1
|
Trevisan G, Magstadt D, Woods A, Sparks J, Zeller M, Li G, Krueger KM, Saxena A, Zhang J, Gauger PC. A recombinant porcine reproductive and respiratory syndrome virus type 2 field strain derived from two PRRSV-2-modified live virus vaccines. Front Vet Sci 2023; 10:1149293. [PMID: 37056231 PMCID: PMC10086154 DOI: 10.3389/fvets.2023.1149293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
A porcine reproductive and respiratory syndrome virus (PRRSV) type 2 (PRRSV-2) isolate was obtained from lung samples collected from a 4.5-month-old pig at a wean-to-finish site in Indiana, USA, although no gross or microscopic lesions suggestive of PRRSV infection were observed in the lung tissue. Phylogenetic and molecular evolutionary analyses based on the obtained virus sequences indicated that PRRSV USA/IN105404/2021 was a natural recombinant isolate from Ingelvac PRRS® MLV and Prevacent® PRRS, which are PRRSV-2-modified live virus vaccines commercially available in the United States. This study is the first to report the detection of a PRRSV-2 recombinant strain consisting entirely of two modified live virus vaccine strains under field conditions. Based on clinical data and the absence of lung lesions, this PRRSV-2 recombinant strain was not virulent in swine, although its pathogenicity needs to be confirmed by clinical trials.
Collapse
Affiliation(s)
- Giovani Trevisan
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Giovani Trevisan
| | - Drew Magstadt
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | | | | | - Michael Zeller
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ganwu Li
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Karen M. Krueger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Anugrah Saxena
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Cheng TY, Campler MR, Schroeder DC, Yang M, Mor SK, Ferreira JB, Arruda AG. Detection of Multiple Lineages of PRRSV in Breeding and Growing Swine Farms. Front Vet Sci 2022; 9:884733. [PMID: 35774978 PMCID: PMC9237545 DOI: 10.3389/fvets.2022.884733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The detection and co-circulation of multiple variants of porcine reproductive and respiratory syndrome virus (PRRSV) have been observed and reported in swine. However, the potential long-term impact of multiple prevailing PRRSV variants on pig-performance is not yet fully understood. The primary objective of this study was to describe the genetic variation of PRRSV in processing fluid (PF), oral fluid (OF), and tonsil scraping (TS) specimens from five swine farms with different production types and PRRS status over a period of time (~1 year). Furthermore, the association between PRRSV prevalence and production parameters was investigated. Results showed that PRRSV was detected by RT-qPCR in 21–25% of all types of specimens. In breeding farms, PRRSV detection in PF and/or TS samples was correlated with stillborn and mummified fetuses, and pre-weaning mortality throughout the study period. Although ORF5 sequences were obtained in <16% of all sample types, simultaneous detection of PRRSV variants including field and vaccine strains within a single sampling event was identified in both breeding and growing pig farms. Phylogenetic analyses based on the ORF5 sequence classified the detected field PRRSV into L1A and L1H, two sub-lineages of lineage 1 (L1). Our study demonstrated the presence of multiple PRRSV lineages, sub-lineages, and variants in swine herds and its potential association with swine reproductive performance under field conditions.
Collapse
Affiliation(s)
- Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Magnus R. Campler
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - My Yang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Sunil K. Mor
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Juliana B. Ferreira
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Andréia G. Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- *Correspondence: Andréia G. Arruda
| |
Collapse
|