1
|
Zhou Z, van Hooij A, Wassenaar GN, Seed E, Verhard-Seymonsbergen EM, Corstjens PLAM, Meredith AL, Wilson LA, Milne EM, Beckmann KM, Geluk A. Molecular and Serological Surveillance for Mycobacterium leprae and Mycobacterium lepromatosis in Wild Red Squirrels ( Sciurus vulgaris) from Scotland and Northern England. Animals (Basel) 2024; 14:2005. [PMID: 38998117 PMCID: PMC11240566 DOI: 10.3390/ani14132005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Leprosy is a poverty-associated infectious disease in humans caused by Mycobacterium leprae or M. lepromatosis, often resulting in skin and peripheral nerve damage, which remains a significant public health concern in isolated areas of low- and middle-income countries. Previous studies reported leprosy in red squirrels in the British Isles, despite the fact that autochthonous human cases have been absent for centuries in this region. To investigate the extent of M. leprae and M. lepromatosis presence in wild red squirrels in the northern UK, we analyzed 220 blood/body cavity fluid samples from opportunistically sampled red squirrels (2004-2023) for specific antibodies against phenolic glycolipid-I, a cell wall component specific for these leprosy bacilli. Additionally, we assessed bacillus-derived DNA by real-time PCR (qPCR) in 250 pinnae from the same cohort. M. lepromatosis and M. leprae DNA were detected by qPCR in 20.4% and 0.8% of the squirrels, respectively. No cases of co-detection were observed. Detectable levels of anti-PGL-I antibodies by UCP-LFA were observed in 52.9% of animals with the presence of M. lepromatosis determined by qPCR, and overall in 15.5% of all animals. In total, 22.6% (n = 296) of this UK cohort had at least some exposure to leprosy bacilli. Our study shows that leprosy bacilli persist in red squirrels in the northern UK, emphasizing the necessity for ongoing molecular and serological monitoring to study leprosy ecology in red squirrels, gain insight into potential zoonotic transmission, and to determine whether the disease has a conservation impact on this endangered species.
Collapse
Affiliation(s)
- Zijie Zhou
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Z.); (A.v.H.); (G.N.W.); (E.M.V.-S.)
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Z.); (A.v.H.); (G.N.W.); (E.M.V.-S.)
| | - Gaby N. Wassenaar
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Z.); (A.v.H.); (G.N.W.); (E.M.V.-S.)
| | - Emma Seed
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK; (E.S.); (L.A.W.); (E.M.M.); (K.M.B.)
| | - Els M. Verhard-Seymonsbergen
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Z.); (A.v.H.); (G.N.W.); (E.M.V.-S.)
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Anna L. Meredith
- Faculty of Natural Sciences, Keele University, Keele ST5 5BG, UK;
| | - Liam A. Wilson
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK; (E.S.); (L.A.W.); (E.M.M.); (K.M.B.)
| | - Elspeth M. Milne
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK; (E.S.); (L.A.W.); (E.M.M.); (K.M.B.)
| | - Katie M. Beckmann
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK; (E.S.); (L.A.W.); (E.M.M.); (K.M.B.)
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Z.Z.); (A.v.H.); (G.N.W.); (E.M.V.-S.)
| |
Collapse
|
2
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
3
|
Romero-Navarrete M, Arenas R, Han XY, Vega-Memije ME, Castillo-Solana AD. Leprosy Caused by Mycobacterium lepromatosis. Am J Clin Pathol 2022; 158:678-686. [PMID: 36200553 DOI: 10.1093/ajcp/aqac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Leprosy is caused by Mycobacterium leprae or Mycobacterium lepromatosis. This study reviews literature on M lepromatosis and reports on a Mexican family with this infection. METHODS The review included all primary studies. Family history and surveys were used to uncover the infection cluster. Genome-based differential polymerase chain reactions were designed to detect etiologic agents. RESULTS Since the discovery of M lepromatosis in 2008, 154 cases of M lepromatosis infection from 11 countries in the Americas and Asia have been reported, with most cases coming from Mexico. These cases included diffuse lepromatous leprosy (DLL) and other leprosy forms. Genomes of M lepromatosis strains have lately been sequenced, revealing 3,271,694 nucleotides and approximately 15% mismatches with M leprae. The Mexican family with leprosy involved the grandfather, mother, and 2 grandsons. The index was the oldest grandson, who manifested DLL and likely contracted the infection from his maternal grandfather approximately 13 years earlier. Family surveys diagnosed DLL in the index patient's mother and borderline leprosy in his brother; both were likely infected by the index patient. M lepromatosis was identified from archived biopsies from the index patient and his mother, while M leprae was excluded. CONCLUSIONS M lepromatosis is a significant cause of leprosy in Mexico and requires better surveillance and control.
Collapse
Affiliation(s)
| | - Roberto Arenas
- General Hospital Dr Manuel Gea González, Mexico City, Mexicos
| | - Xiang Y Han
- Clinical Microbiology Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
4
|
Turankar RP, Singh V, Lavania M, Singh I, Sengupta U, Jadhav RS. Existence of viable Mycobacterium leprae in natural environment and its genetic profiling in a leprosy endemic region. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.972682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IntroductionMolecular epidemiology of leprosy is very important to study leprosy transmission dynamics and to enhance our understanding of leprosy in endemic areas by utilizing the molecular typing method. Nowadays our understanding of leprosy transmission dynamics has been refined by SNP typing and VNTR marker analysis of M. leprae strains.ObjectiveThis study was carried out to find out the presence of viable M. leprae in the soil and water samples from residing areas of leprosy patients staying in different blocks of Purulia district of West Bengal, understanding their genotypes and compared with that of M. leprae present in patients.Material and methodsSlit-skin smear (SSS) samples (n=112) were collected from the active multibacillary leprosy patients from different blocks of leprosy endemic area. Soil samples (n=1060) and water samples (n=620) were collected from residing areas of leprosy patients. SNP subtyping was performed by PCR followed by sequencing. Multiplex PCR was performed using fifteen ML-VNTR loci and results were analysed.ResultsWe observed high PCR positivity in soil samples (344 out of 1060; 32%) and water samples (140 out of 620; 23%). These PCR positive samples when further screened for viability, it was observed that 150 soil samples (44%) and 56 water samples (40%) showed presence of 16S rRNA. SNP typing of M. leprae revealed presence of predominantly type 1. SNP subtype 1D (83%) was most prevalent in all the blocks of Purulia followed by subtype 1C (15%) and subtype 1A (2%). SNP subtype 2F was noted in only one sample. SNP and VNTR combination showed presence of similar strain type in certain pockets of Purulia region which was responsible for transmission.ConclusionPresence of viable M. leprae in the environment, and presence of SNP Type 1 M. leprae in patients and environment suggests both environment and patients play a role in disease transmission.
Collapse
|
5
|
Silva FJ, Santos-Garcia D, Zheng X, Zhang L, Han XY. Construction and Analysis of the Complete Genome Sequence of Leprosy Agent Mycobacterium lepromatosis. Microbiol Spectr 2022; 10:e0169221. [PMID: 35467405 PMCID: PMC9248898 DOI: 10.1128/spectrum.01692-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/07/2022] [Indexed: 12/29/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae and Mycobacterium lepromatosis. We report construction and analyses of the complete genome sequence of M. lepromatosis FJ924. The genome contained 3,271,694 nucleotides to encode 1,789 functional genes and 1,564 pseudogenes. It shared 1,420 genes and 885 pseudogenes (71.4%) with M. leprae but differed in 1,281 genes and pseudogenes (28.6%). In phylogeny, the leprosy bacilli started from a most recent common ancestor (MRCA) that diverged ~30 million years ago (Mya) from environmental organism Mycobacterium haemophilum. The MRCA then underwent reductive evolution with pseudogenization, gene loss, and chromosomal rearrangements. Analysis of the shared pseudogenes estimated the pseudogenization event ~14 Mya, shortly before species bifurcation. Afterwards, genomic changes occurred to lesser extent in each species. Like M. leprae, four major types of highly repetitive sequences were detected in M. lepromatosis, contributing to chromosomal rearrangements within and after MRCA. Variations in genes and copy numbers were noted, such as three copies of the gene encoding bifunctional diguanylate cyclase/phosphodiesterase in M. lepromatosis, but single copy in M. leprae; 6 genes encoding the TetR family transcriptional regulators in M. lepromatosis, but 11 such genes in M. leprae; presence of hemW gene in M. lepromatosis, but absence in M. leprae; and others. These variations likely aid unique pathogenesis, such as diffuse lepromatous leprosy associated with M. lepromatosis, while the shared genomic features should explain the common pathogenesis of dermatitis and neuritis in leprosy. Together, these findings and the genomic data of M. lepromatosis may facilitate future research and care for leprosy. IMPORTANCE Leprosy is a dreaded infection that still affects millions of people worldwide. Mycobacterium lepromatosis is a recently recognized cause in addition to the well-known Mycobacterium leprae. M. lepromatosis is likely specific for diffuse lepromatous leprosy, a severe form of the infection and endemic in Mexico. This study constructed and annotated the complete genome sequence of M. lepromatosis FJ924 and performed comparative genomic analyses with related mycobacteria. The results afford new and refined insights into the genome size, gene repertoire, pseudogenes, phylogenomic relationship, genome organization and plasticity, process and timing of reductive evolution, and genetic and proteomic basis for pathogenesis. The availability of the complete M. lepromatosis genome may prove to be useful for future research and care for the infection.
Collapse
Affiliation(s)
- Francisco J. Silva
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Paterna, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research, Valencia, Spain
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology UMR CNRS, University of Lyon, Villeurbanne, France
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiang Y. Han
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
CLINICAL PROGRESSION OF LEPROSY IN EURASIAN RED SQUIRRELS ( SCIURUS VULGARIS) IN A NATURALLY INFECTED WILD POPULATION. J Zoo Wildl Med 2022; 52:1159-1166. [PMID: 34998285 DOI: 10.1638/2020-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Leprosy has been described in Eurasian red squirrel (Sciurus vulgaris; ERS) carcasses since 2014. Studies of ERS carcasses have not provided information about incubation or disease progression in this host but have provided important insights into pathogen presence and distribution throughout the United Kingdom. Here we present field study data on 31 live ERS from an island population naturally infected with Mycobacterium leprae that were assessed longitudinally over a 2-yr time period. Clinical assessment, serologic (anti-phenolic glycolipid-I antibody [αPGL-I] detection) and molecular methods (polymerase chain reaction) were used to diagnose and categorize ERS at each assessment as a leprosy case, a leprosy suspect, colonized by M. leprae, or a contact ERS. Eight ERS (25.8%) were identified as leprosy cases: four at initial assessment, two at 6 mon and two at 24 mon after initial assessment. One ERS was categorized a leprosy suspect when it developed typical lesions 12 mon after initial assessment, despite negative serologic and molecular test results at this time, though M. leprae DNA had been isolated during the initial assessment. Seven ERS (22.6%) were categorized as colonized and of these, six were reassessed but did not develop clinical signs of leprosy within 6 (n = 2), 12 (n = 3), and 18 (n = 1) mon. Most (48.4%, n = 15) were categorized as contact ERS. Progression of leprosy lesions varied between ERS, but always increased in severity over time and was paralleled with increased antibody response. Based on our dataset, we propose the hypotheses: 1) leprosy in ERS is a chronic, slowly progressing disease in this species, similar to that described for other hosts; 2) lesions can undergo repeated ulceration-healing cycles; and 3) in some instances M. leprae DNA and αPGL-I antibodies are detectable before the onset of clinical signs of disease. Future studies addressing the progression of leprosy in ERS should follow affected animals over a longer time period and include tissue samples to pair molecular diagnostics with serologic results.
Collapse
|
7
|
Deps P, Collin SM. Mycobacterium lepromatosis as a Second Agent of Hansen's Disease. Front Microbiol 2021; 12:698588. [PMID: 34566911 PMCID: PMC8461103 DOI: 10.3389/fmicb.2021.698588] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium lepromatosis was identified as a new species and second causal agent of Hansen's disease (HD, or leprosy) in 2008, 150years after the disease was first attributed to Mycobacterium leprae. M. lepromatosis has been implicated in a small number of HD cases, and clinical aspects of HD caused by M. lepromatosis are poorly characterized. HD is a recognized zoonosis through transmission of M. leprae from armadillos, but the role of M. lepromatosis as a zoonotic agent of HD is unknown. M. lepromatosis was initially associated with diffuse lepromatous leprosy, but subsequent case reports and surveys have linked it to other forms of HD. HD caused by M. lepromatosis has been reported from three endemic countries: Brazil, Myanmar, and Philippines, and three non-endemic countries: Mexico, Malaysia, and United States. Contact with armadillos in Mexico was mentioned in 2/21 M. lepromatosis HD case reports since 2008. M. lepromatosis in animals has been investigated only in non-endemic countries, in squirrels and chipmunks in Europe, white-throated woodrats in Mexico, and armadillos in the United States. To date, there have only been a small number of positive findings in Eurasian red squirrels in Britain and Ireland. A single study of environmental samples found no M. lepromatosis in soil from a Scottish red squirrel habitat. Future studies must focus on endemic countries to determine the true proportion of HD cases caused by M. lepromatosis, and whether viable M. lepromatosis occurs in non-human sources.
Collapse
Affiliation(s)
- Patrícia Deps
- Department of Social Medicine, Universidade Federal do Espírito Santo, Vitória, Brazil
- Postgraduate Programme in Infectious Diseases, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Simon M. Collin
- National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
8
|
DIAGNOSING AND CATEGORIZING LEPROSY IN LIVE EURASIAN RED SQUIRRELS ( SCIURUS VULGARIS) FOR MANAGEMENT, SURVEILLANCE, AND TRANSLOCATION PURPOSES. J Zoo Wildl Med 2021; 52:648-659. [PMID: 34130408 DOI: 10.1638/2020-0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 11/21/2022] Open
Abstract
The presence of Mycobacterium lepromatosis and Mycobacterium leprae in Eurasian red squirrel (Sciurus vulgaris, ERS) carcasses throughout the British Isles, and leprosy as a disease, have recently been reported using histological and molecular diagnostic methods. In 2016, the first longitudinal study of ERS affected by leprosy was initiated. One of the main challenges was the reliable diagnosis of leprosy in live ERS, which is important for (a) welfare and case management and (b) surveillance or pretranslocation screening efforts. We explored diagnostic methods ranging from detailed clinical assessment and informative categorization of observed lesions, thermal imaging, serology (antiphenolic glycolipid-I antibody [αPGL-I] detection) to molecular methods (polymerase chain reaction [PCR]). For PCR the ear was established as the optimal sampling site. Based on the experiences from this 2-yr study we propose an objective categorization system for clinical lesions and a diagnostic framework for the combination of the diagnostic tools we found to be effective in live ERS: clinical assessment, αPGL-I serology, and PCR. Thermal imaging did not offer additional information for leprosy diagnostics in ERS. We propose an amended definition of leprosy lesions in ERS as "skin areas of local hair loss, in which a firm-rubbery, glossy swelling develops, that may ulcerate" and standardized terminology for describing ERS leprosy status. The information presented forms the basis of a consistent, reliable diagnostic and reporting system for leprosy cases in ERS.
Collapse
|
9
|
Hambridge T, Nanjan Chandran SL, Geluk A, Saunderson P, Richardus JH. Mycobacterium leprae transmission characteristics during the declining stages of leprosy incidence: A systematic review. PLoS Negl Trop Dis 2021; 15:e0009436. [PMID: 34038422 PMCID: PMC8186771 DOI: 10.1371/journal.pntd.0009436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/08/2021] [Accepted: 05/03/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Leprosy is an infectious disease caused by Mycobacterium leprae. As incidence begins to decline, the characteristics of new cases shifts away from those observed in highly endemic areas, revealing potentially important insights into possible ongoing sources of transmission. We aimed to investigate whether transmission is driven mainly by undiagnosed and untreated new leprosy cases in the community, or by incompletely treated or relapsing cases. METHODOLOGY/PRINCIPAL FINDINGS A literature search of major electronic databases was conducted in January, 2020 with 134 articles retained out of a total 4318 records identified (PROSPERO ID: CRD42020178923). We presented quantitative data from leprosy case records with supporting evidence describing the decline in incidence across several contexts. BCG vaccination, active case finding, adherence to multidrug therapy and continued surveillance following treatment were the main strategies shared by countries who achieved a substantial reduction in incidence. From 3950 leprosy case records collected across 22 low endemic countries, 48.3% were suspected to be imported, originating from transmission outside of the country. Most cases were multibacillary (64.4%) and regularly confirmed through skin biopsy, with 122 cases of suspected relapse from previous leprosy treatment. Family history was reported in 18.7% of cases, while other suspected sources included travel to high endemic areas and direct contact with armadillos. None of the countries included in the analysis reported a distinct increase in leprosy incidence in recent years. CONCLUSIONS/SIGNIFICANCE Together with socioeconomic improvement over time, several successful leprosy control programmes have been implemented in recent decades that led to a substantial decline in incidence. Most cases described in these contexts were multibacillary and numerous cases of suspected relapse were reported. Despite these observations, there was no indication that these cases led to a rise in new secondary cases, suggesting that they do not represent a large ongoing source of human-to-human transmission.
Collapse
Affiliation(s)
- Thomas Hambridge
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Shri Lak Nanjan Chandran
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul Saunderson
- American Leprosy Missions, Greenville, South Carolina, United States of America
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Adams LB. Susceptibility and resistance in leprosy: Studies in the mouse model. Immunol Rev 2021; 301:157-174. [PMID: 33660297 PMCID: PMC8252540 DOI: 10.1111/imr.12960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Leprosy is a chronic granulomatous infectious disease caused by the pathogen, Mycobacterium leprae, and the more recently discovered, M. lepromatosis. Described in 1873, M. leprae was among the first microorganisms to be proposed as a cause of a human infectious disease. As an obligate intracellular bacterium, it has still not thus far been reproducibly cultivated in axenic medium or cell cultures. Shepard's mouse footpad assay, therefore, was truly a breakthrough in leprosy research. The generation of immunosuppressed and genetically engineered mice, along with advances in molecular and cellular techniques, has since offered more tools for the study of the M. leprae–induced granuloma. While far from perfect, these new mouse models have provided insights into the immunoregulatory mechanisms responsible for the spectrum of this complex disease.
Collapse
Affiliation(s)
- Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs Laboratory Research Branch, Baton Rouge, LA, USA
| |
Collapse
|
11
|
Michelet L, Boschiroli ML. Mycobacterium uberis Infection in the Subcutaneous Tissue of the Radius/Ulna Area of a Cow. Microorganisms 2020; 8:E1701. [PMID: 33143390 PMCID: PMC7692660 DOI: 10.3390/microorganisms8111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium uberis (M. uberis) is a recently described non-tuberculous mycobacterium phylogenetically close to Mycobacterium leprae (M. leprae) and Mycobacterium lepromatosis (M. lepromatosis). This pathogen classically causes nodular thelitis in cattle and goats. Here, we discuss what seems to be the first described case of M. uberis infection in a novel anatomical site, in the proximal or distal position (information not available) of the radius/ulna area of a cow. As this case was discovered in the framework of bovine tuberculosis (bTB) surveillance program in France, this type of infection could interfere with the screening and diagnostic tools employed for bTB.
Collapse
Affiliation(s)
- Lorraine Michelet
- Laboratory for Animal Health, Tuberculosis National Reference Laboratory, ANSES, University Paris-Est, 94700 Maisons-Alfort, France;
| | | |
Collapse
|
12
|
Avanzi C, Singh P, Truman RW, Suffys PN. Molecular epidemiology of leprosy: An update. INFECTION GENETICS AND EVOLUTION 2020; 86:104581. [PMID: 33022427 DOI: 10.1016/j.meegid.2020.104581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Molecular epidemiology investigations are notoriously challenging in the leprosy field mainly because the inherent characteristics of the disease as well as its yet uncultivated causative agents, Mycobacterium leprae and M. lepromatosis. Despite significant developments in understanding the biology of leprosy bacilli through genomic approaches, the exact mechanisms of transmission is still unclear and the factors underlying pathological variation of the disease in different patients remain as major gaps in our knowledge about leprosy. Despite these difficulties, the last two decades have seen the development of genotyping procedures based on PCR-sequencing of target loci as well as by the genome-wide analysis of an increasing number of geographically diverse isolates of leprosy bacilli. This has provided a foundation for molecular epidemiology studies that are bringing a better understanding of strain evolution associated with ancient human migrations, and phylogeographical insights about the spread of disease globally. This review discusses the advantages and drawbacks of the main tools available for molecular epidemiological investigations of leprosy and summarizes various methods ranging from PCR-based genotyping to genome-typing techniques. We also describe their main applications in analyzing the short-range and long-range transmission of the disease. Finally, we summarise the current gaps and challenges that remain in the field of molecular epidemiology of leprosy.
Collapse
Affiliation(s)
- Charlotte Avanzi
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Pushpendra Singh
- Indian Council of Medical Research - National Institute of Research in Tribal Health, Jabalpur, India
| | - Richard W Truman
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LO, USA
| | - Philip N Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria - Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Tió-Coma M, Avanzi C, Verhard EM, Pierneef L, van Hooij A, Benjak A, Roy JC, Khatun M, Alam K, Corstjens P, Cole ST, Richardus JH, Geluk A. Genomic Characterization of Mycobacterium leprae to Explore Transmission Patterns Identifies New Subtype in Bangladesh. Front Microbiol 2020; 11:1220. [PMID: 32612587 PMCID: PMC7308449 DOI: 10.3389/fmicb.2020.01220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium leprae, the causative agent of leprosy, is an unculturable bacterium with a considerably reduced genome (3.27 Mb) compared to homologues mycobacteria from the same ancestry. In 2001, the genome of M. leprae was first described and subsequently four genotypes (1-4) and 16 subtypes (A-P) were identified providing means to study global transmission patterns for leprosy. In order to understand the role of asymptomatic carriers we investigated M. leprae carriage as well as infection in leprosy patients (n = 60) and healthy household contacts (HHC; n = 250) from Bangladesh using molecular detection of the bacterial element RLEP in nasal swabs (NS) and slit skin smears (SSS). In parallel, to study M. leprae genotype distribution in Bangladesh we explored strain diversity by whole genome sequencing (WGS) and Sanger sequencing. In the studied cohort in Bangladesh, M. leprae DNA was detected in 33.3% of NS and 22.2% of SSS of patients with bacillary index of 0 whilst in HHC 18.0% of NS and 12.3% of SSS were positive. The majority of the M. leprae strains detected in this study belonged to genotype 1D (55%), followed by 1A (31%). Importantly, WGS allowed the identification of a new M. leprae genotype, designated 1B-Bangladesh (14%), which clustered separately between the 1A and 1B strains. Moreover, we established that the genotype previously designated 1C, is not an independent subtype but clusters within the 1D genotype. Intraindividual differences were present between the M. leprae strains obtained including mutations in hypermutated genes, suggesting mixed colonization/infection or in-host evolution. In summary, we observed that M. leprae is present in asymptomatic contacts of leprosy patients fueling the concept that these individuals contribute to the current intensity of transmission. Our data therefore emphasize the importance of sensitive and specific tools allowing post-exposure prophylaxis targeted at M. leprae-infected or -colonized individuals.
Collapse
Affiliation(s)
- Maria Tió-Coma
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Charlotte Avanzi
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Els M. Verhard
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Louise Pierneef
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Chandra Roy
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Marufa Khatun
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Khorshed Alam
- Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
| | - Paul Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, Paris, France
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Ploemacher T, Faber WR, Menke H, Rutten V, Pieters T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl Trop Dis 2020; 14:e0008276. [PMID: 32339201 PMCID: PMC7205316 DOI: 10.1371/journal.pntd.0008276] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/07/2020] [Accepted: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae) and the more recently discovered Mycobacterium lepromatosis (M. lepromatosis). The two leprosy bacilli cause similar pathologic conditions. They primarily target the skin and the peripheral nervous system. Currently it is considered a Neglected Tropical Disease, being endemic in specific locations within countries of the Americas, Asia, and Africa, while in Europe it is only rarely reported. The reason for a spatial inequality in the prevalence of leprosy in so-called endemic pockets within a country is still largely unexplained. A systematic review was conducted targeting leprosy transmission research data, using PubMed and Scopus as sources. Publications between January 1, 1945 and July 1, 2019 were included. The transmission pathways of M. leprae are not fully understood. Solid evidence exists of an increased risk for individuals living in close contact with leprosy patients, most likely through infectious aerosols, created by coughing and sneezing, but possibly also through direct contact. However, this systematic review underscores that human-to-human transmission is not the only way leprosy can be acquired. The transmission of this disease is probably much more complicated than was thought before. In the Americas, the nine-banded armadillo (Dasypus novemcinctus) has been established as another natural host and reservoir of M. leprae. Anthroponotic and zoonotic transmission have both been proposed as modes of contracting the disease, based on data showing identical M. leprae strains shared between humans and armadillos. More recently, in red squirrels (Sciurus vulgaris) with leprosy-like lesions in the British Isles M. leprae and M. lepromatosis DNA was detected. This finding was unexpected, because leprosy is considered a disease of humans (with the exception of the armadillo), and because it was thought that leprosy (and M. leprae) had disappeared from the United Kingdom. Furthermore, animals can be affected by other leprosy-like diseases, caused by pathogens phylogenetically closely related to M. leprae. These mycobacteria have been proposed to be grouped as a M. leprae-complex. We argue that insights from the transmission and reservoirs of members of the M. leprae-complex might be relevant for leprosy research. A better understanding of possible animal or environmental reservoirs is needed, because transmission from such reservoirs may partly explain the steady global incidence of leprosy despite effective and widespread multidrug therapy. A reduction in transmission cannot be expected to be accomplished by actions or interventions from the human healthcare domain alone, as the mechanisms involved are complex. Therefore, to increase our understanding of the intricate picture of leprosy transmission, we propose a One Health transdisciplinary research approach. Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae) and the more recently discovered Mycobacterium lepromatosis (M. lepromatosis). The two leprosy bacilli cause similar stigmatizing pathologic conditions. M. leprae primarily targets the skin and the peripheral nervous system. Currently it is considered a Neglected Tropical Disease. The transmission pathways of M. leprae are not fully understood. Solid evidence exists of an increased risk for individuals living in close contact with leprosy patients, most likely through infectious aerosols, created by coughing and sneezing, but possibly also through direct contact. However, this systematic review underscores that human-to-human transmission is not the only way leprosy can be acquired. Anthroponotic and zoonotic transmission have both been proposed as modes of contracting the disease, based on data showing identical M. leprae strains shared between humans and armadillos. A better understanding of possible animal or environmental reservoirs is needed, because transmission from such reservoirs may partly explain the steady global incidence of leprosy despite effective and widespread multidrug therapy. Reducing transmission cannot be expected from the human healthcare domain alone, as the mechanisms involved are complex. Therefore, we propose a One Health transdisciplinary research approach.
Collapse
Affiliation(s)
- Thomas Ploemacher
- Faculty of Science, Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - William R. Faber
- Faculty of Medicine, Department of Dermatology, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk Menke
- Faculty of Science, Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Victor Rutten
- Faculty of Veterinary Medicine, Utrecht University, the Netherlands
- Dept of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Republic of South Africa
| | - Toine Pieters
- Faculty of Science, Freudenthal Institute & Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|