1
|
Chen S, Shang K, Chen J, Yu Z, Wei Y, He L, Ding K. Global distribution, cross-species transmission, and receptor binding of canine parvovirus-2: Risks and implications for humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172307. [PMID: 38599392 DOI: 10.1016/j.scitotenv.2024.172307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
For canine parvovirus -2 (CPV-2), a zoonotic virus capable of cross-species transmission in animals, the amino acid changes of capsid protein VP2 are key factors when binding to other species' transferrin receptors (TfR). CPV-2 variants can spread from felines and canines, for example, to Carnivora, Artiodactyla, and Pholidota species, and CPV-2c variants are essential to spread from Carnivora to Artiodactyla and Pholidota species in particular. In our study, a CPV-2a variant maintained a relatively stable trend, and the proportion of CPV-2c gradually rose from 1980 to 2021. The VP2 amino acid sequence analysis showed that five amino acid mutations at 426E/D, 305H/D, and 297S may be necessary for the virus to bind to different host receptors. Meanwhile, receptor-binding loop regions and amino acid sites 87 L, 93 N, 232I, and 305Y were associated with CPV-2 cross-species transmission. The homology of TfRs in different hosts infected with CPV-2 ranged from 77.2 % to 99.0 %, and from pig to feline, canine, and humans was 80.7 %, 80.4 %, and 77.2 %, respectively. The amino acid residues of TfRs involved in the viral binding in those hosts are highly conserved, which suggests that CPV-2 may be capable of pig-to-human transmission. Our analysis of the origin, evolutionary trend, cross-species transmission dynamics, and genetic characteristics of CPV-2 when binding to host receptors provides a theoretical basis for further research on CPV-2's mechanism of cross-species transmission and for establishing an early warning and monitoring mechanism for the possible threat of CPV-2 to animal-human public security.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Wei
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei He
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China.
| |
Collapse
|
2
|
Milićević V, Glišić D, Veljović L, Vasić A, Milovanović B, Kureljušić B, Paunović M. Protoparvovirus carnivoran 1 infection of golden jackals Canis aureus in Serbia. Vet Res Commun 2024; 48:1203-1209. [PMID: 37932576 DOI: 10.1007/s11259-023-10249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Parvoviruses are among the major animal pathogens that can cause considerable health disorders ranging from subclinical to lethal in domestic and wild animals. Golden jackal (Canis aureus), an expanding European species, is a reservoir of many pathogens, including vector-borne diseases and zoonoses. Given the importance of parvovirus infections in dogs and cats, this study aimed to unfold the virus prevalence and molecular characterisation in the golden jackal population in Serbia. The spleen samples from 68 hunted jackals during 2022/2023 were tested for the VP2-specific genome region of Protoparvovirus carnivoran 1 by PCR. BLAST analysis of partial VP2 sequences obtained from three animals (4.4%) revealed the highest similarity to Protoparvovirus carnivoran 1, genogroup Feline panleukopenia virus, which is the second report on FPV infection in jackals. Based on specific amino acid residues within partial VP2, the jackals' Protoparvovirus carnivoran 1 was also classified as FPV. One jackal's strain showed two synonymous mutations at positions 699 and 1167. Although species cross-transmission could not be established, jackals' health should be maintained by preventing the transmission of viruses to native species and vice versa. Although jackals are considered pests, their role as natural cleaners is of greater importance. Therefore, further monitoring of their health is needed to understand the influence of infectious diseases on population dynamics and to determine the relationship between domestic predators and jackals and the direction of cross-species transmission.
Collapse
Affiliation(s)
- Vesna Milićević
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia.
| | - Dimitrije Glišić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Ljubiša Veljović
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Ana Vasić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Bojan Milovanović
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Branislav Kureljušić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Milan Paunović
- Natural History Museum, Njegoševa 51, Belgrade, 11111, Republic of Serbia
| |
Collapse
|
3
|
Napolitano C, Sacristán I, Acuña F, Aguilar E, García S, López-Jara MJ, Cabello J, Hidalgo-Hermoso E, Poulin E, Grueber CE. Assessing micro-macroparasite selective pressures and anthropogenic disturbance as drivers of immune gene diversity in a Neotropical wild cat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166289. [PMID: 37591403 DOI: 10.1016/j.scitotenv.2023.166289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Anthropogenic environmental change is reducing available habitat for wild species, providing novel selection pressures such as infectious diseases and causing species to interact in new ways. The potential for emerging infectious diseases and zoonoses at the interface between humans, domestic animals, and wild species is a key global concern. In vertebrates, diversity at the major histocompatibility complex MHC is critical to disease resilience, and its study in wild populations provides insights into eco-evolutionary dynamics that human activities alter. In natural populations, variation at MHC loci is partly maintained by balancing selection, driven by pathogenic selective pressures. We hypothesize that MHC genetic diversity differs between guigna populations inhabiting human-dominated landscapes (higher pathogen pressures) versus more natural habitats (lower pathogen pressures). We predict that MHC diversity in guignas would be highest in human-dominated landscapes compared with continuous forest habitats. We also expected to find higher MHC diversity in guignas infected with micro and macro parasites (higher parasite load) versus non infected guignas. We characterized for the first time the genetic diversity at three MHC class I and II exons in 128 wild guignas (Leopardus guigna) across their distribution range in Chile (32-46° S) and Argentina, representing landscapes with varying levels of human disturbance. We integrated MHC sequence diversity with multiple measures of anthropogenic disturbance and both micro and macro parasite infection data. We also assessed signatures of positive selection acting on MHC genes. We found significantly higher MHC class I diversity in guignas inhabiting landscapes where houses were present, and with lower percentage of vegetation cover, and also in animals with more severe cardiorespiratory helminth infection (richness and intensity) and micro-macroparasite co-infection. This comprehensive, landscape-level assessment further enhances our knowledge on the evolutionary dynamics and adaptive potential of vertebrates in the face of emerging infectious disease threats and increasing anthropogenic impacts.
Collapse
Affiliation(s)
- Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile; Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Cape Horn International Center (CHIC), Puerto Williams, Chile.
| | - Irene Sacristán
- Universidad Andres Bello, Santiago, Chile; Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Centro Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Francisca Acuña
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Emilio Aguilar
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sebastián García
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María José López-Jara
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Javier Cabello
- Chiloé Silvestre Center for the Conservation of Biodiversity, Ancud, Chile
| | | | - Elie Poulin
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems and Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Kolangath SM, Upadhye SV, Dhoot VM, Pawshe MD, Bhadane BK, Gawande AP, Kolangath RM. Molecular investigation of Feline Panleukopenia in an endangered leopard (Panthera pardus) - a case report. BMC Vet Res 2023; 19:56. [PMID: 36859281 PMCID: PMC9979488 DOI: 10.1186/s12917-023-03612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Feline Panleukopenia is an important disease of cats and has been reported worldwide. The disease is caused by a non-enveloped, single-stranded DNA virus; Feline Panleukopenia Virus (FPLV), belonging to the Parvoviridae family. The disease causes significant mortality in unvaccinated kittens. The disease has been well documented in companion animals. However, only a few reports have surfaced from the wild. CASE PRESENTATION An orphan leopard cub was presented to Wildlife Rescue Centre, Nagpur, for further care; the leopard was kept under quarantine. On day 22 of the quarantine, the leopard showed inappetence, lethargy and depression and did not consume the offered carabeef (Day 0 of treatment). The leopard was examined clinically and was found to have a temperature of 102°F; blood was collected and analysed. On day one, the leopard exhibited bloody diarrhoea, inappetence, fever and depression. The leopard was rationally treated with fluids, antibiotics, multi-vitamins, haemostatics and haematinics. To gain qualitative insights into the epidemiological aspect of the disease, molecular investigation, including Polymerase Chain Reaction (PCR) and qPCR (Quantitative Polymerase Chain Reaction), were utilized to confirm the infection. The amplicon was sequenced and was found to be similar to sequences of FPLV reported domestic cats and other wild felids from India and abroad. Phylogenetic analysis was performed to understand the evolutionary relationship of the virus with previously reported sequences of FPLV. Sequences were submitted to National Center for Biotechnology Information (NCBI) and were allotted accession numbers. CONCLUSION The infection in endangered leopard cubs could be managed with prompt fluid therapy, antibiotics and support treatment, ensuring an uneventful recovery. Molecular investigation and sequencing efforts can provide valuable data on epidemiology and the evolutionary relationship of the virus with the circulating strains in the field. The study has implications in the preventive management of FPLV in captivity and the selection of strains for inclusion in vaccines meant for the wild felids.
Collapse
Affiliation(s)
- S. M. Kolangath
- grid.444596.e0000 0004 1800 6216Wildlife Research & Training Centre, MAFSU, Nagpur, Opp. Hindustan Lever Godown Square, Maharashtra Animal & Fishery Sciences University, Mahurzhari Road, Fetri, 441501 Nagpur, India
| | - S. V. Upadhye
- grid.444596.e0000 0004 1800 6216Wildlife Research & Training Centre, MAFSU, Nagpur, Opp. Hindustan Lever Godown Square, Maharashtra Animal & Fishery Sciences University, Mahurzhari Road, Fetri, 441501 Nagpur, India
| | - V. M. Dhoot
- grid.444596.e0000 0004 1800 6216Wildlife Research & Training Centre, MAFSU, Nagpur, Opp. Hindustan Lever Godown Square, Maharashtra Animal & Fishery Sciences University, Mahurzhari Road, Fetri, 441501 Nagpur, India
| | - M. D. Pawshe
- grid.444596.e0000 0004 1800 6216Wildlife Research & Training Centre, MAFSU, Nagpur, Opp. Hindustan Lever Godown Square, Maharashtra Animal & Fishery Sciences University, Mahurzhari Road, Fetri, 441501 Nagpur, India
| | - B. K. Bhadane
- grid.444596.e0000 0004 1800 6216Wildlife Research & Training Centre, MAFSU, Nagpur, Opp. Hindustan Lever Godown Square, Maharashtra Animal & Fishery Sciences University, Mahurzhari Road, Fetri, 441501 Nagpur, India
| | - A. P. Gawande
- grid.444596.e0000 0004 1800 6216Wildlife Research & Training Centre, MAFSU, Nagpur, Opp. Hindustan Lever Godown Square, Maharashtra Animal & Fishery Sciences University, Mahurzhari Road, Fetri, 441501 Nagpur, India
| | - R. M. Kolangath
- Department of Biotechnology & Biochemistry, Saint Francis DeSales College, Seminary Hills, 440006 Nagpur, India
| |
Collapse
|
5
|
Huang S, Li X, Xie W, Guo L, You D, Xu H, Liu D, Wang Y, Hou Z, Zeng X, Yang S, Chai H, Wang Y. Molecular Detection of Parvovirus in Captive Siberian Tigers and Lions in Northeastern China From 2019 to 2021. Front Microbiol 2022; 13:898184. [PMID: 35633695 PMCID: PMC9133805 DOI: 10.3389/fmicb.2022.898184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
The fact that wild felines are carriers of pernicious infectious viruses should be a major concern due to the potential cross-species transmission between the felines and human or domestic animals. However, studies on the virus in the captive wild felines, especially in tigers, are thin on the ground. In this study, we screened four infectious viruses, namely, feline parvovirus (FPV), feline coronavirus (FCoV), canine distemper virus (CDV), and influenza A virus (IAV), in the blood samples of 285 captive Siberian tigers (Panthera tigris altaica) and in the spleen samples of two deceased lions (Panthera leo), which were collected from 2019 to 2021 in three Siberian Tiger Parks from the northeast of China. Nucleic acids isolated from the blood samples collected from tigers and the spleen samples collected from two deceased lions were positive for FPV by PCR, and the positive rate was 4.6% (13/285) in tigers. Furthermore, the VP2 gene of FPV was amplified by nested PCR, and the sequences of the VP2 gene from these six FPV positive strains shared 98.3–99.9% homology with the reference. The key amino acid sites of VP2 protein were consistent with that of FPV reference strains. Phylogenetic analysis based on the VP2 gene showed that in this study, FPV-positive strains were grouped within the FPV clade and closely related to the Asian strains clade. The results of this study showed that FPV circulated in the captive Siberian tigers and lions in northeastern China and provided valuable information for the study of FPV epidemiology in wild felines. Therefore, we suggest that regular antibody monitoring and booster immunization for tigers should be performed.
Collapse
Affiliation(s)
- Shuping Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xiang Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Wei Xie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lijun Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dan You
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | | | - Dan Liu
- Siberian Tiger Park, Harbin, China
| | - Yulong Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xiangwei Zeng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Siyuan Yang
- Heilongjiang Vocational College for Nationalities, Harbin, China
- *Correspondence: Siyuan Yang,
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Hongliang Chai,
| | - Yajun Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Yajun Wang,
| |
Collapse
|
6
|
de Oliveira Santana W, Silveira VP, Wolf JM, Kipper D, Echeverrigaray S, Canal CW, Truyen U, Lunge VR, Streck AF. Molecular phylogenetic assessment of the canine parvovirus 2 worldwide and analysis of the genetic diversity and temporal spreading in Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105225. [PMID: 35101636 DOI: 10.1016/j.meegid.2022.105225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Canine parvovirus type 2 (CPV-2) is a relevant pathogen for dogs and causes a severe disease in carnivore species. CPV-2 reached pandemic proportions after the 1970s with the worldwide dissemination, generating antigenic and genetic variants (CPV-2a, CPV-2b, and CPV-2c) with different pathobiology in comparison with the original type CPV-2. The present study aimed to assess the current global CPV-2 molecular phylogeny and to analyze genetic diversity and temporal spreading of variants from Brazil. A total of 284 CPV-2 whole-genome sequences (WGS) and 684 VP2 complete genes (including 23 obtained in the present study) were compared to analyze phylogenetic relationships. Bayesian coalescent analysis estimated the time to the most recent common ancestor (tMRCA) and the population dynamics of the different CPV-2 lineages in the last decades. The WGS phylogenetic tree demonstrated two main clades disseminated worldwide today. The VP2 gene tree showed a total of four well-defined clades distributed in different geographic regions, including one with CPV-2 sequences exclusive from Brazil. These clades do not have a relationship with the previous classification into CPV-2a, CPV-2b, and CPV-2c, despite some having a predominance of one or more antigenic types. Temporal analysis demonstrated that the main CPV-2 clades evolved within a few years (from the 1980s to 1990s) in North America and they spread worldwide afterwards. Population dynamics analysis demonstrated that CPV-2 presented a major dissemination increase at the end of the 1980s / beginning of the 1990s followed by a period of stability and a second minor increase from 2000 to 2004.
Collapse
Affiliation(s)
- Weslei de Oliveira Santana
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Vinicius Proença Silveira
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Jonas Michel Wolf
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Diéssy Kipper
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Sergio Echeverrigaray
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Uwe Truyen
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Leipzig, Germany
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil.
| | - André Felipe Streck
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Echeverry DM, Henríquez A, Oyarzún-Ruiz P, Silva-de la Fuente MC, Ortega R, Sandoval D, Landaeta-Aqueveque C. First record of Trichinella in Leopardus guigna (Carnivora, Felidae) and Galictis cuja (Carnivora, Mustelidae): new hosts in Chile. PeerJ 2021; 9:e11601. [PMID: 34178469 PMCID: PMC8199920 DOI: 10.7717/peerj.11601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/21/2021] [Indexed: 01/19/2023] Open
Abstract
Background Trichinellosis is a zoonotic disease with a worldwide distribution. It is caused by several species of nematodes in the genus Trichinella. Trichinella spp. are transmitted through predation or carrion consumption and occur in domestic and sylvatic cycles. In humans trichinellosis occurs due to the consumption of raw or undercooked, infected meat and is mainly associated with the household slaughter of pigs or the consumption of game animals without veterinary inspection, a cultural practice that is difficult to resolve. Therefore, knowledge of this parasite's reservoir is relevant for better implementing public health strategies. The aim of this study was to assess the presence of Trichinella sp. in several carnivore and omnivore vertebrates in central-southern Chile. Methods We collected muscle tissue from a total of 53 animals from 15 species and were digested to detect Trichinella larvae which were further identified to species level using molecular techniques. Results We detected Trichinella larvae in Leopardus guigna (Felidae) and Galictis cuja (Mustelidae). We identified the larvae collected from L. guigna as Trichinella spiralis, but we were unable to molecularly characterize the larvae from G. cuja. This is the first record of Trichinella in a native mustelid of South America and the first record of T. spiralis in L. guigna. This study identified two novel hosts; however, further work is needed to identify the role that these and other hosts play in the cycle of Trichinella in Chile.
Collapse
Affiliation(s)
- Diana Maritza Echeverry
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Región de Biobío/Ñuble, Chile
| | - AnaLía Henríquez
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Biobío, Chile
| | - Pablo Oyarzún-Ruiz
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Región de Biobío/Ñuble, Chile
| | | | - Rene Ortega
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Región de Biobío/Ñuble, Chile
| | - Daniel Sandoval
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Región de Biobío/Ñuble, Chile
| | - Carlos Landaeta-Aqueveque
- Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Región de Biobío/Ñuble, Chile
| |
Collapse
|
8
|
Ramírez-Álvarez D, Napolitano C, Salgado I. Puma ( Puma concolor) in the Neighborhood? Records Near Human Settlements and Insights into Human-Carnivore Coexistence in Central Chile. Animals (Basel) 2021; 11:ani11040965. [PMID: 33807134 PMCID: PMC8066551 DOI: 10.3390/ani11040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 01/30/2023] Open
Abstract
Simple Summary The presence of carnivores near human settlements is a poorly studied topic that generates concern and perception of risk in some human communities, especially for medium to large felids. Apart from the conflict of the potential predation of livestock, there is the insecurity perception of a potential attack on people. To gain a better understanding of how, when, and how close pumas approached human settlements, we analyze 51 puma records near populated areas over eight years in central Chile. The results show that pumas approached human-populated areas; in 23.5% of the records pumas are found between 0 and 999 m from the nearest human settlement, 25.5% are between 1000 and 4999 m, and 51% are over 5000 m. We associate puma records with landscape features, such as mountain ranges, land-use, road, and urban infrastructure; and based on previous knowledge of puma biology, behavior, and habitat preference, we identify their area of occupation and the potential biological corridor used for their movements from the Andes Range to the coast. Our results show the adaptability of pumas to human-dominated landscapes, and their capacity to overcome landscape barriers, such as human infrastructure, contributing to a better understanding of the population dynamics in the study area. Studies on human–carnivore coexistence, through formulas that consider local realities and the reduction of implicit risks for humans, are urgently needed, both globally and locally, and likely the only way to secure the long-term conservation of pumas in human-dominated landscapes. Abstract The wildland–urban interface lies at the confluence of human-dominated and wild landscapes—creating a number of management and conservation challenges. Wildlife sightings near human settlements have appeared to increase in the last years. This article reports 51 records of presences, sightings, and livestock attacks of Puma concolor, a large-sized felid, collected from 2012 to 2020 across the O’Higgins region in central Chile. Puma records were concentrated in the east of the region in the Andes Range and foothills (90%). The number of puma records is higher in the last four to six years than in previously studied years. Of the 51 records, 23.5% are between 0 and 999 m from the nearest human settlement (classified as very close), 25.5% are between 1000 and 4999 m (moderately close), and 51% are over 5000 m (distant). Most of the sightings are recorded in the summer (35%) and spring (29%). We identify an area of approximately 9000 km2 of suitable habitat as the most probable corridor effectively connecting pumas moving between eastern and western areas, encompassing the Angostura de Paine mountain range. Our results contribute to the understanding of the presence and movements of P. concolor near urban areas and human settlements, confirming their persistence in and adaptation to human-dominated landscapes. We also provide insights into human–carnivore coexistence in the current global context in the densely populated central Chile.
Collapse
Affiliation(s)
- Diego Ramírez-Álvarez
- Unidad de Vida Silvestre, Servicio Agrícola y Ganadero (SAG), Región de O’Higgins, Rancagua 2820000, Chile;
- Correspondence: (D.R.-Á.); (C.N.)
| | - Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno 5312435, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago 7800003, Chile
- Correspondence: (D.R.-Á.); (C.N.)
| | - Iván Salgado
- Unidad de Vida Silvestre, Servicio Agrícola y Ganadero (SAG), Región de O’Higgins, Rancagua 2820000, Chile;
| |
Collapse
|
9
|
Identification of Novel Feline Paramyxoviruses in Guignas ( Leopardus guigna) from Chile. Viruses 2020; 12:v12121397. [PMID: 33291219 PMCID: PMC7762136 DOI: 10.3390/v12121397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
The family of paramyxoviruses has received growing attention as several new species have been identified recently, notably two different clusters in domestic cats, designated as feline morbillivirus (FeMV) and feline paramyxovirus (FPaV). Their phylogenetic origin and whether wild felids also harbor these viruses are currently unknown. Kidney samples from 35 guignas (Leopardus guigna), a wild felid from Chile, were investigated for paramyxoviruses using consensus-RT-PCR. In addition, thirteen serum samples of guignas were screened for the presence of FeMV-specific antibodies by an immunofluorescence assay (IFA). Viral RNA was detected in 31% of the kidney samples. Phylogenetic analyses revealed two well-supported clusters, related to isolates from domestic cats, rodents and bats. No significant histopathology changes were recorded in infected guignas. Serology identified two samples which were positive for FeMV-specific antibodies. Our study highlights the diversity of paramyxovirus infections in felids with special emphasis on guignas from Chile.
Collapse
|