1
|
Hernández J, Henao-Díaz A, Reséndiz-Sandoval M, Cota-Valdez A, Mata-Haro V, Gimenez-Lirola LG. Dynamics of PCV2 and PCV3 in the Serum and Oral Fluids of Pigs After PCV2 Vaccination in a Commercial Farm. Vaccines (Basel) 2024; 12:1318. [PMID: 39771980 PMCID: PMC11680165 DOI: 10.3390/vaccines12121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES This study investigated the dynamics of porcine circovirus type 2 (PCV2) and PCV3 on a commercial farm following PCV2 vaccination. METHODS Serum samples from 35 pigs, starting at 3 weeks of age, were collected weekly until 21 weeks of age. Oral fluids from six pens of pigs of the same age were also analyzed. Viral DNA was assessed in pooled sera and individual oral fluid samples, while antibodies (IgG and IgA) were measured in the serum and oral fluids. Productive parameters, including weekly mortality and cumulative mortality, were evaluated. RESULTS The results revealed that PCV2 and PCV3 co-infection was detected in pigs at 8 weeks of age, with PCV3 being detected in oral fluids two weeks earlier. PCV3 DNA was detected in oral fluids at 4 weeks of age. PCV2 IgG antibodies in the serum increased gradually after vaccination, peaking at 7 weeks of age, then declined and stabilized until 21 weeks of age. PCV3 IgG antibodies fluctuated early but were uniformly positive after 13 weeks of age. In oral fluids, PCV2 IgG and IgA antibodies showed a strong response only at 3 and 23 weeks of age. In contrast, a strong and consistent IgG response was observed in oral fluids in the absence of PCV2 and PCV3 co-infection of pigs at 3 to 11 weeks of age. The farm's productive parameters remained stable throughout the study. CONCLUSIONS These findings suggest that PCV2 and PCV3 co-infection, along with high PCV3 detection levels in serum and oral fluids, may have an impact on the efficacy of PCV2 vaccination.
Collapse
Affiliation(s)
- Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, SON, Mexico;
| | - Alexanda Henao-Díaz
- Grupo Bachoco, Unidad de Negocios Cerdo, Celaya 38000, GTO, Mexico; (A.H.-D.); (A.C.-V.)
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, SON, Mexico;
| | - Angel Cota-Valdez
- Grupo Bachoco, Unidad de Negocios Cerdo, Celaya 38000, GTO, Mexico; (A.H.-D.); (A.C.-V.)
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, SON, Mexico;
| | - Luis G. Gimenez-Lirola
- Department of Veterinary Diagnosis and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Qiu H, Sun M, Wang N, Zhang S, Deng Z, Xu H, Yang H, Gu H, Fang W, He F. Efficacy comparison in cap VLPs of PCV2 and PCV3 as swine vaccine vehicle. Int J Biol Macromol 2024; 278:134955. [PMID: 39173309 DOI: 10.1016/j.ijbiomac.2024.134955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
As one genotype of porcine circovirus (PCV) identified in 2016, PCV3 has brought huge hidden dangers to the global swine industry together with PCV2. Virus-like particles (VLPs) of capsid protein (Cap) of PCV2 serve as an alternative nano-antigen delivery strategy to efficiently induce antiviral immune response against PCV2 and/or other covalently displayed swine pathogens. However, the current understanding is limited on the capability of PCV3 as a nano-vaccine vehicle. Here we systematically compared the characteristics and the immunogenic efficacy of PCV3 Cap (Cap3) and PCV2 Cap (Cap2) in a VLP form. Cap3 VLPs presented higher internalization efficiency into cells and cytokines production compared to those of Cap2. Meanwhile, cross-reactive immunity between Cap3 VLPs and Cap2 VLPs was detected. Furthermore, to evaluate the function of Cap3 VLPs and Cap2 VLPs as vaccine vehicles carrying foreign proteins, the non-structural protein 6 of porcine reproductive and respiratory syndrome virus (PRRSV) was fused to C-terminus of Cap. Cap3-based chimeric particles induced a higher level of nsp6-specific immune response and PRRSV inhibition. Collectively, these self-assembling, Cap-based VLPs offer a compelling platform for enhancing the effectiveness of subunit vaccinations against newly emerging diseases and hold great promise for the development of Cap3-based chimeric subunit vaccines.
Collapse
Affiliation(s)
- He Qiu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meiqi Sun
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengkun Zhang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhuofan Deng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huiling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China
| | - HaoTian Yang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihuan Fang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China
| | - Fang He
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China.
| |
Collapse
|
3
|
Hannon C, Sarker S, Suen WW, Bielefeldt-Ohmann H. DNA Virome in Cardiac Tissue from Green Sea Turtles ( Chelonia mydas) with Myocarditis. Viruses 2024; 16:1053. [PMID: 39066216 PMCID: PMC11281379 DOI: 10.3390/v16071053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
As part of a sea turtle health monitoring program on the central east coast of Queensland, Australia, stranded and sick green sea turtles (Chelonia mydas) were subjected to necropsy and histopathology. A subset of these turtles had myocarditis of varying severity, which could not be attributed to parasitism by spirorchid flukes or bacterial infections. We, therefore, undertook an investigation to determine whether virus infections might be part of the pathogenesis. Deep sequencing revealed abundant DNA virus contigs in the heart tissue, of which CRESS and circoviruses appeared to be the most consistently present. Further analysis revealed the homology of some of the circoviruses to the beak and feather disease virus. While a causative link to myocarditis could not be established, the presence of these viruses may play a contributing role by affecting the immune system and overall health of animals exposed to pollutants, higher water temperatures, and decreasing nutrition.
Collapse
Affiliation(s)
- Christabel Hannon
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Willy W. Suen
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3220, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Wang Y, Su M, Huang Y, Ren J, Niu S, Zhao Y, Yan F, Yan Y, Tian WX. Development of a novel PCV2 and PCV3 vaccine using virus-like vesicles incorporating Venezuelan equine encephalomyelitis virus-containing vesicular stomatitis virus glycoprotein. Front Vet Sci 2024; 11:1359421. [PMID: 38840631 PMCID: PMC11150706 DOI: 10.3389/fvets.2024.1359421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Porcine circovirus disease (PCV) causes substantial economic losses in the pig industry, primarily from porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3). Novel vaccines are necessary to prevent and control PCV infections. PCV coat proteins are crucial for eliciting immunogenic proteins that induce the production of antibodies and immune responses. A vaccine platform utilizing Semliki Forest virus RNA replicons expressing vesicular stomatitis virus glycoprotein (VSV-G), was recently developed. This platform generates virus-like vesicles (VLVs) containing VSV-G exclusively, excluding other viral structural proteins. In our study, we developed a novel virus-like vesicle vaccine by constructing recombinant virus-like vesicles (rVLVs) that also express EGFP. These rVLVs were created using the RNA replicon of Venezuelan equine encephalomyelitis (VEEV) and New Jersey serotype VSV-G. The rVLVs underwent characterization and safety evaluation in vitro. Subsequently, rVLVs expressing PCV2d-Cap and PCV3-Cap proteins were constructed. Immunization of C57 mice with these rVLVs led to a significant increase in anti-porcine circovirus type 2 and type 3 capsid protein antibodies in mouse serum. Additionally, a cellular immune response was induced, as evidenced by high production of IFN-γ and IL-4 cytokines. Overall, this study demonstrates the feasibility of developing a novel porcine circovirus disease vaccine based on rVLVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Yan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wen-xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
5
|
Qi S, He Q, Zhang Z, Chen H, Giménez-Lirola L, Yuan F, Bei W. Detection of Porcine Circovirus Type 3 in Serum, Semen, Oral Fluid, and Preputial Fluid Samples of Boars. Vet Sci 2023; 10:689. [PMID: 38133240 PMCID: PMC10747573 DOI: 10.3390/vetsci10120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) is commonly associated with clinical symptoms such as porcine dermatitis and nephropathy syndrome (PDNS)-like lesions, respiratory signs, and reproductive disorders. This study aimed to investigate the epidemiology of PCV3 in a boar stud. The objectives were to detect PCV3 in semen, as well as matched serum, oral fluid, and preputial fluid samples from adult boars using quantitative polymerase chain reaction (qPCR), analyze PCV3-IgG antibody data, and genetically characterize a positive sample. A total of 112 samples from 28 boars were collected from a large-scale pig farm in Guangxi, China. The qPCR results showed that the PCV3 DNA was not detected in semen, with a positive rate of 0% (0/28), while it was detected in serum (3.57%-1/28), oral fluid (64.28%-18/28), and preputial fluid (46.4%-13/28). The seropositivity rate of PCV3-IgG in serum was 82.14% (23/28) according to the indirect enzyme-linked immunosorbent serologic assay (ELISA) results. Phylogenetic analysis revealed that one of the PCV3 isolates belonged to the PCV3c clades. This is the first report of PCV3 detection in preputial fluid from boars. The results suggest that PCV3 is transmitted among boars on pig farms and exhibits epidemic characteristics.
Collapse
Affiliation(s)
- Song Qi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Qiyun He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Zhewei Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
- Hubei Hongshan Laboratory, Wuhan 430000, China
| | - Luis Giménez-Lirola
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430000, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (S.Q.); (Z.Z.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
- Hubei Hongshan Laboratory, Wuhan 430000, China
| |
Collapse
|
6
|
Xiao X, Li YC, Xu FP, Hao X, Li S, Zhou P. Canine circovirus among dogs and cats in China: first identification in cats. Front Microbiol 2023; 14:1252272. [PMID: 37711694 PMCID: PMC10498457 DOI: 10.3389/fmicb.2023.1252272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Canine circovirus (CanineCV) is a virus associated with respiratory and digestive diseases in dogs and often occurs in coinfections with other pathogens, thereby aggravating the symptoms of infected dogs. CanineCV was first reported in the United States in 2012. Subsequently, it was reported among dogs in Europe, Asia, and South America. To investigate the prevalence of CanineCV in dogs in China, 331 dog samples were collected in this study. The PCR results showed that 9.06% (30/331, 95% CI = 6.2% ~ 12.7%) of the dog samples were CanineCV positive. CanineCV has also been detected in some carnivorous wild animals, indicating the potential risk of cross-species transmission of this virus. And, cats are also one of the most common pets in our daily lives, who is close contact with dogs. Thus, this study first investigated the prevalence of CanineCV in cats. The PCR results showed that 3.42% (14/409, 95% CI = 1.9% ~ 5.7%) of the cat samples were CanineCV positive. Moreover, 14 canine-derived CanineCV whole genomes and the first cat-derived CanineCV whole genome were obtained in this study. Rep and Cap are the major nonstructural proteins and structural proteins of CanineCV, respectively. In nucleic acid homology analyses, these 15 CanineCV strains showed a high degree of variation in Rep (85.9 ~ 99%) and Cap (85.6 ~ 100%). In phylogenetic analyses, the 15 CanineCV strains clustered into 3 different genotypes (genotypes 1, 3, and 4). Among them, the first cat-derived CanineCV belonged to CanineCV-3. In addition, 4 genetic recombination events were predicted in these 15 CanineCV strains, occurring in multiple regions of the genome. In conclusion, this study is the first to provide evidence of CanineCV infection in cats and successfully obtained the first whole genome of cat-derived CanineCV. The complex circulation and high prevalence of CanineCV among dogs and cats emphasize the importance of continuous monitoring of this virus in various animal species.
Collapse
Affiliation(s)
- Xiangyu Xiao
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yan Chao Li
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Feng Pei Xu
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangqi Hao
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shoujun Li
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Pei Zhou
- Guangdong Provincial Pet Engineering Technology Research Center, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Bishop LJ, Stutzer C, Maritz-Olivier C. More than Three Decades of Bm86: What We Know and Where to Go. Pathogens 2023; 12:1071. [PMID: 37764879 PMCID: PMC10537462 DOI: 10.3390/pathogens12091071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Tick and tick-borne disease control have been a serious research focus for many decades. In a global climate of increasing acaricide resistance, host immunity against tick infestation has become a much-needed complementary strategy to common chemical control. From the earliest acquired resistance studies in small animal models to proof of concept in large production animals, it was the isolation, characterization, and final recombinant protein production of the midgut antigen Bm86 from the Australian cattle tick strain of Rhipicephalus (Boophilus) microplus (later reinstated as R. (B.) australis) that established tick subunit vaccines as a viable alternative in tick and tick-borne disease control. In the past 37 years, this antigen has spawned numerous tick subunit vaccines (either Bm86-based or novel), and though we are still describing its molecular structure and function, this antigen remains the gold standard for all tick vaccines. In this paper, advances in tick vaccine development over the past three decades are discussed alongside the development of biotechnology, where existing gaps and future directives in the field are highlighted.
Collapse
Affiliation(s)
| | | | - Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0083, South Africa; (L.J.B.); (C.S.)
| |
Collapse
|
8
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
9
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
10
|
Liu H, Zou J, Liu R, Chen J, Li X, Zheng H, Li L, Zhou B. Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of African Swine Fever Virus, Porcine Circovirus 2, and Pseudorabies Virus in East China from 2020 to 2022. Vet Sci 2023; 10:vetsci10020106. [PMID: 36851410 PMCID: PMC9964870 DOI: 10.3390/vetsci10020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
African swine fever virus (ASFV), porcine circovirus 2 (PCV2), and pseudorabies virus (PRV) are important DNA viruses that cause reproductive disorders in sows, which result in huge losses in pig husbandry, especially in China. The multiplex qPCR assay could be utilized as a simultaneous diagnostic tool for field-based surveillance and the control of ASFV, PCV2, and PRV. Based on the conserved regions on the p72 gene of ASFV, the Cap gene of PCV2, the gE gene of PRV, and the porcine endogenous β-Actin gene, the appropriate primers and probes for a multiplex TaqMan real-time PCR test effective at concurrently detecting three DNA viruses were developed. The approach demonstrated high specificity and no cross-reactivity with major pathogens related to swine reproductive diseases. In addition, its sensitivity was great, with a detection limit of 101 copies/L of each pathogen, and its repeatability was excellent, with intra- and inter-group variability coefficients of <2%. Applying this assay to detect 383 field specimens collected from 2020 to 2022, the survey data displayed that the ASFV, PCV2, and PRV single infection rates were 22.45%, 28.46%, and 2.87%, respectively. The mixed infection rates of ASFV + PCV2, ASFV + PRV, PCV2 + PRV, and ASFV + PCV2 + PRV were 5.22%, 0.26%, 1.83%, and 0.26%, respectively. Overall, the assay established in this study provides an effective tool for quickly distinguishing the viruses causing sow reproductive disorders, suggesting its huge clinical application value in the diagnosis of swine diseases.
Collapse
Affiliation(s)
- Huaicheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianwen Zou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongchao Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haixue Zheng
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Long Li
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (L.L.); (B.Z.)
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (B.Z.)
| |
Collapse
|
11
|
Wang Y, Yan S, Ji Y, Yang Y, Rui P, Ma Z, Qiu HJ, Song T. First Identification and Phylogenetic Analysis of Porcine Circovirus Type 4 in Fur Animals in Hebei, China. Animals (Basel) 2022; 12:ani12233325. [PMID: 36496846 PMCID: PMC9737481 DOI: 10.3390/ani12233325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
A novel circovirus called porcine circovirus type 4 (PCV4) was recently detected in pigs suffering from severe clinical diseases in Hunan province, China. There are few reports on the origin and evolution of PCV4, although some researchers have conducted epidemiological investigations of PCV4 and found that PCV4 is widespread in pigs. Based on the previous study, we detected PCV2 in farmed foxes and raccoon dogs with reproductive failure. To explore whether the PCV4 genome also exists in fur animals, we detected 137 cases admitted from fur animal farms in Hebei China between 2015 and 2020, which were characterized by inappetence, lethargy, depression, abortion, and sterility. The overall infection rate of PCV4 was 23.36% (32/137), including 20.37% (22/108) for raccoon dogs, 18.75% (3/16) for foxes, and 53.85% (7/13) for minks. Finally, five raccoon dog-origin PCV4 strains and one fox-origin PCV4 strain were sequenced in our study, whose nucleotide identities with other representative PCV4 strains varied from 96.5% to 100%. Phylogenetic analysis based on the complete genomes of PCV4 strains indicated a close relationship with those of PCV4 strains identified from pigs. To our knowledge, this is the first study to detect PCV4 in fur animals. Interestingly, we also identified PCV4 in a mixed farm (feeding pigs and raccoon dogs at the same time). In summary, our findings extend the understanding of the molecular epidemiology of PCV4 and provide new evidence for its cross-species transmission.
Collapse
Affiliation(s)
- Yanjin Wang
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shijie Yan
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yuting Ji
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yujie Yang
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Ping Rui
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Zengjun Ma
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (H.-J.Q.); (T.S.)
| | - Tao Song
- Key Laboratory of Preventive Veterinary Medicine of Hebei, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Correspondence: (H.-J.Q.); (T.S.)
| |
Collapse
|
12
|
Martín-Valls GE, Li Y, Díaz I, Cano E, Sosa-Portugal S, Mateu E. Diversity of respiratory viruses present in nasal swabs under influenza suspicion in respiratory disease cases of weaned pigs. Front Vet Sci 2022; 9:1014475. [PMID: 36337208 PMCID: PMC9627340 DOI: 10.3389/fvets.2022.1014475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
Respiratory diseases in weaned pigs are a common problem, with a complex etiology involving both viruses and bacteria. In the present study, we investigated the presence of eleven viruses in nasal swabs, collected from nurseries (55 cases) under the suspicion of swine influenza A virus (swIAV) and submitted by swine veterinarians for diagnosis. The other ten viruses included in the study were influenza B (IBV) and D (IDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine respiratory coronavirus (PRCV), Porcine cytomegalovirus (PCMV), Porcine circovirus 2 (PCV2), 3 (PCV3) and 4 (PCV), Porcine parainfluenza 1 (PPIV1) and Swine orthopneumovirus (SOV). Twenty-six swIAV-positive cases and twenty-nine cases of swIAV-negative respiratory disease were primarily established. While IBV, IDV, PCV4 and PPIV1 were not found in any of the cases, PRCV, SOV, and PCMV were more likely to be found in swIAV-positive nurseries with respiratory disease (p < 0.05). Overall, PCV3, PRRSV, and PCMV were the most frequently detected agents at herd level. Taken individually, virus prevalence was: swIAV, 48.6%; PRCV, 48.0%; PRRSV, 31.6%; SOV, 33.8%; PCMV, 48.3%, PCV2, 36.0%; and PCV3, 33.0%. Moreover, low Ct values (<30) were common for all agents, except PCV2 and PCV3. When the correlation between pathogens was individually examined, the presence of PRRSV was negatively correlated with swIAV and PRCV, while was positively associated to PCMV (p < 0.05). Also, PRCV and SOV were positively correlated between them and negatively with PCMV. Besides, the analysis of suckling pig samples, collected in subclinically infected farrowing units under an influenza monitoring program, showed that circulation of PRCV, PCMV, SOV, and PCV3 started during the early weeks of life. Interestingly, in those subclinically infected units, none of the pathogens was found to be correlated to any other. Overall, our data may contribute to a better understanding of the complex etiology and epidemiology of respiratory diseases in weaners. This is the first report of SOV in Spain and shows, for the first time, the dynamics of this pathogen in swine farms.
Collapse
Affiliation(s)
- Gerard E. Martín-Valls
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- *Correspondence: Gerard E. Martín-Valls
| | - Yanli Li
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ivan Díaz
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Esmeralda Cano
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Silvana Sosa-Portugal
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Department de Sanitat i Anatomia Animals, Faculty of Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
13
|
The gC1qR Binding Site Mutant PCV2 Is a Potential Vaccine Strain That Does Not Impair Memory CD4 + T-Cell Generation by Vaccines. J Virol 2022; 96:e0095922. [PMID: 36121300 PMCID: PMC9555195 DOI: 10.1128/jvi.00959-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PCV2 has been reported to reduce the protective effects of various vaccines on immunized pigs. Our previous studies showed that the interaction of Cap and host protein gC1qR mediated the PCV2 infection-induced suppression of immune response. Thus, we wondered whether the gC1qR binding site mutant PCV2RmA could be a vaccine strain and whether this mutant PCV2RmA impairs other vaccines. Herein, we showed that PCV2 infection reduced the classic swine fever virus (CSFV) vaccine-induced generation of memory CD4+ T cells through the interaction of Cap with gC1qR. PCV2RmA can effectively induce the production of PCV2-specific antibodies, neutralizing antibodies, and peripheral blood lymphocyte proliferation in piglets at the same levels as the commercial inactivated PCV2 vaccine. The PCV2RmA-induced anti-PCV2 immune responses could eliminate the serum virus and would not lead to pathological lesions like wild-type PCV2. Moreover, compared to the commercial inactivated PCV2 vaccine, PCV2RmA is capable of inducing more durable protective immunity against PCV2 that induced production of PCV2-specific antibodies and neutralizing antibodies for a longer time via stronger induction of memory CD4+ T cells. Importantly, PCV2RmA infection did not impair the CSFV vaccine-induced generation of memory CD4+ T cells. Collectively, our findings showed that PCV2 infection impairs memory CD4+ T-cell generation to affect vaccination and provide evidence for the use of PCV2RmA as an efficient vaccine to prevent PCV2 infection. IMPORTANCE PCV2 is one of the costliest pathogens in pigs worldwide. Usage of PCV2 vaccines can prevent the PCV2 infection-induced clinical syndromes but not the viral spread. Our previous work found that PCV2 infection suppresses the host type I interferon innate immune response and CD4+ T-cell-mediated Th1 immune response through the interaction of Cap with host gC1qR. Here, we showed that the gC1qR binding site mutant PCV2RmA could effectively induce anti-PCV2 immunity and provide more durable protective immunity against wild-type PCV2 infection in pigs. PCV2RmA would not impair the generation of memory CD4+ T cells induced by classic swine fever virus (CSFV) vaccines as wild-type PCV2 did. Therefore, PCV2RmA can serve as a potential vaccine strain to better protect pigs against PCV2 infection.
Collapse
|
14
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
15
|
Turlewicz-Podbielska H, Augustyniak A, Pomorska-Mól M. Novel Porcine Circoviruses in View of Lessons Learned from Porcine Circovirus Type 2-Epidemiology and Threat to Pigs and Other Species. Viruses 2022; 14:v14020261. [PMID: 35215854 PMCID: PMC8877176 DOI: 10.3390/v14020261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/20/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) plays a key role in PCV2-associated disease (PCVAD) etiology and has yielded significant losses in the pig husbandry in the last 20 years. However, the impact of two recently described species of porcine circoviruses, PCV3 and PCV4, on the pork industry remains unknown. The presence of PCV3 has been associated with several clinical presentations in pigs. Reproductive failure and multisystemic inflammation have been reported most consistently. The clinical symptoms, anatomopathological changes and interaction with other pathogens during PCV3 infection in pigs indicate that PCV3 might be pathogenic for these animals and can cause economic losses in the swine industry similar to PCV2, which makes PCV3 worth including in the differential list as a cause of clinical disorders in reproductive swine herds. Moreover, subsequent studies indicate interspecies transmission and worldwide spreading of PCV3. To date, research related to PCV3 and PCV4 vaccine design is at early stage, and numerous aspects regarding immune response and virus characteristics remain unknown.
Collapse
|
16
|
Comprehensive Analysis of Codon Usage Patterns in Chinese Porcine Circoviruses Based on Their Major Protein-Coding Sequences. Viruses 2022; 14:v14010081. [PMID: 35062285 PMCID: PMC8778832 DOI: 10.3390/v14010081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
Porcine circoviruses (PCVs) are distributed in swine herds worldwide and represent a threat to the health of domestic pigs and the profits of the swine industry. Currently, four PCV species, including PCV-1, PCV-2, PCV-3 and PCV-4, have been identified in China. Considering the ubiquitous characteristic of PCVs, the new emerged PCV-4 and the large scale of swine breeding in China, an overall analysis on codon usage bias for Chinese PCV sequences was performed by using the major proteins coding sequences (ORF1 and ORF2) to better understand the relationship of these viruses with their host. The data from genome nucleotide frequency composition and relative synonymous codon usage (RSCU) analysis revealed an overrepresentation of AT pair and the existence of a certain codon usage bias in all PCVs. However, the values of an effective number of codons (ENC) revealed that the bias was of low magnitude. Principal component analysis, ENC-plot, parity rule two analysis and correlation analysis suggested that natural selection and mutation pressure were both involved in the shaping of the codon usage patterns of PCVs. However, a neutrality plot revealed a stronger effect of natural selection than mutation pressure on codon usage patterns. Good host adaptation was also shown by the codon adaptation index analysis for all these viruses. Interestingly, obtained data suggest that PCV-4 might be more adapted to its host compared to other PCVs. The present study obtained insights into the codon usage pattern of PCVs based on ORF1 and ORF2, which further helps the understanding the molecular evolution of these swine viruses.
Collapse
|
17
|
Evidence of coinfection of pigs with African swine fever virus and porcine circovirus 2. Arch Virol 2021; 167:207-211. [PMID: 34826000 DOI: 10.1007/s00705-021-05312-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Archival swine DNA samples from Indonesia and Mongolia, some of which were previously shown to be positive for African swine fever virus, were screened for the presence of porcine circovirus 2 (PCV-2) and porcine circovirus 3 (PCV-3) by PCR. Samples from both countries were positive for PCV-2 (three from Mongolia and two from Indonesia), while none were positive for PCV-3. The PCV-2 amplicons were sequenced, and phylogenetic analysis revealed that the PCV-2 strains belonged to four different genotypes: PCV-2a (Mongolia), PCV-2b (Mongolia and Indonesia), PCV-2d (Indonesia), and PCV-2g (Mongolia). This is the first report of ASFV/PCV-2 coinfection in pigs and the first report of the presence of PCV-2 in Mongolia.
Collapse
|
18
|
Identification of a novel circovirus in blood sample of giant pandas (Ailuropoda melanoleuca). INFECTION GENETICS AND EVOLUTION 2021; 95:105077. [PMID: 34506957 DOI: 10.1016/j.meegid.2021.105077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022]
Abstract
The members of the family Circoviridae are considered to be one of the smallest autonomously replicating viruses that are classified into two genera, Circovirus and Cyclovirus. Circoviruses have been found in a variety of vertebrates, but whether they infect endangered protected animals has not been studied in much detail. Here, viral metagenomics and PCR methods were used to detect and verify viral nucleic acid in the blood sample from giant pandas. According to these methods, the complete genome sequence of a novel circovirus, the giant panda associated circovirus (GPCV) from the blood sample of three giant pandas was identified. The GPCV genome is 2090 bp in size and reveals two putative ambisense open-reading frames, encoding the major structural capsid protein and the replication associated protein, respectively, the latter having two predicted introns. Pairwise sequence comparison and phylogenetic analyses indicated GPCV was a putative new species within genus Circovirus based on the species demarcation criteria of the International Committee on the Taxonomy of Viruses. It is the first time that circovirus has been identified from blood sample of giant pandas. These efforts will contribute to future analyses to illuminate the evolutionary relationships between classified and newly identified members of the family Circoviridae.
Collapse
|