1
|
Guo CH, Chu MJ, Liu T, Wang J, Zou M, Liu BT. High prevalence and transmission of bla NDM-positive Escherichia coli between farmed ducks and slaughtered meats: An increasing threat to food safety. Int J Food Microbiol 2024; 424:110850. [PMID: 39094468 DOI: 10.1016/j.ijfoodmicro.2024.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The emergence of carbapenem-resistant bacteria especially carbapenem-resistant Escherichia coli (CREC) in food animals poses a serious threat to food safety and public health. Reports about the dissemination of carbapenem-resistant bacteria along the food animal production chain are scattered and mainly focus on swine and chicken. Abuse of antibiotics in duck farms is common especially in China which has the largest duck production industry, however, the CREC transmission between farmed ducks and slaughtered meats remains unclear and the role of slaughterhouse in disseminating CREC among duck meats remains largely unknown. Herein, we collected 251 fecal samples from five typical duck farms along with 125 slaughtered meat samples (25 from each farm) in the corresponding slaughterhouse in Anhui Province, China, in December 2018. All samples were screened for CREC isolates which were analyzed for the presence of carbapenemase genes and colistin resistance gene mcr. The resistance profiles, transferability, pulsed-field gel electrophoresis (PFGE), whole-genome sequencing and phylogenetic analysis of the CREC isolates from both ducks and meats were further characterized. This is the first report presenting the high prevalence of blaNDM-positive CREC isolates in ducks from duck farms (57.8 %) and slaughtered meats (33.6 %) in the corresponding slaughterhouse. Among the 203 blaNDM-positive CREC isolates obtained in this study, 19.2 % harbored mcr-1 and all CREC isolates showed resistance to nearly all currently available antibiotics (except tigecycline). Of note, mcr-1 was found in 17.8 % of the meat-derived CREC carrying blaNDM. Based on the PFGE analysis, clonal spread of blaNDM-positive CREC including some also carrying mcr-1 was found between farmed ducks and slaughtered duck meats even from different farms. Special attention should be paid to the clonal dissemination of meat-derived CREC within the slaughterhouse, which contributed to the high prevalence of blaNDM in slaughtered meats. Additionally, horizontal transmission mainly mediated by transferable blaNDM-5-bearing IncX3 plasmids, untypable blaNDM-1-bearing plasmids and mcr-1-bearing IncHI2 plasmids further facilitated the rapid spread of such multidrug-resistant strains. Notably, the blaNDM-bearing plasmids and mcr-1-bearing plasmids in CREC from meats were highly similar to those from animals and humans. More worryingly, the phylogenomic analysis showed that CREC isolates from both ducks and corresponding meats clustered with previously reported human CREC isolates carrying mcr-1 in different geographical areas including China. These findings further prove that the CREC and resistance plasmids in farmed ducks could transmit to meats even from different farms via the slaughterhouse and then trigger infections in humans. The high prevalence and clonal transmission of CREC isolates including those also carrying mcr-1 between ducks and meats are alarming, and urgent control measures are required to reduce the dissemination of such organisms.
Collapse
Affiliation(s)
- Cai-Hong Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Mei-Jun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Tiantian Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Bai S, Fang L, Xiao H, Zhang Y, Guo W, Zhang J, Liu J, Zhang Y, Wang M, Sun R, Han L, Yu Y, Sun J, Liu Y, Liao X. Genomics analysis of KPC-2 and NDM-5-producing Enterobacteriaceae in migratory birds from Qinghai Lake, China. Appl Microbiol Biotechnol 2023; 107:7531-7542. [PMID: 37861819 DOI: 10.1007/s00253-023-12746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The study examined the epidemiological characteristics of carbapenem-resistant Enterobacteriaceae (CRE) isolated from migratory birds and surroundings in Qinghai Lake, China. We identified 69 (15.7%) CRE isolates from a total of 439 samples including 29 (6.6%) blaNDM-5 Escherichia coli and 40 (9.1%) blaKPC-2 Klebsiella pneumoniae. WGS analysis indicated that ST746, ST48, ST1011, and ST167 were the primary sequence types (ST) for blaNDM-5 E. coli, while all blaKPC-2 K. pneumoniae were ST11 and harbored numerous antibiotic resistance gene types including blaCTX-M, qnrS, and rmtB. A phylogenetic tree based on core genomes revealed that blaNDM-5 E. coli was highly heterogeneous while the blaKPC-2 K. pneumoniae was highly genetically similar within the group and to human Chinese isolates. IncX3, IncHI2, and IncFIB-HI2 plasmid replicon types were associated with blaNDM-5 spread, while IncFII-R and IncFII plasmids mediated blaKPC-2 spread. We also identified IncFII-R hybrid plasmids most likely formed by IS26-mediated integration of IncFII into IncR plasmid backbones. This also facilitated the persistence of IncFII-R plasmids and antibiotic resistance genes including blaKPC-2. In addition, all of the blaKPC-2 K. pneumoniae isolates harbored a pLVKP-like virulence plasmid carrying a combination of two or more hypervirulence markers that included peg-344, iroB, iucA, rmpA, and rmpA2. This is the first description of ST11 K. pneumoniae that co-carried blaKPC-2- and pLVKP-like virulence plasmids from migratory birds. The blaKPC-2 K. pneumoniae carried by migratory birds displayed high genetic relatedness to human isolates highlighting a high risk of transmission of these K. pneumoniae. KEY POINTS: • Multidrug resistance plasmids (blaKPC-2, bla436NDM-5, bla CTX-M, qnrS, and rmtB). • Co-occurrence of plasmid-mediated resistance and virulence genes. • High similarity between migratory bird genomes and humans.
Collapse
Affiliation(s)
- Shuancheng Bai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liangxing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hongliang Xiao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yin Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenying Guo
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jixing Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Juan Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Minge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ruanyang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lu Han
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
3
|
Guo CH, Liu YQ, Li Y, Duan XX, Yang TY, Li FY, Zou M, Liu BT. High prevalence and genomic characteristics of carbapenem-resistant Enterobacteriaceae and colistin-resistant Enterobacteriaceae from large-scale rivers in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121869. [PMID: 37225077 DOI: 10.1016/j.envpol.2023.121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The widespread presence of carbapenem-resistant Enterobacteriaceae (CRE) and mcr-positive Escherichia coli (MCREC) poses a huge threat to both animal and human health. River water environments are vital reservoirs of antibiotic resistance genes, however, the prevalence and characteristics of CRE and MCREC from large-scale rivers in China have not been reported. In the current study, we sampled 86 rivers from four cities in Shandong Province, China in 2021 and analyzed the prevalence of CRE and MCREC. The blaNDM/blaKPC-2/mcr-positive isolates were characterized with methods including PCR, antimicrobial susceptibility testing, conjugation, replicon typing, whole-genome sequencing and phylogenetic analysis. We found that the prevalence of CRE and MCREC in 86 rivers was 16.3% (14/86) and 27.9% (24/86), respectively and eight rivers carried both mcr-1 and blaNDM/blaKPC-2. A total of 48 Enterobacteriaceae isolates (10 ST11 Klebsiella pneumoniae with blaKPC-2, 12 blaNDM-positive E. coli and 26 MCREC carrying only mcr-1) were obtained in this study and 47 displayed multidrug resistance (MDR). Notably, 10 of the 12 blaNDM-positive E. coli isolates also harbored the mcr-1 gene. The blaKPC-2 gene was located within mobile element ISKpn27-blaKPC-2-ISKpn6 on novel F33:A-:B- non-conjugative MDR plasmids in ST11 K. pneumoniae. The dissemination of blaNDM was mediated by transferable MDR IncB/O plasmids or IncX3 plasmids while mcr-1 was primarily disseminated by highly similar IncI2 plasmids. Notably, these waterborne IncB/O, IncX3 and IncI2 plasmids were all highly similar to previously identified plasmids from animal and human isolates. A phylogenomic analysis revealed that the CRE and MCREC isolates from water environments might be derived from animals and trigger infections in humans. The high prevalence of CRE and MCREC in large-scale environmental rivers is alarming and needs sustained surveillance due to the potential risk for transmission to humans via the food chain (irrigation) or direct contact.
Collapse
Affiliation(s)
- Cai-Hong Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Qing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, Jinan, 250100, China
| | - Yan Li
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, 266000, China
| | - Xiao-Xiao Duan
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, 266000, China
| | - Ting-Yu Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fang-Yu Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Li R, Zhang L, Lu X, Peng K, Liu Y, Xiao X, Song H, Wang Z. Occurrence and Characterization of NDM-1-Producing Shewanella spp. and Acinetobacter portensis Co-Harboring tet(X3) in a Chinese Dairy Farm. Antibiotics (Basel) 2022; 11:1422. [PMID: 36290080 PMCID: PMC9598548 DOI: 10.3390/antibiotics11101422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 08/15/2023] Open
Abstract
Bacteria with carbapenem or tigecycline resistance have been spreading widely among humans, animals and the environment globally, being great threats to public health. However, bacteria co-carrying drug resistance genes of carbapenem and tigecycline in Shewanella and Acinetobacter species remain to be investigated. Here, we detected nine blaNDM-1-carrying Shewanella spp. isolates as well as three A. portensis isolates co-harboring tet(X3) and blaNDM-1 from seventy-two samples collected from a dairy farm in China. To explore their genomic characteristic and transmission mechanism, we utilized various methods, including PCR, antimicrobial susceptibility testing, conjugation experiment, whole-genome sequencing, circular intermediate identification and bioinformatics analysis. Clonal dissemination was found among three A. portensis, of which tet(X3) and blaNDM-1 were located on a novel non-conjugative plasmid pJNE5-X3_NDM-1 (333,311 bp), and the circular intermediate ΔISCR2-tet(X3)-blaNDM-1 was identified. Moreover, there was another copy of tet(X3) on the chromosome of A. portensis. It was verified that blaNDM-1 could be transferred to Escherichia coli C600 from Shewanella spp. by conjugation, and self-transmissible IncA/C2 plasmids mediated the transmission of blaNDM-1 in Shewanella spp. strains. Stringent surveillance was warranted to curb the transmission of such vital resistance genes.
Collapse
Affiliation(s)
- Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Lifei Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xia Xiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hongqin Song
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zhao Y, Liao Y, Zhang N, Liu S, Zhang J, Hu X, Zhou D, Deng Q, Shi Y, Gu B, Hou T. Four Types of ST11 Novel Mutations From Increasing Carbapenem-Resistant Klebsiella pneumoniae in Guangdong, 2016-2020. Front Microbiol 2021; 12:702941. [PMID: 34659140 PMCID: PMC8517524 DOI: 10.3389/fmicb.2021.702941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: This study aimed to explore changes in carbapenem-resistant Klebsiella pneumoniae (CR-KP) isolates collected in Guangdong over the period of 2016–2020. Methods: Antibacterial susceptibility was quantified through VITEK 2 compact and K-B method. Carbapenemase phenotypes and genotypes were characterized by modified carbapenem inactivation method (mCIM), EDTA-carbapenem inactivation method (eCIM), and polymerase chain reaction (PCR). Molecular characteristics and evolutionary trends were analyzed by multilocus sequence typing and evolutionary tree. Results: Isolates (2,847) of K. pneumoniae were separated in 2016–2020, and the separate rate of CR-KP increased from 5.65 to 9.90% (p = 0.009). The top 3 wards were intensive care unit (ICU) (21.92%), neonatal wards (13.70%), and respiratory wards (12.33%). In 146 CR-KP strains, serine carbapenemase was the main phenotype, and KPC was the main genotype, and 57 contained two resistant genes, and 1 contained three resistant genes. Two polygenic strains were first found: IMP + GES and KPC + NDM + VIM, but all the phenotypes were metalloenzyme, which indicated that metalloenzyme was usually the first choice for CR-KP resistance. In addition, all the ST54 of metalloenzyme type contained IMP, and all the ST45, ST37, and ST76 contained OXA. ST11 was the most prevalent (42.47%); ST11 and its mutants proved the predominant sequence type making up 51.1% of the carbapenemase-producing isolates. A novel type of ST11 mutation, the rpoB was mutated from sequence 1 to sequence 146, was in an independent separate branch on the evolutionary tree and was resistant to all antibacterial agents. The other three mutants, rpoB 1–15, infB 3–148, and infB 3–80, are also resistant to all antibacteria. Of note, all the four mutants produced serine carbapenemase and contained KPC, and indicated that the prevalent strain in China, ST11, has serious consequences and potential outbreaks. Conclusion: The infection rate of CR-KP has increased, and ICU and neonatal wards have become the key infection areas. Producing serine enzyme, the KPC genotype, and ST11 are the predominant CR-KP. Polygenic strains and ST11 mutation made clinical treatment difficult and may become a potential threat.
Collapse
Affiliation(s)
- Yunhu Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yalong Liao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ni Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Suling Liu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiao Zhang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xuejiao Hu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dianrong Zhou
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qianyun Deng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanping Shi
- General Hospital of Southern Theatre Command, Guangzhou, China
| | - Bing Gu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tieying Hou
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Sellera FP, Fuga B, Fontana H, Esposito F, Cardoso B, Konno S, Berl C, Cappellanes MH, Cortez M, Ikeda M, de Souza CM, Cerdeira L, Lincopan N. Detection of IncN-pST15 one-health plasmid harbouring bla KPC-2 in a hypermucoviscous Klebsiella pneumoniae CG258 isolated from an infected dog, Brazil. Transbound Emerg Dis 2021; 68:3083-3088. [PMID: 33507616 PMCID: PMC9290030 DOI: 10.1111/tbed.14006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
The emergence and rapid spread of carbapenemase‐producing Enterobacterales represents a serious public health concern. Critically, these global priority bacteria have begun to be reported in companion animals, implying a potential risk of cross‐transmission between humans and pets. Using long‐read (MinION) and short‐read (Illumina) sequencing technologies, we have identified and characterized a hypermucoviscous KPC‐2‐producing Klebsiella pneumoniae strain belonging to the high‐risk international clone ST11/CG258, in a dog with urinary tract infection. Strikingly, the blaKPC‐2 gene was carried by a 54‐kb IncN plasmid assignated to ST15, which shared 99.8 and 96.8% pairwise identity with IncN‐pST15 plasmids from human and environmental K. pneumoniae strains, respectively; all come from an area with high endemicity of KPC‐2. Our findings suggest that IncN‐pST15 plasmids conferring carbapenem resistance can play as important a role as clonal transmission of K. pneumoniae, representing another major challenge for One Health.
Collapse
Affiliation(s)
- Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Bruna Fuga
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carla Berl
- PetCare Veterinary Hospital, São Paulo, Brazil
| | | | | | | | - César M de Souza
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Louise Cerdeira
- Department of Infectious Diseases, Central Clinical School, Monash University, Clayton, Vic., Australia
| | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|