1
|
Tajima CC, Arruda FPSG, Mineli VC, Ferreira JM, Bettim BB, Osório CABDT, Sonagli M, Bitencourt AGV. MRI features of breast cancer immunophenotypes with a focus on luminal estrogen receptor low positive invasive carcinomas. Sci Rep 2024; 14:19305. [PMID: 39164330 PMCID: PMC11336205 DOI: 10.1038/s41598-024-69778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
To compare the magnetic resonance imaging (MRI) features of different immunophenotypes of breast carcinoma of no special type (NST), with special attention to estrogen receptor (ER)-low-positive breast cancer. This retrospective, single-centre, Institutional Review Board (IRB)-approved study included 398 patients with invasive breast carcinoma. Breast carcinomas were classified as ER-low-positive when there was ER staining in 1-10% of tumour cells. Pretreatment MRI was reviewed to assess the tumour imaging features according to the 5th edition of the Breast Imaging Reporting and Data System (BI-RADS) lexicon. Of the 398 cases, 50 (12.6%) were luminal A, 191 (48.0%) were luminal B, 26 (6.5%) were luminal ER-low positive, 64 (16.1%) were HER2-overexpressing, and 67 (16.8%) were triple negative. Correlation analysis between MRI features and tumour immunophenotype showed statistically significant differences in mass shape, margins, internal enhancement and the delayed phase of the kinetic curve. An oval or round shape and rim enhancement were most frequently observed in triple-negative and luminal ER-low-positive tumours. Spiculated margins were most common in luminal A and luminal B tumours. A persistent kinetic curve was more frequent in luminal A tumours, while a washout curve was more common in the triple-negative, HER2-overexpressing and luminal ER-low-positive immunophenotypes. Multinomial regression analysis showed that luminal ER-low-positive tumours had similar results to triple-negative tumours for almost all variables. Luminal ER-low-positive tumours present with similar MRI findings to triple-negative tumours, which suggests that MRI can play a fundamental role in adequate radiopathological correlation and therapeutic planning in these patients.
Collapse
Affiliation(s)
- Carla Chizuru Tajima
- Imaging Department, Graduate Program of A.C.Camargo Cancer Center, São Paulo, SP, Brazil.
- Imaging Department, A Beneficência Portuguesa de São Paulo, São Paulo, Brazil.
| | | | - Victor Chequer Mineli
- Imaging Department, Graduate Program of A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | | | | | | | - Marina Sonagli
- Department of Breast Surgery, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
2
|
Shokeir FA, Elmokadem AH, Soliman N, Khater A, Bayoumi D. Texture analysis using non-contrast MRI to predict estrogen receptor status in breast cancer lesions: Is it feasible? Clin Radiol 2024; 79:e892-e899. [PMID: 38719689 DOI: 10.1016/j.crad.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE We aimed to evaluate the feasibility of non-contrast-enhanced T1 sequence in texture analysis of breast cancer lesions to predict their estrogen receptor status. METHODS The study included 85 pathologically proven breast cancer lesions in 53 patients. Immunohistochemical studies were performed to determine the estrogen receptor status (ER). Lesions were divided into two groups: ER + ve status and ER-ve status. Texture analysis using the second-order analysis features [The Co-occurrence matrix (11 features)] was applied on both T1 and dynamic contrast-enhanced (DCE) MRI images for each lesion. Texture features gained from both T1 and DCE images were analyzed to obtain cut-off values using ROC curves to sort lesions according to their estrogen receptor status. RESULTS Angular second momentum and some of the entropy-based features showed statistically significant cut-off values in differentiation between the two groups [P-values for pre- and post-contrast images for AngSecMom (0.001, 0.008), sum entropy (0.003,0.005), and entropy (0.033,0.019), respectively]. On comparing the AUCs between pre- and post-contrast images, we found that differences were statistically insignificant. Sum of squares, sum variance, and sum average showed statistically significant cut-off points only on pre-contrast images [P-values for sum of squares (0.018), sum variance (0.024), and sum average (0.039)]. CONCLUSIONS Texture analysis features showed promising results in predicting estrogen receptor status of breast cancer lesions on non-contrast T1 images.
Collapse
Affiliation(s)
- F A Shokeir
- Department of Radiology, Mansoura University, Elgomhoria St. 35516, Egypt.
| | - A H Elmokadem
- Department of Radiology, Mansoura University, Elgomhoria St. 35516, Egypt.
| | - N Soliman
- Department of Radiology, Mansoura University, Elgomhoria St. 35516, Egypt.
| | - A Khater
- Mansoura University Oncology Center, Elgomhoria St. 35516, Egypt.
| | - D Bayoumi
- Department of Radiology, Mansoura University, Elgomhoria St. 35516, Egypt.
| |
Collapse
|
3
|
Rezkallah E, Mekhaeil K, Tin SMM, Hanna RS. The Role of MRI in Assessing Residual Breast Cancer After Neoadjuvant Chemotherapy. Am Surg 2024; 90:238-244. [PMID: 37611928 DOI: 10.1177/00031348231198108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
INTRODUCTION Breast cancer is the most common malignancy among women in the world. The role of neoadjuvant chemotherapy (NAC) in the management of breast cancer is increasing. The decision about the management after NAC depends mainly on the tumor response to NAC. OBJECTIVES The role of the current study is to evaluate the role of the MRI scan in assessing the residual disease after NAC, which would help in decision making regarding the best treatment plan for the patient. PATIENTS AND METHODS We did this retrospective review for all patients who were diagnosed with breast cancer in our center and had NAC over four years. All patients in our study had a post-NAC magnetic resonance imaging (MRI) scan to assess the residual tumor size. A 2×2 table was used to calculate the diagnostic accuracy, and SPSS software version 25 was used to get the correlation coefficients between the post-NAC MRI measurements and pathological size. RESULTS 28 female patients were included in our study. The average age was 45.25 ± 10 years. We utilized the tumor size on histology as the standard for comparison. We calculated MRI sensitivity, specificity, PPV, and NPV rates of 90.9%, 100%, 100%, and 94.4%, respectively. The correlation coefficient was strong (r = 0.859, P = 0.01). CONCLUSION Magnetic resonance imaging is a good test to assess the residual tumor disease after NAC in breast cancer patients. However, cases of under- and overestimation are still seen, which require more caution when making a decision regarding the management of such cases.
Collapse
Affiliation(s)
- Emad Rezkallah
- General Surgery Department, James Cook University Hospital, Middlesbrough, UK
| | - Kamel Mekhaeil
- Vascular Department, James Cook University Hospital, Middlesbrough, UK
| | - Su Min Min Tin
- General Surgery Department, James Cook University Hospital, Middlesbrough, UK
| | | |
Collapse
|
4
|
Lan L, Feng K, Wu Y, Zhang W, Wei L, Che H, Xue L, Gao Y, Tao J, Qian S, Cao W, Zhang J, Wang C, Tian M. Phenomic Imaging. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:597-612. [PMID: 38223684 PMCID: PMC10781914 DOI: 10.1007/s43657-023-00128-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 01/16/2024]
Abstract
Human phenomics is defined as the comprehensive collection of observable phenotypes and characteristics influenced by a complex interplay among factors at multiple scales. These factors include genes, epigenetics at the microscopic level, organs, microbiome at the mesoscopic level, and diet and environmental exposures at the macroscopic level. "Phenomic imaging" utilizes various imaging techniques to visualize and measure anatomical structures, biological functions, metabolic processes, and biochemical activities across different scales, both in vivo and ex vivo. Unlike conventional medical imaging focused on disease diagnosis, phenomic imaging captures both normal and abnormal traits, facilitating detailed correlations between macro- and micro-phenotypes. This approach plays a crucial role in deciphering phenomes. This review provides an overview of different phenomic imaging modalities and their applications in human phenomics. Additionally, it explores the associations between phenomic imaging and other omics disciplines, including genomics, transcriptomics, proteomics, immunomics, and metabolomics. By integrating phenomic imaging with other omics data, such as genomics and metabolomics, a comprehensive understanding of biological systems can be achieved. This integration paves the way for the development of new therapeutic approaches and diagnostic tools.
Collapse
Affiliation(s)
- Lizhen Lan
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Kai Feng
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Yudan Wu
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Wenbo Zhang
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ling Wei
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Huiting Che
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Yidan Gao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Ji Tao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Shufang Qian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, National Center for Neurological Disorders, Fudan University, Shanghai, 200040 China
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| | - Mei Tian
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong New District, Shanghai, 201203 China
| |
Collapse
|
5
|
Classifying Breast Cancer Metastasis Based on Imaging of Tumor Primary and Tumor Biology. Diagnostics (Basel) 2023; 13:diagnostics13030437. [PMID: 36766541 PMCID: PMC9914718 DOI: 10.3390/diagnostics13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The molecular classification of breast cancer has allowed for a better understanding of both prognosis and treatment of breast cancer. Imaging of the different molecular subtypes has revealed that biologically different tumors often exhibit typical features in mammography, ultrasound, and MRI. Here, we introduce the molecular classification of breast cancer and review the typical imaging features of each subtype, examining the predictive value of imaging with respect to distant metastases.
Collapse
|
6
|
Cellina M, Cè M, Khenkina N, Sinichich P, Cervelli M, Poggi V, Boemi S, Ierardi AM, Carrafiello G. Artificial Intellgence in the Era of Precision Oncological Imaging. Technol Cancer Res Treat 2022; 21:15330338221141793. [PMID: 36426565 PMCID: PMC9703524 DOI: 10.1177/15330338221141793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Rapid-paced development and adaptability of artificial intelligence algorithms have secured their almost ubiquitous presence in the field of oncological imaging. Artificial intelligence models have been created for a variety of tasks, including risk stratification, automated detection, and segmentation of lesions, characterization, grading and staging, prediction of prognosis, and treatment response. Soon, artificial intelligence could become an essential part of every step of oncological workup and patient management. Integration of neural networks and deep learning into radiological artificial intelligence algorithms allow for extrapolating imaging features otherwise inaccessible to human operators and pave the way to truly personalized management of oncological patients.Although a significant proportion of currently available artificial intelligence solutions belong to basic and translational cancer imaging research, their progressive transfer to clinical routine is imminent, contributing to the development of a personalized approach in oncology. We thereby review the main applications of artificial intelligence in oncological imaging, describe the example of their successful integration into research and clinical practice, and highlight the challenges and future perspectives that will shape the field of oncological radiology.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, Milano, Italy,Michaela Cellina, MD, Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milano, Italy.
| | - Maurizio Cè
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Natallia Khenkina
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Polina Sinichich
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Marco Cervelli
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Vittoria Poggi
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Sara Boemi
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | | | - Gianpaolo Carrafiello
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy,Radiology Department, Fondazione IRCCS Cà Granda, Milan, Italy
| |
Collapse
|
7
|
Panico C, Ferrara F, Woitek R, D’Angelo A, Di Paola V, Bufi E, Conti M, Palma S, Cicero SL, Cimino G, Belli P, Manfredi R. Staging Breast Cancer with MRI, the T. A Key Role in the Neoadjuvant Setting. Cancers (Basel) 2022; 14:cancers14235786. [PMID: 36497265 PMCID: PMC9739275 DOI: 10.3390/cancers14235786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. Neoadjuvant chemotherapy (NACT) indications have expanded from inoperable locally advanced to early-stage breast cancer. Achieving a pathological complete response (pCR) has been proven to be an excellent prognostic marker leading to better disease-free survival (DFS) and overall survival (OS). Although diagnostic accuracy of MRI has been shown repeatedly to be superior to conventional methods in assessing the extent of breast disease there are still controversies regarding the indication of MRI in this setting. We intended to review the complex literature concerning the tumor size in staging, response and surgical planning in patients with early breast cancer receiving NACT, in order to clarify the role of MRI. Morphological and functional MRI techniques are making headway in the assessment of the tumor size in the staging, residual tumor assessment and prediction of response. Radiomics and radiogenomics MRI applications in the setting of the prediction of response to NACT in breast cancer are continuously increasing. Tailored therapy strategies allow considerations of treatment de-escalation in excellent responders and avoiding or at least postponing breast surgery in selected patients.
Collapse
Affiliation(s)
- Camilla Panico
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
- Correspondence:
| | - Francesca Ferrara
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Ramona Woitek
- Medical Image Analysis and AI (MIAAI), Danube Private University, 3500 Krems, Austria
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Anna D’Angelo
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Valerio Di Paola
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Enida Bufi
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Marco Conti
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Simone Palma
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Stefano Lo Cicero
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giovanni Cimino
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Paolo Belli
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Riccardo Manfredi
- Department of Bioimaging, Radiation Oncology and Hematology, UOC of Radiologia, Fondazione Policlinico Universitario A. Gemelli IRCSS, Largo A. Gemelli 8, 00168 Rome, Italy
- Institute of Radiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
8
|
Precision Medicine in Breast Cancer: Do MRI Biomarkers Identify Patients Who Truly Benefit from the Oncotype DX Recurrence Score ® Test? Diagnostics (Basel) 2022; 12:diagnostics12112730. [PMID: 36359573 PMCID: PMC9689656 DOI: 10.3390/diagnostics12112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to combine breast MRI-derived biomarkers with clinical-pathological parameters to identify patients who truly need an Oncotype DX Breast Recurrence Score® (ODXRS) genomic assay, currently used to predict the benefit of adjuvant chemotherapy in ER-positive/HER2-negative early breast cancer, with the ultimate goal of customizing therapeutic decisions while reducing healthcare costs. Patients who underwent a preoperative multiparametric MRI of the breast and ODXRS tumor profiling were retrospectively included in this study. Imaging sets were evaluated independently by two breast radiologists and classified according to the 2013 American College of Radiology Breast Imaging Reporting and Data System (ACR BI-RADS) lexicon. In a second step of the study, a combined oncologic and radiologic assessment based on clinical-pathological and radiological data was performed, in order to identify patients who may need adjuvant chemotherapy. Results were correlated with risk levels expressed by ODXRS, using the decision made on the basis of the ODXRS test as a gold standard. The χ2 test was used to evaluate associations between categorical variables, and significant ones were further investigated using logistic regression analyses. A total of 58 luminal-like, early-stage breast cancers were included. A positive correlation was found between ODXRS and tumor size (p = 0.003), staging (p = 0.001) and grading (p = 0.005), and between BI-RADS categories and ODXRS (p < 0.05 for both readers), the latter being confirmed at multivariate regression analysis. Moreover, BI-RADS categories proved to be positive predictors of the therapeutic decision taken after performing an ODXRS assay. A statistically significant association was also found between the therapeutic decision based on the ODXRS and the results of combined onco-radiologic assessment (p < 0.001). Our study suggests that there is a correlation between BI-RADS categories at MRI and ODXRS and that a combined onco-radiological assessment may predict the decision made on the basis of the results of ODXRS genomic test.
Collapse
|
9
|
Robustness of radiomics to variations in segmentation methods in multimodal brain MRI. Sci Rep 2022; 12:16712. [PMID: 36202934 PMCID: PMC9537186 DOI: 10.1038/s41598-022-20703-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Radiomics in neuroimaging uses fully automatic segmentation to delineate the anatomical areas for which radiomic features are computed. However, differences among these segmentation methods affect radiomic features to an unknown extent. A scan-rescan dataset (n = 46) of T1-weighted and diffusion tensor images was used. Subjects were split into a sleep-deprivation and a control group. Scans were segmented using four segmentation methods from which radiomic features were computed. First, we measured segmentation agreement using the Dice-coefficient. Second, robustness and reproducibility of radiomic features were measured using the intraclass correlation coefficient (ICC). Last, difference in predictive power was assessed using the Friedman-test on performance in a radiomics-based sleep deprivation classification application. Segmentation agreement was generally high (interquartile range = 0.77–0.90) and median feature robustness to segmentation method variation was higher (ICC > 0.7) than scan-rescan reproducibility (ICC 0.3–0.8). However, classification performance differed significantly among segmentation methods (p < 0.001) ranging from 77 to 84%. Accuracy was higher for more recent deep learning-based segmentation methods. Despite high agreement among segmentation methods, subtle differences significantly affected radiomic features and their predictive power. Consequently, the effect of differences in segmentation methods should be taken into account when designing and evaluating radiomics-based research methods.
Collapse
|
10
|
El-Rawy AS, Abdallah HY, Suliman MA, Habba MR, Gad AA. Magnetic resonance imaging correlation with molecular and epigenetic markers in assessment of breast cancer. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is a heterogeneous disease with a wide range of clinical behavior, histologic subtypes, therapeutic options, and outcomes. The different biology and histology of breast cancer display different tumor morphology at breast magnetic resonance imaging (MRI). However, few studies have examined the relationship between the MRI morphological, kinetic features and molecular and epigenetic markers in breast cancer assessment. The study aimed to evaluate the correlation between MRI morphological and kinetic features, molecular and an epigenetic marker (linc-ITGB1) in breast cancer cases. A total of 115 women (80 cases and 35 controls) with BIRAD 4 category breast lesions were included. The association between the MRI morphological & kinetic features, apparent diffusion coefficient (ADC) values, and molecular and the epigenetic marker (linc-ITGB1) was evaluated using Mann–Whitney and Chi-square tests.
Results
The shape (p = 0.009), size of the lesion (p = 0.003), and pattern of enhancement (p ≤ 0.001) were significantly correlated with the molecular markers. Luminal subtypes are more likely to be presented with irregular shaped and non-circumscribed margin masses (97% for luminal A and 94.1% for luminal B). Triple-negative cancers are frequently presented with regular masses, circumscribed margins, and peripheral rim enhancement (50% of TN tumors). HER2-positive cancers are more likely to be multifocal/multicentric and are more associated with non-mass pattern of enhancement as compared to HER2-negative cancers. Perilesional edema was also significantly correlated with HER2-positive lesions (p = 0.009). Although the epigenetic marker linc-ITGB1 was overexpressed by 4.85-folds in breast cancer cases compared to benign controls, we could not find any significant correlation between its expression level and the MRI features or molecular subtypes (p = 0.948).
Conclusions
MRI features can be a reliable predictor of breast cancer molecular subtypes. The epigenetic marker linc-ITGB1 has a potential role in breast cancer pathogenesis but with no significant correlation with either the MRI features or molecular subtypes of the lesions.
Collapse
|
11
|
L. Faizo N, M. Raafat B, Alamri S, Alghamdi AJ, Osman H, Ahmed RM, Almahwasi A, S. Alamri A, Ansari M. Distinction of Breast Masses from Benign to Malignant using Magnetic Resonance Imaging and Dynamic Contrast-Enhanced in Tertiary Care Hospitals of Taif, Saudi Arabia: A Retrospective Study. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2022; 15:1005-1011. [DOI: 10.13005/bpj/2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background: Breast cancer is the most frequent cancer among women throughout the world. A range of noninvasive techniques have been employed for early prevention. In health-care practice, however, quality and sensitivity remained critical. Objective: The aim of this study is to see how well Breast Magnetic Resonance Imaging (MRIs) and Dynamic Contrast-Enhanced MRI (DCE-MRI) techniques can detect breast cancer and distinguish between malignant and benign lesions. Methods: A retrospective study was conducted at the Taif Hospitals, Saudi Arabia. The Picture Archiving and Communication System was used to acquire medical records and data from 50 individuals with probable breast cancer, and breast MRI pictures were analyzed. Breast Imaging Reporting and Data System (BI-RADS) radiologist reports and DCE-MRI kinetic curves were evaluated. Excel was also used to test the sensitivity and specificity of breast MRI. Results: According to the BI-RADS results, biopsies, and breast MRI data, 52 percent of 50 patients were categorized as benign, 24 percent as malignant, and 24 percent had no abnormalities. Biopsy revealed that 61.5 percent of the malignant lesions were benign, whereas 38.5 percent were appropriately identified as cancerous. The majority of malignant tumors were discovered in patients over the age of 50. The washout curve correctly identified 60% of the malignant lesions and 40% of the benign lesions. Our data demonstrated the usefulness of MRI in detecting breast cancers by analyzing BI-RADS and utilizing DCE-MRI. False-positive, on the other hand, can lead to unnecessary biopsies. Conclusion: Breast cancer is more common among women of their fifties and beyond. Biopsies, breast MRIs, and kinetic curve analysis can all be utilized to differentiate between benign and malignant breast masses with high sensitivity and specificity.
Collapse
Affiliation(s)
- Nahla L. Faizo
- 1Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Bassem M. Raafat
- 1Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Sultan Alamri
- 1Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ahmad Joman Alghamdi
- 1Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hamid Osman
- 1Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Rania Mohammed Ahmed
- 1Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ashraf Almahwasi
- 2Medical Physics Unit, Security Forces Hospital, Medical Services, Ministry of Interior, Makkah, The Kingdom of Saudi Arabia
| | - Abdulhakeem S. Alamri
- 3Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mukhtar Ansari
- 5Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
12
|
Ahmad R, Ahmed B, Ahmed B. Effectiveness of MRI in screening women for breast cancer: a systematic review. BREAST CANCER MANAGEMENT 2022. [DOI: 10.2217/bmt-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Artificial intelligence techniques for the diagnosis of disease continue to develop with rapid pace. This review article systematically determines incremental accuracy and other parameters of current methods, including sensitivity, specificity, positive predictive value and negative predictive value with regard to breast MRI as a screening tool for women under 50 years. Articles were included from the databases of health technology assessment agencies from 2000 to 2019, using various medical subject heading terms. A total of 23 eligible studies were included incorporating a total of 11,688 patients out of which two were multicentered, four were accuracy studies, seven were prospective studies and four were retrospective studies. MRI screening showed an adequate detection of invasive cancers, premalignant lesions and pre-invasive cancers, suggesting that MRI is a powerful surveillance tool to detect cancer in high-risk populations. These findings have indicated that MRI has particular sensitivity and specificity for the diagnosis of breast cancer. PROSPERO Registration Number: CRD42020158372.
Collapse
Affiliation(s)
- Rani Ahmad
- Radiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basem Ahmed
- Radiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam Ahmed
- Faculity of Medicine in Rabigh, King Abdulaziz University, Makkah, Saudi Arabia
| |
Collapse
|
13
|
Xu A, Chu X, Zhang S, Zheng J, Shi D, Lv S, Li F, Weng X. Prediction Breast Molecular Typing of Invasive Ductal Carcinoma Based on Dynamic Contrast Enhancement Magnetic Resonance Imaging Radiomics Characteristics: A Feasibility Study. Front Oncol 2022; 12:799232. [PMID: 35664741 PMCID: PMC9160981 DOI: 10.3389/fonc.2022.799232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the feasibility of radiomics in predicting molecular subtype of breast invasive ductal carcinoma (IDC) based on dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). Methods A total of 303 cases with pathologically confirmed IDC from January 2018 to March 2021 were enrolled in this study, including 223 cases from Fudan University Shanghai Cancer Center (training/test set) and 80 cases from Shaoxing Central Hospital (validation set). All the cases were classified as HR+/Luminal, HER2-enriched, and TNBC according to immunohistochemistry. DCE-MRI original images were treated by semi-automated segmentation to initially extract original and wavelet-transformed radiomic features. The extended logistic regression with least absolute shrinkage and selection operator (LASSO) penalty was applied to identify the optimal radiomic features, which were then used to establish predictive models combined with significant clinical risk factors. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis were adopted to evaluate the effectiveness and clinical benefit of the models established. Results Of the 223 cases from Fudan University Shanghai Cancer Center, HR+/Luminal cancers were diagnosed in 116 cases (52.02%), HER2-enriched in 71 cases (31.84%), and TNBC in 36 cases (16.14%). Based on the training set, 788 radiomic features were extracted in total and 8 optimal features were further identified, including 2 first-order features, 1 gray-level run length matrix (GLRLM), 4 gray-level co-occurrence matrices (GLCM), and 1 3D shape feature. Three multi-class classification models were constructed by extended logistic regression: clinical model (age, menopause, tumor location, Ki-67, histological grade, and lymph node metastasis), radiomic model, and combined model. The macro-average areas under the ROC curve (macro-AUC) for the three models were 0.71, 0.81, and 0.84 in the training set, 0.73, 0.81, and 0.84 in the test set, and 0.76, 0.82, and 0.83 in the validation set, respectively. Conclusion The DCE-MRI-based radiomic features are significant biomarkers for distinguishing molecular subtypes of breast cancer noninvasively. Notably, the classification performance could be improved with the fusion analysis of multi-modal features.
Collapse
Affiliation(s)
- Aqiao Xu
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Xiufeng Chu
- Department of Surgical, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Shengjian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Zheng
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Dabao Shi
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Shasha Lv
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Feng Li
- Department of Research Collaboration, Research & Development Center (R&D), Beijing Deepwise & League of Doctor of Philosophy (PHD) Technology Co., Ltd, Beijing, China
| | - Xiaobo Weng
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| |
Collapse
|
14
|
Kazama T, Takahara T, Hashimoto J. Breast Cancer Subtypes and Quantitative Magnetic Resonance Imaging: A Systemic Review. Life (Basel) 2022; 12:life12040490. [PMID: 35454981 PMCID: PMC9028183 DOI: 10.3390/life12040490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer detection. This systematic review investigated the role of quantitative MRI features in classifying molecular subtypes of breast cancer. We performed a literature search of articles published on the application of quantitative MRI features in invasive breast cancer molecular subtype classification in PubMed from 1 January 2002 to 30 September 2021. Of the 1275 studies identified, 106 studies with a total of 12,989 patients fulfilled the inclusion criteria. Bias was assessed based using the Quality Assessment of Diagnostic Studies. All studies were case-controlled and research-based. Most studies assessed quantitative MRI features using dynamic contrast-enhanced (DCE) kinetic features and apparent diffusion coefficient (ADC) values. We present a summary of the quantitative MRI features and their correlations with breast cancer subtypes. In DCE studies, conflicting results have been reported; therefore, we performed a meta-analysis. Significant differences in the time intensity curve patterns were observed between receptor statuses. In 10 studies, including a total of 1276 lesions, the pooled difference in proportions of type Ⅲ curves (wash-out) between oestrogen receptor-positive and -negative cancers was not significant (95% confidence interval (CI): [−0.10, 0.03]). In nine studies, including a total of 1070 lesions, the pooled difference in proportions of type 3 curves between human epidermal growth factor receptor 2-positive and -negative cancers was significant (95% CI: [0.01, 0.14]). In six studies including a total of 622 lesions, the pooled difference in proportions of type 3 curves between the high and low Ki-67 groups was significant (95% CI: [0.17, 0.44]). However, the type 3 curve itself is a nonspecific finding in breast cancer. Many studies have examined the relationship between mean ADC and breast cancer subtypes; however, the ADC values overlapped significantly between subtypes. The heterogeneity of ADC using kurtosis or difference, diffusion tensor imaging parameters, and relaxation time was reported recently with promising results; however, current evidence is limited, and further studies are required to explore these potential applications.
Collapse
Affiliation(s)
- Toshiki Kazama
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
- Correspondence: ; Tel.: +81-463-93-1121
| | - Taro Takahara
- Department of Biomedical Engineering, Tokai University School of Engineering, Hiratsuka 259-1207, Japan;
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara 259-1193, Japan;
| |
Collapse
|
15
|
Wang S, Wang Z, Li R, You C, Mao N, Jiang T, Wang Z, Xie H, Gu Y. Association between quantitative and qualitative image features of contrast-enhanced mammography and molecular subtypes of breast cancer. Quant Imaging Med Surg 2022; 12:1270-1280. [PMID: 35111622 DOI: 10.21037/qims-21-589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/24/2021] [Indexed: 01/21/2023]
Abstract
Background The molecular subtype of breast cancer is one of the most important factors affecting patient prognosis. The study aimed to analyze the association between quantitative and qualitative features of contrast-enhanced mammography (CEM) images and breast cancer molecular subtypes. Methods This retrospective double-center study included women who underwent CEM between November 2017 and April 2020. Each patient had at least 1 malignant lesion confirmed by pathology. The CEM images were evaluated by 2 radiologists to obtain quantitative and qualitative image features. The molecular subtypes were studied as dichotomous outcomes, including luminal versus non-luminal, human epidermal growth factor receptor (HER2)-enriched versus non-HER2-enriched, and triple-negative breast cancer (TNBC) versus non-TNBC subtypes. The association between the image features and molecular subtypes was analyzed by multivariate logistic regression, with odds ratios (ORs) and 95% confidence intervals (CIs) provided. Results A total of 151 patients with 160 malignant lesions were included in the study. For quantitative features, a higher standard deviation of lesion density was associated with non-luminal (OR =0.88, 95% CI: 0.81 to 0.96, P=0.004) and HER2-enriched breast cancers (OR =1.16, 95% CI: 1.04 to 1.28, P=0.006). The relative degree of enhancement (RDE) and contrast-to-noise ratio (CNR) were not associated with molecular subtypes. However, a higher CNR/lesion size (OR =1.06, 95% CI: 1.01 to 1.12, P=0.012) was associated with luminal subtype cancers, and a higher RDE/lesion size (OR =0.94, 95% CI: 0.88 to 1.00, P=0.035) or a higher CNR/lesion size (OR =0.94, 95% CI: 0.88-1.00, P=0.038) was associated with non-TNBCs. For qualitative features, the presence of calcification was associated with HER2-enriched breast cancers (OR =2.91, 95% CI: 1.10 to 7.67, P=0.031). The presence of architectural distortion was associated with luminal cancer (OR =14.50, 95% CI: 1.91 to 110.14, P=0.010) and non-TNBC (OR =0.05, 95% CI: 0.00 to 0.43, P=0.022). Non-mass enhancement (OR =2.78, 95% CI: 1.08 to 7.14, P=0.033) was associated with HER2-enriched breast cancers. An association remained after adjustments for age, breast thickness, and breast density (all adjusted P<0.050). Conclusions The quantitative and qualitative imaging features of CEM could contribute to distinguishing breast cancer molecular subtypes.
Collapse
Affiliation(s)
- Simin Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Ruimin Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | - Tingting Jiang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongyi Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Ab Mumin N, Ramli Hamid MT, Wong JHD, Rahmat K, Ng KH. Magnetic Resonance Imaging Phenotypes of Breast Cancer Molecular Subtypes: A Systematic Review. Acad Radiol 2022; 29 Suppl 1:S89-S106. [PMID: 34481705 DOI: 10.1016/j.acra.2021.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) is the most sensitive imaging modality in detecting breast cancer. The purpose of this systematic review is to investigate the role of human extracted MRI phenotypes in classifying molecular subtypes of breast cancer. METHODS We performed a literature search of published articles on the application of MRI phenotypic features in invasive breast cancer molecular subtype classifications by radiologists' interpretation on Medline Complete, Pubmed, and Google scholar from 1st January 2000 to 31st March 2021. Of the 1453 literature identified, 42 fulfilled the inclusion criteria. RESULTS All studies were case-controlled, retrospective study and research-based. The majority of the studies assessed the MRI features using American College of Radiology- Breast Imaging Reporting and Data System (ACR-BIRADS) classification and using dynamic contrast-enhanced (DCE) kinetic features, Apparent Diffusion Coefficient (ADC) values, and T2 sequence. Most studies divided invasive breast cancer into 4 main subtypes, luminal A, luminal B, HER2, and triple-negative (TN) cancers, and used 2 readers. We present a summary of the radiologists' extracted breast MRI phenotypical features and their correlating breast cancer subtypes classifications. The characteristic features are morphology, enhancement kinetics, and T2 signal intensity. We found that the TN subtype has the most distinctive MRI features compared to the other subtypes and luminal A and B have many similar features. CONCLUSION The MRI features which are predictive of each subtype are the morphology, internal enhancement features, and T2 signal intensity, predominantly between TN and the rest. Radiologists' visual interpretation of some of MRI features may offer insight into the respective invasive breast cancer molecular subtype. However, current evidence are still limited to "suggestive" features instead of a diagnostic standard. Further research is recommended to explore this potential application, for example, by augmentation of radiologists' visual interpretation by artificial intelligence.
Collapse
|
17
|
Abstract
This article gives a brief overview of the development of artificial intelligence in clinical breast imaging. For multiple decades, artificial intelligence (AI) methods have been developed and translated for breast imaging tasks such as detection, diagnosis, and assessing response to therapy. As imaging modalities arise to support breast cancer screening programs and diagnostic examinations, including full-field digital mammography, breast tomosynthesis, ultrasound, and MRI, AI techniques parallel the efforts with more complex algorithms, faster computers, and larger data sets. AI methods include human-engineered radiomics algorithms and deep learning methods. Examples of these AI-supported clinical tasks are given along with commentary on the future.
Collapse
Affiliation(s)
- Qiyuan Hu
- Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Avenue, MC2026, Chicago, IL 60637, USA
| | - Maryellen L Giger
- Committee on Medical Physics, Department of Radiology, The University of Chicago, 5841 S Maryland Avenue, MC2026, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
[Multimodal, multiparametric and genetic breast imaging]. Radiologe 2021; 61:183-191. [PMID: 33464404 DOI: 10.1007/s00117-020-00801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
CLINICAL/METHODOLOGICAL ISSUE Multiparametric magnetic resonance imaging (MRI) aims to visualize and quantify biological, physiological and pathological processes at the cellular and molecular level and provides valuable information about key processes in cancer development and progression. "Omics" strategies (genomics, transcriptomics, proteomics, metabolomics) have many uses in oncology. STANDARD RADIOLOGICAL METHODS Multiparametric MRI of the breast currently includes T2-weighted, diffusion-weighted and dynamic contrast-enhanced MRI (DCE-MRI) METHODOLOGICAL INNOVATIONS: Additional parameters such as proton magetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), blood oxygen level-dependent (BOLD), hyperpolarized (HP) MRI or lipid MRS are currently being developed and are being evaluated in breast cancer diagnostics. ACHIEVEMENTS Radiogenomics is a new direction in medical science that has been made possible by significant advances in imaging and image analysis methods, as well as the development of techniques to extract and correlate various imaging parameters with "omics" data. The aim of radiogenomics is to correlate imaging characteristics (phenotypes) with gene expression patterns, gene mutations and other genome-associated properties and is the evolution of the correlation between radiology and pathology from the anatomical-histological to the molecular level. Quantitative and qualitative imaging biomarkers provide insights into the complex tumor biology. Initial results suggest that radiogemics will play an important role in the diagnosis, prognosis, and treatment of breast cancer. PRACTICAL RECOMMENDATIONS This article provides an overview of the current state of radiogenomics of the breast and future applications and challenges.
Collapse
|
19
|
|
20
|
Moffa G, Galati F, Collalunga E, Rizzo V, Kripa E, D’Amati G, Pediconi F. Can MRI Biomarkers Predict Triple-Negative Breast Cancer? Diagnostics (Basel) 2020; 10:diagnostics10121090. [PMID: 33333733 PMCID: PMC7765199 DOI: 10.3390/diagnostics10121090] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to investigate MRI features of triple-negative breast cancer (TNBC) compared with non-TNBC, to predict histopathological results. In the study, 26 patients with TNBC and 24 with non-TNBC who underwent multiparametric MRI of the breast on a 3 T magnet over a 10-months period were retrospectively recruited. MR imaging sets were evaluated by two experienced breast radiologists in consensus and classified according to the 2013 American College of Radiology (ACR) BI-RADS lexicon. The comparison between the two groups was performed using the Chi-square test and followed by logistic regression analyses. We found that 92% of tumors presented as mass enhancements (p = 0.192). 41.7% of TNBC and 86.4% of non-TNBC had irregular shape (p = 0.005); 58.3% of TNBC showed circumscribed margins, compared to 9.1% of non-TNBC masses (p = 0.001); 75% of TNBC and 9.1% of non-TNBC showed rim enhancement (p < 0.001). Intralesional necrosis was significantly associated with TNBC (p = 0.016). Rim enhancement and intralesional necrosis risulted to be positive predictors at univariate analysis (OR = 29.86, and 8.10, respectively) and the multivariate analysis confirmed that rim enhancement is independently associated with TNBC (OR = 33.08). The mean ADC values were significantly higher for TNBC (p = 0.011). In conclusion, TNBC is associated with specific MRI features that can be possible predictors of pathological results, with a consequent prognostic value.
Collapse
Affiliation(s)
- Giuliana Moffa
- Correspondence: ; Tel.: +39-06-4455602; Fax: +39-06-490243
| | | | | | | | | | | | | |
Collapse
|
21
|
Contrast-enhanced cone beam breast CT features of breast cancers: correlation with immunohistochemical receptors and molecular subtypes. Eur Radiol 2020; 31:2580-2589. [PMID: 33009590 DOI: 10.1007/s00330-020-07277-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate the association of contrast-enhanced cone beam breast CT (CE-CBBCT) features, immunohistochemical (IHC) receptors, and molecular subtypes in breast cancer. METHODS In this retrospective study, patients who underwent preoperative CE-CBBCT and received complete IHC results were analyzed. CE-CBBCT features were evaluated by two radiologists. Observer reproducibility and feature reliability were assessed. The association between CE-CBBCT features, IHC receptors, and molecular subtypes was analyzed using the chi-square, Mann-Whitney, and Kruskal-Wallis tests. Multivariate logistic regression was performed to assess the ability of combined imaging features to discriminate molecular subtypes. ROC curve was used to evaluate prediction performance. RESULTS A total of 240 invasive cancers identified in 211 women were enrolled. Molecular subtypes of breast cancer were significantly associated with focality number of lesions, lesion type, tumor size, lesion density, internal enhancement pattern, degree of lesion enhancement (ΔHU), mass shape, spiculation, calcifications, calcification distribution, and increased peripheral vascularity of lesion (all p < 0.005), some of which also helped to differentiate IHC receptor status. A multivariate logistic regression model showed that tumor size (odds ratio, OR = 1.244), mass shape (OR = 0.311), spiculation (OR = 0.159), and internal enhancement pattern (OR = 0.227) were associated with differentiation between luminal and non-luminal subtypes (AUC = 0.809). Combined CE-CBBCT features, including lesion type (OR = 0.118), calcifications (OR = 0.181), and ΔHU (OR = 0.962), could be significant indicators of triple-negative versus HER-2-enriched subtypes (AUC = 0.913). CONCLUSIONS CE-CBBCT features have the potential to help predict IHC receptor status and distinguish molecular subtypes of breast cancer, which could in turn help to develop individual treatment decisions and prognosis predictions. KEY POINTS • A total of 11 CE-CBBCT features were associated with molecular subtypes, some of which also helped to differentiate IHC receptor status. • Tumor size, irregular mass shape, spiculation, and internal enhancement pattern could help identify luminal subtype. • Lesion type, calcification, and ΔHU could be significant indicators of HER-2- enriched versus triple-negative breast cancers.
Collapse
|
22
|
Orlando A, Dimarco M, Cannella R, Bartolotta TV. Breast dynamic contrast-enhanced-magnetic resonance imaging and radiomics: State of art. Artif Intell Med Imaging 2020; 1:6-18. [DOI: 10.35711/aimi.v1.i1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer represents the most common malignancy in women, being one of the most frequent cause of cancer-related mortality. Ultrasound, mammography, and magnetic resonance imaging (MRI) play a pivotal role in the diagnosis of breast lesions, with different levels of accuracy. Particularly, dynamic contrast-enhanced MRI has shown high diagnostic value in detecting multifocal, multicentric, or contralateral breast cancers. Radiomics is emerging as a promising tool for quantitative tumor evaluation, allowing the extraction of additional quantitative data from radiological imaging acquired with different modalities. Radiomics analysis may provide novel information through the quantification of lesions heterogeneity, that may be relevant in clinical practice for the characterization of breast lesions, prediction of tumor response to systemic therapies and evaluation of prognosis in patients with breast cancers. Several published studies have explored the value of radiomics with good-to-excellent diagnostic and prognostic performances for the evaluation of breast lesions. Particularly, the integrations of radiomics data with other clinical and histopathological parameters have demonstrated to improve the prediction of tumor aggressiveness with high accuracy and provided precise models that will help to guide clinical decisions and patients management. The purpose of this article in to describe the current application of radiomics in breast dynamic contrast-enhanced MRI.
Collapse
Affiliation(s)
- Alessia Orlando
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Mariangela Dimarco
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Roberto Cannella
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Tommaso Vincenzo Bartolotta
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
- Department of Radiology, Fondazione Istituto Giuseppe Giglio, Ct.da Pietrapollastra, Palermo 90015, Italy
| |
Collapse
|
23
|
Preliminary study on discriminating HER2 2+ amplification status of breast cancers based on texture features semi-automatically derived from pre-, post-contrast, and subtraction images of DCE-MRI. PLoS One 2020; 15:e0234800. [PMID: 32555662 PMCID: PMC7299320 DOI: 10.1371/journal.pone.0234800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
Objective To investigate whether texture features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are associated with human epidermal growth factor receptor type 2 (HER2) 2+ status of breast cancer. Materials and methods 92 MRI cases including 52 HER2 2+ positive and 40 negative patients confirmed by fluorescence in situ hybridization were retrospectively selected. The lesion area was semi-automatically delineated, and a total of 488 texture features were respectively extracted from precontrast, postcontrast, and subtraction images. The Student’s t-test or Mann-Whitney U test was performed to identify statistically significant features between different HER2 2+ amplification groups. Least absolute shrinkage and selection operator (LASSO) was used to search for the optimal feature subsets. Three machine learning classifiers, logistic regression analysis (LRA), quadratic discriminant analysis (QDA), and support vector machine (SVM), were used with a leave-one-out cross validation method to establish the classification models of HER2 2+ status. Classification performance was evaluated by receiver operating characteristic (ROC) analysis. Results Based on the texture analysis with SVM model, the areas under the ROC curve (AUCs) were 0.890 for subtraction images, 0.736 for postcontrast images, and 0.672 for precontrast images, respectively. For LRA model, the AUCs were 0.884, 0.733, and 0.623, respectively. For QDA model, the AUCs were 0.831, 0.726, and 0.568, respectively. LRA and the SVM model with subtraction images reached significantly better performance than the QDA model (P = 0.0227 and P = 0.0088, respectively). Conclusion Texture features of breast cancer extracted from DCE-MRI are associated with HER2 2+ status. Additional studies are necessary to confirm the present preliminary findings.
Collapse
|
24
|
Formes précoces des cancers du sein en fonction des différents sous-types moléculaires: présentations en imagerie. IMAGERIE DE LA FEMME 2020. [DOI: 10.1016/j.femme.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Lo Gullo R, Daimiel I, Morris EA, Pinker K. Combining molecular and imaging metrics in cancer: radiogenomics. Insights Imaging 2020; 11:1. [PMID: 31901171 PMCID: PMC6942081 DOI: 10.1186/s13244-019-0795-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background Radiogenomics is the extension of radiomics through the combination of genetic and radiomic data. Because genetic testing remains expensive, invasive, and time-consuming, and thus unavailable for all patients, radiogenomics may play an important role in providing accurate imaging surrogates which are correlated with genetic expression, thereby serving as a substitute for genetic testing. Main body In this article, we define the meaning of radiogenomics and the difference between radiomics and radiogenomics. We provide an up-to-date review of the radiomics and radiogenomics literature in oncology, focusing on breast, brain, gynecological, liver, kidney, prostate and lung malignancies. We also discuss the current challenges to radiogenomics analysis. Conclusion Radiomics and radiogenomics are promising to increase precision in diagnosis, assessment of prognosis, and prediction of treatment response, providing valuable information for patient care throughout the course of the disease, given that this information is easily obtainable with imaging. Larger prospective studies and standardization will be needed to define relevant imaging biomarkers before they can be implemented into the clinical workflow.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA.
| | - Isaac Daimiel
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA.,Department of Biomedical Imaging and Image-guided Therapy, Molecular and Gender Imaging Service, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Wien, Austria
| |
Collapse
|
26
|
Leithner D, Horvat JV, Marino MA, Bernard-Davila B, Jochelson MS, Ochoa-Albiztegui RE, Martinez DF, Morris EA, Thakur S, Pinker K. Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results. Breast Cancer Res 2019; 21:106. [PMID: 31514736 PMCID: PMC6739929 DOI: 10.1186/s13058-019-1187-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To evaluate the diagnostic performance of radiomic signatures extracted from contrast-enhanced magnetic resonance imaging (CE-MRI) for the assessment of breast cancer receptor status and molecular subtypes. METHODS One hundred and forty-three patients with biopsy-proven breast cancer who underwent CE-MRI at 3 T were included in this IRB-approved HIPAA-compliant retrospective study. The training dataset comprised 91 patients (luminal A, n = 49; luminal B, n = 8; HER2-enriched, n = 11; triple negative, n = 23), while the validation dataset comprised 52 patients from a second institution (luminal A, n = 17; luminal B, n = 17; triple negative, n = 18). Radiomic analysis of manually segmented tumors included calculation of features derived from the first-order histogram (HIS), co-occurrence matrix (COM), run-length matrix (RLM), absolute gradient (GRA), autoregressive model (ARM), discrete Haar wavelet transform (WAV), and lesion geometry (GEO). Fisher, probability of error and average correlation (POE + ACC), and mutual information coefficients were used for feature selection. Linear discriminant analysis followed by k-nearest neighbor classification (with leave-one-out cross-validation) was used for pairwise radiomic-based separation of receptor status and molecular subtypes. Histopathology served as the standard of reference. RESULTS In the training dataset, radiomic signatures yielded the following accuracies > 80%: luminal B vs. luminal A, 84.2% (mainly based on COM features); luminal B vs. triple negative, 83.9% (mainly based on GEO features); luminal B vs. all others, 89% (mainly based on COM features); and HER2-enriched vs. all others, 81.3% (mainly based on COM features). Radiomic signatures were successfully validated in the separate validation dataset for luminal A vs. luminal B (79.4%) and luminal B vs. triple negative (77.1%). CONCLUSIONS In this preliminary study, radiomic signatures with CE-MRI enable the assessment of breast cancer receptor status and molecular subtypes with high diagnostic accuracy. These results need to be confirmed in future larger studies.
Collapse
Affiliation(s)
- Doris Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA.,Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Joao V Horvat
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Maria Adele Marino
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA.,Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Blanca Bernard-Davila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maxine S Jochelson
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - R Elena Ochoa-Albiztegui
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Danny F Martinez
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA
| | - Sunitha Thakur
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, New York, NY, 10065, USA. .,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Leithner D, Horvat JV, Ochoa-Albiztegui RE, Thakur S, Wengert G, Morris EA, Helbich TH, Pinker K. Imaging and the completion of the omics paradigm in breast cancer. Radiologe 2019; 58:7-13. [PMID: 29947931 PMCID: PMC6244523 DOI: 10.1007/s00117-018-0409-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Within the field of oncology, “omics” strategies—genomics, transcriptomics, proteomics, metabolomics—have many potential applications and may significantly improve our understanding of the underlying processes of cancer development and progression. Omics strategies aim to develop meaningful imaging biomarkers for breast cancer (BC) by rapid assessment of large datasets with different biological information. In BC the paradigm of omics technologies has always favored the integration of multiple layers of omics data to achieve a complete portrait of BC. Advances in medical imaging technologies, image analysis, and the development of high-throughput methods that can extract and correlate multiple imaging parameters with “omics” data have ushered in a new direction in medical research. Radiogenomics is a novel omics strategy that aims to correlate imaging characteristics (i. e., the imaging phenotype) with underlying gene expression patterns, gene mutations, and other genome-related characteristics. Radiogenomics not only represents the evolution in the radiology–pathology correlation from the anatomical–histological level to the molecular level, but it is also a pivotal step in the omics paradigm in BC in order to fully characterize BC. Armed with modern analytical software tools, radiogenomics leads to new discoveries of quantitative and qualitative imaging biomarkers that offer hitherto unprecedented insights into the complex tumor biology and facilitate a deeper understanding of cancer development and progression. The field of radiogenomics in breast cancer is rapidly evolving, and results from previous studies are encouraging. It can be expected that radiogenomics will play an important role in the future and has the potential to revolutionize the diagnosis, treatment, and prognosis of BC patients. This article aims to give an overview of breast radiogenomics, its current role, future applications, and challenges.
Collapse
Affiliation(s)
- D Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - J V Horvat
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
| | - R E Ochoa-Albiztegui
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
| | - S Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
| | - G Wengert
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University Vienna, Vienna, Austria
| | - E A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA
| | - T H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University Vienna, Vienna, Austria
| | - K Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, 7th Floor, 10065, New York, NY, USA.
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on MRI. J Magn Reson Imaging 2019; 51:1310-1324. [PMID: 31343790 DOI: 10.1002/jmri.26878] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Advances in both imaging and computers have led to the rise in the potential use of artificial intelligence (AI) in various tasks in breast imaging, going beyond the current use in computer-aided detection to include diagnosis, prognosis, response to therapy, and risk assessment. The automated capabilities of AI offer the potential to enhance the diagnostic expertise of clinicians, including accurate demarcation of tumor volume, extraction of characteristic cancer phenotypes, translation of tumoral phenotype features to clinical genotype implications, and risk prediction. The combination of image-specific findings with the underlying genomic, pathologic, and clinical features is becoming of increasing value in breast cancer. The concurrent emergence of newer imaging techniques has provided radiologists with greater diagnostic tools and image datasets to analyze and interpret. Integrating an AI-based workflow within breast imaging enables the integration of multiple data streams into powerful multidisciplinary applications that may lead the path to personalized patient-specific medicine. In this article we describe the goals of AI in breast cancer imaging, in particular MRI, and review the literature as it relates to the current application, potential, and limitations in breast cancer. Level of Evidence: 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:1310-1324.
Collapse
Affiliation(s)
- Deepa Sheth
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Maryellen L Giger
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
29
|
Wu M, Zhong X, Peng Q, Xu M, Huang S, Yuan J, Ma J, Tan T. Prediction of molecular subtypes of breast cancer using BI-RADS features based on a "white box" machine learning approach in a multi-modal imaging setting. Eur J Radiol 2019; 114:175-184. [PMID: 31005170 DOI: 10.1016/j.ejrad.2019.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To develop and validate an interpretable and repeatable machine learning model approach to predict molecular subtypes of breast cancer from clinical metainformation together with mammography and MRI images. METHODS We retrospectively assessed 363 breast cancer cases (Luminal A 151, Luminal B 96, HER2 76, and BLBC 40). Eighty-two features defined in the BI-RADS lexicon were visually described. A decision tree model with the Chi-squared automatic interaction detector (CHAID) algorithm was applied for feature selection and classification. A 10-fold cross-validation was performed to investigate the performance (i.e., accuracy, positive predictive value, sensitivity, and F1-score) of the decision tree model. RESULTS Seven of the 82 variables were derived from the decision tree-based feature selection and used as features for the classification of molecular subtypes including mass margin calcification on mammography, mass margin types of kinetic curves in the delayed phase, mass internal enhancement characteristics, non-mass enhancement distribution on MRI, and breastfeeding history. The decision tree model accuracy was 74.1%. For each molecular subtype group, Luminal A achieved a sensitivity, positive predictive value, and F1-score of 79.47%, 75.47%, and 77.42%, respectively; Luminal B showed a sensitivity, positive predictive value, and F1-score of 64.58%, 55.86%, and 59.90%, respectively; HER2 had a sensitivity, positive predictive value, and F1-scores of 81.58%, 95.38%, and 87.94%, respectively; BLBC showed sensitivity, positive predictive value, and F1-scores of 62.50%, 89.29%, and 73.53%, respectively. CONCLUSIONS We applied a complete "white box" machine learning method to predict the molecular subtype of breast cancer based on the BI-RADS feature description in a multi-modal setting. By combining BI-RADS features in both mammography and MRI, the prediction accuracy is boosted and robust. The proposed method can be easily applied widely regardless of variability of imaging vendors and settings because of the applicability and acceptance of the BI-RADS.
Collapse
Affiliation(s)
- Mingxiang Wu
- Department of Radiology, Shenzhen People's Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Xiaoling Zhong
- Department of Radiology, Shenzhen People's Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Quanzhou Peng
- Department of Pathology, Shenzhen People's Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Mei Xu
- Department of Radiology, Shenzhen People's Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Shelei Huang
- Department of Radiology, Shenzhen People's Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Jialin Yuan
- Department of Radiology, Shenzhen People's Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Jie Ma
- Department of Radiology, Shenzhen People's Hospital, No.1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China.
| | - Tao Tan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
30
|
Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision Medicine and Radiogenomics in Breast Cancer: New Approaches toward Diagnosis and Treatment. Radiology 2018; 287:732-747. [PMID: 29782246 DOI: 10.1148/radiol.2018172171] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Precision medicine is medicine optimized to the genotypic and phenotypic characteristics of an individual and, when present, his or her disease. It has a host of targets, including genes and their transcripts, proteins, and metabolites. Studying precision medicine involves a systems biology approach that integrates mathematical modeling and biology genomics, transcriptomics, proteomics, and metabolomics. Moreover, precision medicine must consider not only the relatively static genetic codes of individuals, but also the dynamic and heterogeneous genetic codes of cancers. Thus, precision medicine relies not only on discovering identifiable targets for treatment and surveillance modification, but also on reliable, noninvasive methods of identifying changes in these targets over time. Imaging via radiomics and radiogenomics is poised for a central role. Radiomics, which extracts large volumes of quantitative data from digital images and amalgamates these together with clinical and patient data into searchable shared databases, potentiates radiogenomics, which is the combination of genetic and radiomic data. Radiogenomics may provide voxel-by-voxel genetic information for a complete, heterogeneous tumor or, in the setting of metastatic disease, set of tumors and thereby guide tailored therapy. Radiogenomics may also quantify lesion characteristics, to better differentiate between benign and malignant entities, and patient characteristics, to better stratify patients according to risk for disease, thereby allowing for more precise imaging and screening. This report provides an overview of precision medicine and discusses radiogenomics specifically in breast cancer. © RSNA, 2018.
Collapse
Affiliation(s)
- Katja Pinker
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Joanne Chin
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Amy N Melsaether
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Elizabeth A Morris
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Linda Moy
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| |
Collapse
|
31
|
Saha A, Harowicz MR, Mazurowski MA. Breast cancer MRI radiomics: An overview of algorithmic features and impact of inter-reader variability in annotating tumors. Med Phys 2018; 45:3076-3085. [PMID: 29663411 DOI: 10.1002/mp.12925] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To review features used in MRI radiomics of breast cancer and study the inter-reader stability of the features. METHODS We implemented 529 algorithmic features that can be extracted from tumor and fibroglandular tissue (FGT) in breast MRIs. The features were identified based on a review of the existing literature with consideration of their usage, prognostic ability, and uniqueness. The set was then extended so that it comprehensively describes breast cancer imaging characteristics. The features were classified into 10 groups based on the type of data used to extract them and the type of calculation being performed. For the assessment of inter-reader variability, four fellowship-trained readers annotated tumors on preoperative dynamic contrast-enhanced MRIs for 50 breast cancer patients. Based on the annotations, an algorithm automatically segmented the image and extracted all features resulting in one set of features for each reader. For a given feature, the inter-reader stability was defined as the intraclass correlation coefficient (ICC) computed using the feature values obtained through all readers for all cases. RESULTS The average inter-reader stability for all features was 0.8474 (95% CI: 0.8068-0.8858). The mean inter-reader stability was lower for tumor-based features (0.6348, 95% CI: 0.5391-0.7257) than FGT-based features (0.9984, 95% CI: 0.9970-0.9992). The feature group with the highest inter-reader stability quantifies breast and FGT volume. The feature group with the lowest inter-reader stability quantifies variations in tumor enhancement. CONCLUSIONS Breast MRI radiomics features widely vary in terms of their stability in the presence of inter-reader variability. Appropriate measures need to be taken for reducing this variability in tumor-based radiomics.
Collapse
Affiliation(s)
- Ashirbani Saha
- Department of Radiology, Duke University School of Medicine, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA
| | - Michael R Harowicz
- Department of Radiology, Duke University School of Medicine, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA
| | - Maciej A Mazurowski
- Department of Radiology, Duke University School of Medicine, 2424 Erwin Road, Suite 302, Durham, NC, 27705, USA.,Department of Electrical and Computer Engineering, Duke University, Box 90291, Durham, NC, 27708, USA.,Duke University Medical Physics Program, DUMC 2729, 2424 Erwin Road, Suite 101, Durham, NC, 27705, USA
| |
Collapse
|