1
|
Li F, Wu S, Lv L, Huang S, Zhang Z, Zerang Z, Li P, Cao Y, Bao H, Sun P, Bai X, He Y, Fu Y, Yuan H, Ma X, Zhao Z, Zhang J, Wang J, Wang T, Li D, Zhang Q, He J, Liu Z, Lu Z, Lei D, Li K. Discovery, recognized antigenic structures, and evolution of cross-serotype broadly neutralizing antibodies from porcine B-cell repertoires against foot-and-mouth disease virus. PLoS Pathog 2024; 20:e1012623. [PMID: 39405339 PMCID: PMC11508087 DOI: 10.1371/journal.ppat.1012623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
It is a great challenge to isolate the broadly neutralizing antibodies (bnAbs) against foot-and-mouth disease virus (FMDV) due to its existence as seven distinct serotypes without cross-protection. Here, by vaccination of pig with FMDV serotypes O and A whole virus antigens, we obtained 10 bnAbs against serotypes O, A and/or Asia1 by dissecting 216 common clonotypes of two serotypes O and A specific porcine B-cell receptor (BCR) gene repertoires containing total 12720 B cell clones, indicating the induction of cross-serotype bnAbs after sequential vaccination with serotypes O and A antigens. The majority of porcine bnAbs (9/10) were derived from terminally differentiated B cells of different clonal lineages, which convergently targeted the conserved "RGDL" motif on structural protein VP1 of FMDV by mimicking receptor recognition to inhibit viral attachment to cells. Cryo-EM complex structures revealed that the other bnAb pOA-2 specifically targets a novel inter-pentamer antigen structure surrounding the viral three-fold axis, with a highly conserved determinant at residue 68 on VP2. This unique binding pattern enabled cross-serotype neutralization by destabilizing the viral particle. The evolutionary analysis of pOA-2 demonstrated its origin from an intermediate B-cell, emphasizing the crucial role of somatic hypermutations (SHMs) in balancing the breadth and potency of neutralization. However, excessive SHMs may deviate from the trajectory of broad neutralization. This study provides a strategy to uncover bnAbs against highly mutable pathogens and the cross-serotype antigenic structures to explore broadly protective FMDV vaccine.
Collapse
Affiliation(s)
- Fengjuan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Shanquan Wu
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Lv Lv
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Shulun Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zelin Zhang
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Zhaxi Zerang
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Yong He
- School of Pharmaceutical Sciences, Shandong University, Ji’nan, P. R. China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Dongsheng Lei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| |
Collapse
|
2
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Lu B, Ru Y, Hao R, Yang Y, Liu H, Li Y, Zhang Y, Mao Y, Yang R, Pan Y, Yu S, Zheng H, Cui Y. A ferritin-based nanoparticle displaying a neutralizing epitope for foot-and-mouth disease virus (FMDV) confers partial protection in guinea pigs. BMC Vet Res 2024; 20:301. [PMID: 38971791 PMCID: PMC11227194 DOI: 10.1186/s12917-024-04159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Foot-and-mouth disease (FMD) is a devastating disease affecting cloven-hoofed animals, that leads to significant economic losses in affected countries and regions. Currently, there is an evident inclination towards the utilization of nanoparticles as powerful platforms for innovative vaccine development. Therefore, this study developed a ferritin-based nanoparticle (FNP) vaccine that displays a neutralizing epitope of foot-and-mouth disease virus (FMDV) VP1 (aa 140-158) on the surface of FNP, and evaluated the immunogenicity and protective efficacy of these FNPs in mouse and guinea pig models to provide a strategy for developing potential FMD vaccines. RESULTS This study expressed the recombinant proteins Hpf, HPF-NE and HPF-T34E via an E. coli expression system. The results showed that the recombinant proteins Hpf, Hpf-NE and Hpf-T34E could be effectively assembled into nanoparticles. Subsequently, we evaluated the immunogenicity of the Hpf, Hpf-NE and Hpf-T34E proteins in mice, as well as the immunogenicity and protectiveness of the Hpf-T34E protein in guinea pigs. The results of the mouse experiment showed that the immune efficacy in the Hpf-T34E group was greater than the Hpf-NE group. The results from guinea pigs immunized with Hpf-T34E showed that the immune efficacy was largely consistent with the immunogenicity of the FMD inactivated vaccine (IV) and could confer partial protection against FMDV challenge in guinea pigs. CONCLUSIONS The Hpf-T34E nanoparticles stand out as a superior choice for a subunit vaccine candidate against FMD, offering effective protection in FMDV-infected model animals. FNP-based vaccines exhibit excellent safety and immunogenicity, thus representing a promising strategy for the continued development of highly efficient and safe FMD vaccines.
Collapse
Affiliation(s)
- Bingzhou Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yajun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuhan Mao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Rui Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Hwang SY, Shin SH, Park SH, Lee MJ, Kim SM, Lee JS, Park JH. Serological Conversion through a Second Exposure to Inactivated Foot-and-Mouth Disease Virus Expressing the JC Epitope on the Viral Surface. Vaccines (Basel) 2023; 11:1487. [PMID: 37766163 PMCID: PMC10537882 DOI: 10.3390/vaccines11091487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a fatal contagious viral disease that affects cloven-hoofed animals and causes severe economic damage at the national level. There are seven serotypes of the causative foot-and-mouth disease virus (FMDV), and type O is responsible for serious outbreaks and shows a high incidence. Recently, the Cathay, Southeast Asia (SEA), and ME-SA (Middle East-South Asia) topotypes of type O have been found to frequently occur in Asia. Thus, it is necessary to develop candidate vaccines that afford protection against these three different topotypes. In this study, an experimental FMD vaccine was produced using a recombinant virus (TWN-JC) with the JC epitope (VP1 140-160 sequence of the O/SKR/Jincheon/2014) between amino acid 152 and 153 of VP1 in TWN-R. Immunization with this novel vaccine candidate was found to effectively protect mice against challenge with the three different topotype viruses. Neutralizing antibody titers were considerably higher after a second vaccination. The serological differences between the topotype strains were identified in guinea pigs and swine. In conclusion, a significant serological difference was observed at 56 days post-vaccination between animals that received the TWN-JC vaccine candidate and those that received the positive control virus (TWN-R). The TWN-JC vaccine candidate induced IFNγ and IL-12B.
Collapse
Affiliation(s)
- Seong Yun Hwang
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea;
| | - Sung Ho Shin
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| | - Sung-Han Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| | - Min Ja Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| | - Su-Mi Kim
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea;
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| |
Collapse
|
5
|
Lu Z, Yu S, Wang W, Chen W, Wang X, Wu K, Li X, Fan S, Ding H, Yi L, Chen J. Development of Foot-and-Mouth Disease Vaccines in Recent Years. Vaccines (Basel) 2022; 10:1817. [PMID: 36366327 PMCID: PMC9693445 DOI: 10.3390/vaccines10111817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/20/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a serious disease affecting the global graziery industry. Once an epidemic occurs, it can lead to economic and trade stagnation. In recent decades, FMD has been effectively controlled and even successfully eradicated in some countries or regions through mandatory vaccination with inactivated foot-and-mouth disease vaccines. Nevertheless, FMD still occurs in some parts of Africa and Asia. The transmission efficiency of foot-and-mouth disease is high. Both disease countries and disease-free countries should always be prepared to deal with outbreaks of FMD. The development of vaccines has played a key role in this regard. This paper summarizes the development of several promising vaccines including progress and design ideas. It also provides ways to develop a new generation of vaccines for FMDV and other major diseases.
Collapse
Affiliation(s)
- Zhimin Lu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shu Yu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Wang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jingding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
6
|
Chowdhury S, Toth I, Stephenson RJ. Dendrimers in vaccine delivery: Recent progress and advances. Biomaterials 2021; 280:121303. [PMID: 34871877 DOI: 10.1016/j.biomaterials.2021.121303] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Dendrimers are well-defined, highly branched, multivalent and monodisperse molecules which host a range of attractive, yet functional, chemical and biological characteristics. A dendrimers accessible surface groups enable coupling to different functional moieties (e.g., antibodies, peptides, proteins, etc), which is further assisted by the dendrimers tailored size and surface charge. This adaptability allows for the preparation of molecularly precise vaccines with highly specific and predictable properties, and in conjunction with a dendrimers immune stimulating (adjuvanting) property, makes dendrimers attractive substrates for biomedical applications, including vaccines. This review highlights the structural and synthetic evolution of dendrimers throughout history, detailing the dendrimers role as both an adjuvant and carrier system for vaccine antigens, in addition to reviewing the development of commercially available vaccines for use in humans.
Collapse
Affiliation(s)
- Silvia Chowdhury
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072 Australia.
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Forner M, Cañas-Arranz R, Defaus S, de León P, Rodríguez-Pulido M, Ganges L, Blanco E, Sobrino F, Andreu D. Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines (Basel) 2021; 9:vaccines9050477. [PMID: 34066901 PMCID: PMC8150788 DOI: 10.3390/vaccines9050477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines are considered one of the greatest global health achievements, improving the welfare of society by saving lives and substantially reducing the burden of infectious diseases. However, few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent shortcomings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the infectious agent and to induce protection against it. Although, in general, linear peptides have been associated to low immunogenicity and partial protection, there are several strategies to address such issues. In this review, we report the progress towards the development of peptide-based vaccines against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal disease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led to more complex and successful second-generation vaccines featuring peptide dendrimers containing multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The usefulness of this strategy to prevent other animal and human diseases is discussed.
Collapse
Affiliation(s)
- Mar Forner
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
| | - Patricia de León
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Miguel Rodríguez-Pulido
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
| | - Llilianne Ganges
- Centre de Recerca en Sanitat Animal (CReSA), OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, 08193 Barcelona, Spain;
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Spain;
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.R.-P.)
- Correspondence: (F.S.); (D.A.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut (DCEXS-UPF), 08003 Barcelona, Spain; (M.F.); (S.D.)
- Correspondence: (F.S.); (D.A.)
| |
Collapse
|
8
|
Rangel G, Bárcena J, Moreno N, Mata CP, Castón JR, Alejo A, Blanco E. Chimeric RHDV Virus-Like Particles Displaying Foot-and-Mouth Disease Virus Epitopes Elicit Neutralizing Antibodies and Confer Partial Protection in Pigs. Vaccines (Basel) 2021; 9:vaccines9050470. [PMID: 34066934 PMCID: PMC8148555 DOI: 10.3390/vaccines9050470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Currently there is a clear trend towards the establishment of virus-like particles (VLPs) as a powerful tool for vaccine development. VLPs are tunable nanoparticles that can be engineered to be used as platforms for multimeric display of foreign antigens. We have previously reported that VLPs derived from rabbit hemorrhagic disease virus (RHDV) constitute an excellent vaccine vector, capable of inducing specific protective immune responses against inserted heterologous T-cytotoxic and B-cell epitopes. Here, we evaluate the ability of chimeric RHDV VLPs to elicit immune response and protection against Foot-and-Mouth disease virus (FMDV), one of the most devastating livestock diseases. For this purpose, we generated a set of chimeric VLPs containing two FMDV-derived epitopes: a neutralizing B-cell epitope (VP1 (140-158)) and a T-cell epitope [3A (21-35)]. The epitopes were inserted joined or individually at two different locations within the RHDV capsid protein. The immunogenicity and protection potential of the chimeric VLPs were analyzed in the mouse and pig models. Herein we show that the RHDV engineered VLPs displaying FMDV-derived epitopes elicit a robust neutralizing immune response in mice and pigs, affording partial clinical protection against an FMDV challenge in pigs.
Collapse
Affiliation(s)
- Giselle Rangel
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Noelia Moreno
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Carlos P. Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (C.P.M.); (J.R.C.)
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (C.P.M.); (J.R.C.)
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
- Correspondence: ; Tel.: +34-916-202-300
| |
Collapse
|
9
|
de León P, Cañas-Arranz R, Defaus S, Torres E, Forner M, Bustos MJ, Revilla C, Dominguez J, Andreu D, Blanco E, Sobrino F. Swine T-Cells and Specific Antibodies Evoked by Peptide Dendrimers Displaying Different FMDV T-Cell Epitopes. Front Immunol 2021; 11:621537. [PMID: 33613553 PMCID: PMC7886804 DOI: 10.3389/fimmu.2020.621537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Dendrimeric peptide constructs based on a lysine core that comprises both B- and T-cell epitopes of foot-and-mouth disease virus (FMDV) have proven a successful strategy for the development of FMD vaccines. Specifically, B2T dendrimers displaying two copies of the major type O FMDV antigenic B-cell epitope located on the virus capsid [VP1 (140–158)], covalently linked to a heterotypic T-cell epitope from either non-structural protein 3A [3A (21–35)] or 3D [3D (56–70)], named B2T-3A and B2T-3D, respectively, elicit high levels of neutralizing antibodies (nAbs) and IFN-γ-producing cells in pigs. To assess whether the inclusion and orientation of T-3A and T-3D T-cell epitopes in a single molecule could modulate immunogenicity, dendrimers with T epitopes juxtaposed in both possible orientations, i.e., constructs B2TT-3A3D and B2TT-3D3A, were made and tested in pigs. Both dendrimers elicited high nAbs titers that broadly neutralized type O FMDVs, although B2TT-3D3A did not respond to boosting, and induced lower IgGs titers, in particular IgG2, than B2TT-3A3D. Pigs immunized with B2, a control dendrimer displaying two B-cell epitope copies and no T-cell epitope, gave no nABs, confirming T-3A and T-3D as T helper epitopes. The T-3D peptide was found to be an immunodominant, as it produced more IFN-γ expressing cells than T-3A in the in vitro recall assay. Besides, in pigs immunized with the different dendrimeric peptides, CD4+ T-cells were the major subset contributing to IFN-γ expression upon in vitro recall, and depletion of CD4+ cells from PBMCs abolished the production of this cytokine. Most CD4+IFN-γ+ cells showed a memory (CD4+2E3−) and a multifunctional phenotype, as they expressed both IFN-γ and TNF-α, suggesting that the peptides induced a potent Th1 pro-inflammatory response. Furthermore, not only the presence, but also the orientation of T-cell epitopes influenced the T-cell response, as B2TT-3D3A and B2 groups had fewer cells expressing both cytokines. These results help understand how B2T-type dendrimers triggers T-cell populations, highlighting their potential as next-generation FMD vaccines.
Collapse
Affiliation(s)
- Patricia de León
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Rodrigo Cañas-Arranz
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elisa Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Mar Forner
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - María J Bustos
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Concepción Revilla
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Javier Dominguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Francisco Sobrino
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
10
|
de León P, Cañas-Arranz R, Saez Y, Forner M, Defaus S, Cuadra D, Bustos MJ, Torres E, Andreu D, Blanco E, Sobrino F, Hammer SE. Association of Porcine Swine Leukocyte Antigen (SLA) Haplotypes with B- and T-Cell Immune Response to Foot-and-Mouth Disease Virus (FMDV) Peptides. Vaccines (Basel) 2020; 8:vaccines8030513. [PMID: 32911818 PMCID: PMC7563261 DOI: 10.3390/vaccines8030513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/15/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Dendrimer peptides are promising vaccine candidates against the foot-and-mouth disease virus (FMDV). Several B-cell epitope (B2T) dendrimers, harboring a major FMDV antigenic B-cell site in VP1 protein, are covalently linked to heterotypic T-cell epitopes from 3A and/or 3D proteins, and elicited consistent levels of neutralizing antibodies and IFN-γ-producing cells in pigs. To address the contribution of the highly polymorphic nature of the porcine MHC (SLA, swine leukocyte antigen) on the immunogenicity of B2T dendrimers, low-resolution (Lr) haplotyping was performed. We looked for possible correlations between particular Lr haplotypes with neutralizing antibody and T-cell responses induced by B2T peptides. In this study, 63 pigs immunized with B2T dendrimers and 10 non-immunized (control) animals are analyzed. The results reveal a robust significant correlation between SLA class-II Lr haplotypes and the T-cell response. Similar correlations of T-cell response with SLA class-I Lr haplotypes, and between B-cell antibody response and SLA class-I and SLA class-II Lr haplotypes, were only found when the sample was reduced to animals with Lr haplotypes represented more than once. These results support the contribution of SLA class-II restricted T-cells to the magnitude of the T-cell response and to the antibody response evoked by the B2T dendrimers, being of potential value for peptide vaccine design against FMDV.
Collapse
Affiliation(s)
- Patricia de León
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
| | - Yago Saez
- Computer Science Department, Universidad Carlos III of Madrid, Leganés, 28911 Madrid, Spain;
| | - Mar Forner
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.F.); (S.D.); (D.A.)
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.F.); (S.D.); (D.A.)
| | - Dolores Cuadra
- Computer Science Department, Universidad Rey Juan Carlos, 28933 Móstoles, Spain;
| | - María J. Bustos
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
| | - Elisa Torres
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (M.F.); (S.D.); (D.A.)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain;
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (P.d.L.); (R.C.-A.); (M.J.B.); (E.T.)
- Correspondence: (F.S.); (S.E.H.); Tel.: +34-9119-64493 (F.S.); +43-1-25077-2754 (S.E.H.)
| | - Sabine E. Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
- Correspondence: (F.S.); (S.E.H.); Tel.: +34-9119-64493 (F.S.); +43-1-25077-2754 (S.E.H.)
| |
Collapse
|
11
|
Cañas-Arranz R, de León P, Forner M, Defaus S, Bustos MJ, Torres E, Andreu D, Blanco E, Sobrino F. Immunogenicity of a Dendrimer B 2T Peptide Harboring a T-Cell Epitope From FMDV Non-structural Protein 3D. Front Vet Sci 2020; 7:498. [PMID: 32851051 PMCID: PMC7433650 DOI: 10.3389/fvets.2020.00498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022] Open
Abstract
Synthetic dendrimer peptides are a promising strategy to develop new FMD vaccines. A dendrimer peptide, termed B2T-3A, which harbors two copies of the major FMDV antigenic B-cell site [VP1 (140–158)], covalently linked to a heterotypic T-cell from the non-structural protein 3A [3A (21–35)], has been shown to protect pigs against viral challenge. Interestingly, the modular design of this dendrimer peptide allows modifications aimed at improving its immunogenicity, such as the replacement of the T-cell epitope moiety. Here, we report that a dendrimer peptide, B2T-3D, harboring a T-cell epitope from FMDV 3D protein [3D (56–70)], when inoculated in pigs, elicited consistent levels of neutralizing antibodies and high frequencies of IFN-γ-producing cells upon in vitro recall with the homologous dendrimers, both responses being similar to those evoked by B2T-3A. Lymphocytes from B2T-3A-immunized pigs were in vitro-stimulated by T-3A peptide and to a lesser extent by B-peptide, while those from B2T-3D- immunized animals preferentially recognized the T-3D peptide, suggesting that this epitope is a potent inducer of IFN-γ producing-cells. These results extend the repertoire of T-cell epitopes efficiently recognized by swine lymphocytes and open the possibility of using T-3D to enhance the immunogenicity and the protection conferred by B2T-dendrimers.
Collapse
Affiliation(s)
| | - Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Mar Forner
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - María J Bustos
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Elisa Torres
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
12
|
Defaus S, Forner M, Cañas-Arranz R, de León P, Bustos MJ, Rodríguez-Pulido M, Blanco E, Sobrino F, Andreu D. Designing Functionally Versatile, Highly Immunogenic Peptide-Based Multiepitopic Vaccines against Foot-and-Mouth Disease Virus. Vaccines (Basel) 2020; 8:vaccines8030406. [PMID: 32707834 PMCID: PMC7565419 DOI: 10.3390/vaccines8030406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 11/23/2022] Open
Abstract
A broadly protective and biosafe vaccine against foot-and-mouth disease virus (FMDV) remains an unmet need in the animal health sector. We have previously reported solid protection against serotype O FMDV afforded by dendrimeric peptide structures harboring virus-specific B- and T-cell epitopes, and also shown such type of multivalent presentations to be advantageous over simple B-T-epitope linear juxtaposition. Chemically, our vaccine platforms are modular constructions readily made from specified B- and T-cell epitope precursor peptides that are conjugated in solution. With the aim of developing an improved version of our formulations to be used for on-demand vaccine applications, we evaluate in this study a novel design for epitope presentation to the immune system based on a multiple antigen peptide (MAP) containing six immunologically relevant motifs arranged in dendrimeric fashion (named B2T-TB2). Interestingly, two B2T units fused tail-to-tail into a single homodimer platform elicited higher B- and T-cell specific responses than former candidates, with immunization scores remaining stable even after 4 months. Moreover, this macromolecular assembly shows consistent immune response in swine, the natural FMDV host, at reduced dose. Thus, our versatile, immunogenic prototype can find application in the development of peptide-based vaccine candidates for various therapeutic uses using safer and more efficacious vaccination regimens.
Collapse
Affiliation(s)
- Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu-Fabra, 08003 Barcelona, Spain; (S.D.); (M.F.)
| | - Mar Forner
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu-Fabra, 08003 Barcelona, Spain; (S.D.); (M.F.)
| | - Rodrigo Cañas-Arranz
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
| | - Patricia de León
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
| | - María J. Bustos
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
| | - Miguel Rodríguez-Pulido
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain;
| | - Francisco Sobrino
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain; (R.C.-A.); (P.d.L.); (M.J.B.); (M.R.-P.)
- Correspondence: (F.S.); (D.A.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu-Fabra, 08003 Barcelona, Spain; (S.D.); (M.F.)
- Correspondence: (F.S.); (D.A.)
| |
Collapse
|