguel Ángel Moreno
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Antonio Escudero
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.,Molecular Basis of Adaptation, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Julio Álvarez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Costa M, Cardo M, Cara d'Anjo M, Leite A. Assessing antimicrobial resistance occurrence in the Portuguese food system: Poultry, pigs and derived food, 2014-2018. Zoonoses Public Health 2022; 69:312-324. [PMID: 35132763 DOI: 10.1111/zph.12920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/18/2021] [Accepted: 01/23/2022] [Indexed: 02/04/2023]
Abstract
Antimicrobial resistance (AMR) spread in the food system is a major threat to public and animal health. We describe AMR trends in zoonotic bacteria and identify risk factors associated with AMR occurrence in animals and derived food in Portugal. Data from the Portuguese AMR surveillance programme on food-producing animals, 2014-2018, were used. AMR frequencies were calculated for Escherichia coli, Campylobacter and Salmonella in broilers, turkeys, pig populations and their derived food products. AMR-associated factors were studied for Salmonella isolates: population, sampling stage (farm, slaughterhouse and processing plant), sample type (environmental, carcase and food), sampler (HACCP, industry, official and official and industry), sample context (control and eradication programmes and monitoring), year (2014-2018) and season. Logistic regression was applied to estimate crude odds ratio and adjusted odds ratio (aOR) with 95% confidence intervals (95% CI). The final models were obtained using a backward stepwise method. This study included 2,157 Escherichia coli, 561 Campylobacter and 1,071 Salmonella isolates. The highest prevalence estimates amongst tested antimicrobials for each bacterial species in 2014-2018 had the following ranges: (i) (fluoro)quinolones: E. coli: 84%-93%, Campylobacter: 94%-98%; (ii) tetracyclines: E. coli: 68%-91%, Campylobacter: 87%-91%, Salmonella: 72%; (iii) penicillins: E. coli: 82%-100%; (iv) sulphonamides: E. coli: 68%-82%. Compared with the reference categories for host (broiler), year (2014), season (winter) and sampler (HACCP own checks), resistance to at least one antimicrobial in Salmonella was significantly less likely in laying hens (aOR 0.28; 95% CI: 0.18-0.42), 2016 (aOR 0.56; 95% CI: 0.33-0.93), 2017 (aOR 0.29; 95% CI: 0.17-0.51) and 2018 (aOR 0.35; 95% CI: 0.20-0.61), autumn (aOR 0.63; 95% CI: 0.40-0.97) and more likely to occur in broiler products (aOR 5.14; 95% CI: 2.61-10.54), pork products (aOR 6.84; 95% CI: 3.74-12.98) and official and industry combined sampling (aOR 2.16; 95% CI: 1.06-4.47). This study reveals a high prevalence of Salmonella resistance, especially during the summer and in post-farm stages of the Portuguese food system to nearly all antimicrobials and in the summer in farms to (fluoro)quinolones. Measures to tackle resistance are required.
Collapse
Affiliation(s)
- Miguel Costa
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal.,Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel Cardo
- Directorate-General of Food and Veterinary, Veterinary Public Health Department, Lisbon, Portugal.,CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Maria Cara d'Anjo
- Directorate-General of Food and Veterinary, Veterinary Public Health Department, Lisbon, Portugal
| | - Andreia Leite
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal.,Comprehensive Health Research Center (CHRC), Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Development of a novel trivalent invasive non-typhoidal Salmonella outer membrane vesicles based vaccine against salmonellosis and fowl typhoid in chickens. Immunobiology 2022; 227:152183. [DOI: 10.1016/j.imbio.2022.152183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/04/2022] [Accepted: 01/23/2022] [Indexed: 11/17/2022]
|
8
|
Ponomarenko GV, Kovalenko VL, Balatskiy YO, Ponomarenko OV, Paliy AP, Shulyak SV. Bactericidal efficiency of preparation based on essential oils used in aerosol disinfection in the presence of poultry. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A disinfectant was created for aerosol disinfection of premises in the presence of poultry, which will help reduce microbial contamination of premises, increase survival, weight of poultry and economic efficiency of meat production in general. The preparation based on essential oils can be used for disinfection in the presence of poultry and at the same time exhibits a therapeutic and prophylactic effect on respiratory infections. This disinfectant has a colloidal solution of silver (Ag), benzalkonium chloride and essential oils of thyme, fir and eucalyptus. The preparation based on essential oils contains (per 100 g): benzalkonium chloride – 16.0 g; thyme oil – up to 2.0 g; eucalyptus oil – up to 2.0 g; fir oil – up to 2.0 g; colloidal solution of silver (Ag) – 20–30 mg; distilled water - up to 100 cm3. Aerosol sanitation of indoor air was carried out with 0.3% solution of preparation in the period before housing poultry and once a day from the 20th to the 35th day of growing broilers with aerosol cold mist generator Dyna-Fog Tornado (model 2897, construction type – ULV-electric spray gnerator, manufacturer – Curtis Dyna-Fog, Ltd., USA) at a dose of 50.0 cm3 per 1 m3 at an exposure of 60 minutes. The size of the aerosol particles is 20 μm. On days 1, 4, 8, 11, 15, 28, 37, and 42, the chickens were weighed, and the blood was taken for examination. Blood was examined to study the number of red blood cells, hemoglobin content, the bactericidal activity of blood serum, phagocyte activity of leukocytes, lysozyme activity of blood serum. According to the results of the research, the technological modes of air disinfection of poultry premises in the presence of broiler chickens were substantiated during the use of preparation, which contains nanoparticles (NP) of silver, benzalkonium chloride and essential oils. The optimal mode of aerosol treatment of poultry houses using a 0.3% solution preparation based on essential oils is 50 mL/m3 of a room with a 60-minute exposure. The use of air disinfection in the presence of chickens during broiler rearing and one treatment per day from 20 to 35 days of the chickens’ growth reduced the microbial pollution of indoor air. Thus, the concentration of microbial cells in the room where the chickens were kept was 230.2 ± 15.6 thousand microbial cell/m3. Sixty minutes after disinfection, the concentration decreased to 1.4 ± 0.4 thousand microbial cell/m3. In addition, the bodyweight of chickens at 6 weeks increased by 449.4 ± 16.3 g (15.9%) compared with the controls. The method and mode of air treatment did not adversely affect the development of the internal organs of the poultry and their physiological state, which is confirmed by studies of the morphological parameters of the chicken blood. The data obtained indicate a positive effect of the developed methods and modes of aerosol air treatment with the preparation based on essential oils on the growth and development of broilers.
Collapse
|
9
|
Lopez-Chavarrias V, Ugarte-Ruiz M, Barcena C, Olarra A, Garcia M, Saez JL, de Frutos C, Serrano T, Perez I, Moreno MA, Dominguez L, Alvarez J. Monitoring of Antimicrobial Resistance to Aminoglycosides and Macrolides in Campylobacter coli and Campylobacter jejuni From Healthy Livestock in Spain (2002-2018). Front Microbiol 2021; 12:689262. [PMID: 34276619 PMCID: PMC8283307 DOI: 10.3389/fmicb.2021.689262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) in Campylobacter spp. (Campylobacter coli and Campylobacter jejuni) is a concern due to its importance in public health, particularly when it involves aminoglycosides and macrolides, drugs of choice for treatment of human cases. Co-resistance to these two antimicrobial classes involves transfer of genetic elements and/or acquisition of mutations in different genetic loci, which can in turn spread through vertical or horizontal gene transfer (HGT) phenomena, with each route having different potential implications. This study aimed at evaluating the association between the presence of phenotypic resistance to these two antimicrobial classes in C. coli and C. jejuni recovered from livestock at slaughterhouses in Spain (as part of the AMR surveillance program), and at assessing the genetic heterogeneity between resistant and susceptible isolates by analysing the "short variable region" (SVR) of the flaA gene. Over the 2002-2018 period, antimicrobial susceptibility test results from 10,965 Campylobacter isolates retrieved from fecal samples of broilers, turkeys, pigs and cattle were collected to compare the proportion of resistant isolates and the Minimum Inhibitory Concentrations (MICs) against six antimicrobials including gentamicin (GEN), streptomycin (STR), and erythromycin (ERY). AMR-associated genes were determined for a group of 51 isolates subjected to whole genome sequencing, and the flaA SVR of a subset of 168 isolates from all hosts with different resistotypes was used to build a Neighbor-Joining-based phylogenetic tree and assess the existence of groups by means of "relative synonymous codon usage" (RSCU) analysis. The proportion of antimicrobial resistant isolates to both, aminoglycosides and macrolides, varied widely for C. coli (7-91%) and less for C. jejuni (all hosts 0-11%). Across hosts, these proportions were 7-56% in poultry, 12-82% in cattle, and 22-91% in pigs for C. coli and 0-8% in poultry and 1-11% in cattle for C. jejuni. Comparison of the MIC distributions revealed significant host-specific differences only for ERY in C. jejuni (p = 0.032). A significant association in the simultaneous presentation of AMR to both antimicrobial classes was observed across hosts/bacterial species. The flaA gene analysis showed clustering of isolates sharing resistotype and to a lesser degree bacterial species and host. Several resistance markers associated with resistance to aminoglycosides and macrolides were found among the sequenced isolates. The consistent association between the simultaneous presentation of AMR to aminoglycosides and macrolides in all hosts could be due to the persistence of strains and/or resistance mechanisms in Campylobacter populations in livestock over time. Further studies based on whole genome sequencing are needed to assess the epidemiological links between hosts and bacterial strains.
Collapse
Affiliation(s)
| | - Maria Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Barcena
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Adolfo Olarra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Garcia
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Tania Serrano
- TRAGSATEC, Tecnologías y Servicios Agrarios S.A., Madrid, Spain
| | - Iratxe Perez
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Miguel Angel Moreno
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucas Dominguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Luo Q, Wang Y, Fu H, Yu X, Zheng B, Chen Y, Berglund B, Xiao Y. Serotype Is Associated With High Rate of Colistin Resistance Among Clinical Isolates of Salmonella. Front Microbiol 2020; 11:592146. [PMID: 33391208 PMCID: PMC7775366 DOI: 10.3389/fmicb.2020.592146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
To investigate the prevalence, probable mechanisms and serotype correlation of colistin resistance in clinical isolates of Salmonella from patients in China, Salmonella isolates were collected from fecal and blood samples of patients. In this study, 42.8% (136/318) clinical isolated Salmonella were resistant to colistin. MIC distribution for colistin at serotype level among the two most prevalent serotypes originating from humans in China indicated that Salmonella Enteritidis (83.9% resistance, 125/149) were significantly less susceptible than Salmonella Typhimurium (15.3% resistance, 9/59, P < 0.01). mcr genes and mutations in PmrAB confer little for rate of colistin resistant Salmonella isolated from human patients. Phylogenetic tree based on core-genome single nucleotide polymorphisms (SNPs) was separately by the serotypes and implied a diffused distribution of MICs in the same serotype isolates. Relatvie expression levels of colistin resistant related pmr genes were significantly higher in non-mcr colistin resistant S. Typhimurium than in colistin sensitive S. Typhimurium, but no discernable differences between colistin resistant and sensitive S. Enteritidis, indicating a different mechanism between colistin resistant S. Typhimurium and S. Enteritidis. In conclusion, colistin susceptibility and colistin resistant mechanism of clinical isolated Salmonella were closely associated with specific serotypes, at least in the two most prevalent serotype Enteritidis and Typhimurium. We suggest clinical microbiology laboratory interpreting Salmonella colistin MIC results in the serotype level.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Björn Berglund
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Crouch CF, Nell T, Reijnders M, Donkers T, Pugh C, Patel A, Davis P, van Hulten MCW, de Vries SPW. Safety and efficacy of a novel inactivated trivalent Salmonella enterica vaccine in chickens. Vaccine 2020; 38:6741-6750. [PMID: 32888739 DOI: 10.1016/j.vaccine.2020.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 01/07/2023]
Abstract
Food poisoning in humans caused by Salmonella enterica remains a significant global public health concern, with the majority of infections associated with the consumption of contaminated eggs or poultry products. The safety and efficacy of a novel inactivated trivalent Salmonella enterica vaccine containing in addition to Salmonella serovars Enteritidis (O:9, serogroup D) and Typhimurium (O:4, serogroup B) also serovar Infantis (O:7, serogroup C1) formulated with an aluminium hydroxide-gel adjuvant was evaluated under field conditions. A total of 10,229 broiler breeder pullets, housed under commercial conditions, were vaccinated at 10 and 17 weeks of age by the intramuscular route in the breast muscle. The vaccine was safe with no local or systemic reactions or adverse effects on bird performance related to the vaccine detected. Vaccination resulted in notable increases in serovar specific antibodies that were maintained until at least 56 weeks of age. Vaccinated birds subjected to homologous challenges around onset of lay showed significantly reduced faecal shedding and organ invasion. Following heterologous challenge with S. Hadar (O:8, serogroup C2) faecal shedding was significantly reduced. These results demonstrate that this novel vaccine could play a significant role in a comprehensive Salmonella control programme intended to reduce both the incidence of food poisoning in humans and the use of antibiotics during poultry production.
Collapse
Affiliation(s)
- Colin F Crouch
- MSD Animal Health, Walton Manor, Milton Keynes MK7 7AJ, UK
| | - Tom Nell
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, Netherlands
| | - Martine Reijnders
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, Netherlands
| | - Ton Donkers
- MSD Animal Health, Wim de Körverstraat 35, 5831 AN Boxmeer, Netherlands
| | - Chris Pugh
- MSD Animal Health, Walton Manor, Milton Keynes MK7 7AJ, UK
| | - Amit Patel
- MSD Animal Health, Walton Manor, Milton Keynes MK7 7AJ, UK
| | - Phil Davis
- MSD Animal Health, Walton Manor, Milton Keynes MK7 7AJ, UK
| | | | | |
Collapse
|
12
|
Alvarez J, Lopez G, Muellner P, de Frutos C, Ahlstrom C, Serrano T, Moreno MA, Duran M, Saez JL, Dominguez L, Ugarte‐Ruiz M. Identifying emerging trends in antimicrobial resistance using Salmonella surveillance data in poultry in Spain. Transbound Emerg Dis 2020; 67:250-262. [PMID: 31484211 PMCID: PMC7028142 DOI: 10.1111/tbed.13346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/16/2022]
Abstract
Despite of controls and preventive measures implemented along the food chain, infection with non-typhoidal Salmonella (NTS) remains one of the major causes of foodborne disease worldwide. Poultry is considered one of the major sources of NTS. This has led to the implementation of monitoring and control programmes in many countries (including Spain) to ensure that in poultry flocks infection is kept to a minimum and to allow the identification and monitoring of circulating NTS strains and their antimicrobial resistance (AMR) phenotypes. Here, we investigated the information from the monitoring programme for AMR in Salmonella from poultry in Spain in 2011-2017 to assess the diversity in phenotypic resistance and to evaluate the programme's ability to detect multi-resistance patterns and emerging strains in the animal reservoir. Data on serotype and AMR to nine antimicrobials obtained from 3,047 NTS isolates from laying hens (n = 1,060), broiler (n = 765) and turkey (n = 1,222) recovered during controls performed by the official veterinary services and food business operators were analysed using univariate and multivariate methods in order to describe host and serotype-specific profiles. Diversity and prevalence of phenotypic resistance to all but one of the antimicrobials (colistin) were higher in NTS from broiler and turkey compared with laying hen isolates. Certain combinations of serotype and AMR pattern (resistotype) were particularly linked with certain hosts (e.g. susceptible Enteritidis with laying hens, multi-drug resistant (MDR) Derby in turkey, MDR Kentucky in turkey and broiler). The widespread presence of certain serotype-resistotype combinations in certain hosts/years suggested the possible expansion of MDR strains in the animal reservoir. This study demonstrates the usefulness of the analysis of data from monitoring programmes at the isolate level to detect emerging threats and suggests aspects that should be subjected to further research to identify the forces driving the expansion/dominance of certain strains in the food chain.
Collapse
Affiliation(s)
- Julio Alvarez
- VISAVET Health Surveillance CenterUniversidad ComplutenseMadridSpain
- Departamento de Sanidad AnimalFacultad de VeterinariaUniversidad ComplutenseMadridSpain
| | - Gema Lopez
- Subdirección General de Sanidad e Higiene Animal y TrazabilidadDirección General de la Producción AgrariaMinisterio de AgriculturaPesca y AlimentaciónMadridSpain
| | - Petra Muellner
- Epi‐InteractiveWellingtonNew Zealand
- Department of Veterinary Population MedicineCollege of Veterinary MedicineUniversity of MinnesotaSt PaulUSA
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria (LCV Algete)Ministerio de Agricultura Pesca y AlimentaciónMadridSpain
| | | | - Tania Serrano
- TRAGSATECTecnologías y Servicios Agrarios S.AMadridSpain
| | - Miguel A. Moreno
- Departamento de Sanidad AnimalFacultad de VeterinariaUniversidad ComplutenseMadridSpain
| | - Manuel Duran
- Laboratorio Central de Veterinaria (LCV Algete)Ministerio de Agricultura Pesca y AlimentaciónMadridSpain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y TrazabilidadDirección General de la Producción AgrariaMinisterio de AgriculturaPesca y AlimentaciónMadridSpain
| | - Lucas Dominguez
- VISAVET Health Surveillance CenterUniversidad ComplutenseMadridSpain
- Departamento de Sanidad AnimalFacultad de VeterinariaUniversidad ComplutenseMadridSpain
| | - Maria Ugarte‐Ruiz
- VISAVET Health Surveillance CenterUniversidad ComplutenseMadridSpain
| |
Collapse
|