1
|
Richert W, Korzeniewski K. The Use of Dried Matrix Spots as an Alternative Sampling Technique for Monitoring Neglected Tropical Diseases. Pathogens 2024; 13:734. [PMID: 39338925 PMCID: PMC11435323 DOI: 10.3390/pathogens13090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Neglected tropical diseases (NTDs) are a group of illnesses which usually present with a chronic clinical picture. NTDs can lead to permanent disability and are often associated with social stigma. In many developing countries where NTDs are endemic, there are no diagnostic tools for the safe storage and transport of biological samples, and there are no specialist diagnostic centers where the samples could be processed. The transport of biological samples (blood, urine) collected in field conditions and brought to laboratories located in developed countries requires the maintenance of the cold chain during transportation. Ensuring temperature control during transport could be problematic or even impossible to achieve; it is also expensive. A helpful solution to this problem is to use the dried matrix spot (DMS) technique, which seems to be a reliable method for collecting biological samples to be used for screening purposes and conducting epidemiological surveillance of NTDs in developing countries. This article is an overview of how DMSs can be used in the diagnosis of most neglected tropical diseases.
Collapse
Affiliation(s)
| | - Krzysztof Korzeniewski
- Department of Epidemiology and Tropical Medicine, Military Institute of Medicine-National Research Institute, 128 Szaserów St., 04-141 Warsaw, Poland;
| |
Collapse
|
2
|
N'Djetchi MK, Camara O, Koffi M, Camara M, Kaba D, Kaboré J, Tall A, Rotureau B, Glover L, Traoré MB, Koné M, Coulibaly B, Adingra GP, Soumah A, Gassama M, Camara AD, Compaoré CFA, Camara A, Boiro S, Anton EP, Bessell P, Van Reet N, Bucheton B, Jamonneau V, Bart JM, Solano P, Biéler S, Lejon V. Specificity of serological screening tests and reference laboratory tests to diagnose gambiense human African trypanosomiasis: a prospective clinical performance study. Infect Dis Poverty 2024; 13:53. [PMID: 38978124 PMCID: PMC11229219 DOI: 10.1186/s40249-024-01220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Serological screening tests play a crucial role to diagnose gambiense human African trypanosomiasis (gHAT). Presently, they preselect individuals for microscopic confirmation, but in future "screen and treat" strategies they will identify individuals for treatment. Variability in reported specificities, the development of new rapid diagnostic tests (RDT) and the hypothesis that malaria infection may decrease RDT specificity led us to evaluate the specificity of 5 gHAT screening tests. METHODS During active screening, venous blood samples from 1095 individuals from Côte d'Ivoire and Guinea were tested consecutively with commercial (CATT, HAT Sero-K-SeT, Abbott Bioline HAT 2.0) and prototype (DCN HAT RDT, HAT Sero-K-SeT 2.0) gHAT screening tests and with a malaria RDT. Individuals with ≥ 1 positive gHAT screening test underwent microscopy and further immunological (trypanolysis with T.b. gambiense LiTat 1.3, 1.5 and 1.6; indirect ELISA/T.b. gambiense; T.b. gambiense inhibition ELISA with T.b. gambiense LiTat 1.3 and 1.5 VSG) and molecular reference laboratory tests (PCR TBRN3, 18S and TgsGP; SHERLOCK 18S Tids, 7SL Zoon, and TgsGP; Trypanozoon S2-RT-qPCR 18S2, 177T, GPI-PLC and TgsGP in multiplex; RT-qPCR DT8, DT9 and TgsGP in multiplex). Microscopic trypanosome detection confirmed gHAT, while other individuals were considered gHAT free. Differences in fractions between groups were assessed by Chi square and differences in specificity between 2 tests on the same individuals by McNemar. RESULTS One gHAT case was diagnosed. Overall test specificities (n = 1094) were: CATT 98.9% (95% CI: 98.1-99.4%); HAT Sero-K-SeT 86.7% (95% CI: 84.5-88.5%); Bioline HAT 2.0 82.1% (95% CI: 79.7-84.2%); DCN HAT RDT 78.2% (95% CI: 75.7-80.6%); and HAT Sero-K-SeT 2.0 78.4% (95% CI: 75.9-80.8%). In malaria positives, gHAT screening tests appeared less specific, but the difference was significant only in Guinea for Abbott Bioline HAT 2.0 (P = 0.03) and HAT Sero-K-Set 2.0 (P = 0.0006). The specificities of immunological and molecular laboratory tests in gHAT seropositives were 98.7-100% (n = 399) and 93.0-100% (n = 302), respectively. Among 44 reference laboratory test positives, only the confirmed gHAT patient and one screening test seropositive combined immunological and molecular reference laboratory test positivity. CONCLUSIONS Although a minor effect of malaria cannot be excluded, gHAT RDT specificities are far below the 95% minimal specificity stipulated by the WHO target product profile for a simple diagnostic tool to identify individuals eligible for treatment. Unless specificity is improved, an RDT-based "screen and treat" strategy would result in massive overtreatment. In view of their inconsistent results, additional comparative evaluations of the diagnostic performance of reference laboratory tests are indicated for better identifying, among screening test positives, those at increased suspicion for gHAT. TRIAL REGISTRATION The trial was retrospectively registered under NCT05466630 in clinicaltrials.gov on July 15 2022.
Collapse
Affiliation(s)
- Martial Kassi N'Djetchi
- Laboratory of Biodiversity and Ecosystem Management, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| | - Oumou Camara
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | - Mathurin Koffi
- Laboratory of Biodiversity and Ecosystem Management, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| | - Mamadou Camara
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | - Dramane Kaba
- Trypanosomosis Research Unit, Pierre Richet Institute, Bouaké, Côte d'Ivoire
| | - Jacques Kaboré
- International Research and Development Centre on Livestock in Subhumid Zones, Bobo-Dioulasso, Burkina Faso
| | - Alkali Tall
- National Program for Malaria Control, Conakry, Guinea
| | - Brice Rotureau
- Parasitology Unit, Institut Pasteur de Guinée, Conakry, Guinea
| | - Lucy Glover
- Trypanosome Molecular Biology Unit, Department of Parasites and Insect Vectors, Pasteur Institute, Paris Cité University, Paris, France
| | - Mélika Barkissa Traoré
- Laboratory of Biodiversity and Ecosystem Management, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| | - Minayegninrin Koné
- Laboratory of Biodiversity and Ecosystem Management, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| | - Bamoro Coulibaly
- Trypanosomosis Research Unit, Pierre Richet Institute, Bouaké, Côte d'Ivoire
| | - Guy Pacome Adingra
- Trypanosomosis Research Unit, Pierre Richet Institute, Bouaké, Côte d'Ivoire
| | - Aissata Soumah
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | - Mohamed Gassama
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | - Abdoulaye Dansy Camara
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
| | | | - Aïssata Camara
- Parasitology Unit, Institut Pasteur de Guinée, Conakry, Guinea
| | - Salimatou Boiro
- Parasitology Unit, Institut Pasteur de Guinée, Conakry, Guinea
| | - Elena Perez Anton
- Trypanosome Molecular Biology Unit, Department of Parasites and Insect Vectors, Pasteur Institute, Paris Cité University, Paris, France
| | | | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bruno Bucheton
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France
| | - Vincent Jamonneau
- Trypanosomosis Research Unit, Pierre Richet Institute, Bouaké, Côte d'Ivoire
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France
| | - Jean-Mathieu Bart
- National Program for Neglected Tropical Disease Control, Patient Management, Ministry of Health, Conakry, Guinea
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France
| | - Philippe Solano
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France
| | - Sylvain Biéler
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Veerle Lejon
- Intertryp, IRD-CIRAD-University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Kaba D, Koffi M, Kouakou L, N’Gouan EK, Djohan V, Courtin F, N’Djetchi MK, Coulibaly B, Adingra GP, Berté D, Ta BTD, Koné M, Traoré BM, Sutherland SA, Crump RE, Huang CI, Madan J, Bessell PR, Barreaux A, Solano P, Crowley EH, Rock KS, Jamonneau V. Towards the sustainable elimination of gambiense human African trypanosomiasis in Côte d'Ivoire using an integrated approach. PLoS Negl Trop Dis 2023; 17:e0011514. [PMID: 37523361 PMCID: PMC10443840 DOI: 10.1371/journal.pntd.0011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/22/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Human African trypanosomiasis is a parasitic disease caused by trypanosomes among which Trypanosoma brucei gambiense is responsible for a chronic form (gHAT) in West and Central Africa. Its elimination as a public health problem (EPHP) was targeted for 2020. Côte d'Ivoire was one of the first countries to be validated by WHO in 2020 and this was particularly challenging as the country still reported around a hundred cases a year in the early 2000s. This article describes the strategies implemented including a mathematical model to evaluate the reporting results and infer progress towards sustainable elimination. METHODS The control methods used combined both exhaustive and targeted medical screening strategies including the follow-up of seropositive subjects- considered as potential asymptomatic carriers to diagnose and treat cases- as well as vector control to reduce the risk of transmission in the most at-risk areas. A mechanistic model was used to estimate the number of underlying infections and the probability of elimination of transmission (EoT) was met between 2000-2021 in two endemic and two hypo-endemic health districts. RESULTS Between 2015 and 2019, nine gHAT cases were detected in the two endemic health districts of Bouaflé and Sinfra in which the number of cases/10,000 inhabitants was far below 1, a necessary condition for validating EPHP. Modelling estimated a slow but steady decline in transmission across the health districts, bolstered in the two endemic health districts by the introduction of vector control. The decrease in underlying transmission in all health districts corresponds to a high probability that EoT has already occurred in Côte d'Ivoire. CONCLUSION This success was achieved through a multi-stakeholder and multidisciplinary one health approach where research has played a major role in adapting tools and strategies to this large epidemiological transition to a very low prevalence. This integrated approach will need to continue to reach the verification of EoT in Côte d'Ivoire targeted by 2025.
Collapse
Affiliation(s)
- Dramane Kaba
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Mathurin Koffi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Lingué Kouakou
- Programme National d’Élimination de la Trypanosomiase Humaine Africaine, Abidjan, Côte d’Ivoire
| | | | - Vincent Djohan
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Fabrice Courtin
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Martial Kassi N’Djetchi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Bamoro Coulibaly
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Guy Pacôme Adingra
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Djakaridja Berté
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Bi Tra Dieudonné Ta
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Minayégninrin Koné
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Barkissa Mélika Traoré
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Samuel A. Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Jason Madan
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Antoine Barreaux
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Philippe Solano
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Emily H. Crowley
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Vincent Jamonneau
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Camara O, Camara M, Falzon LC, Ilboudo H, Kaboré J, Compaoré CFA, Fèvre EM, Büscher P, Bucheton B, Lejon V. Performance of clinical signs and symptoms, rapid and reference laboratory diagnostic tests for diagnosis of human African trypanosomiasis by passive screening in Guinea: a prospective diagnostic accuracy study. Infect Dis Poverty 2023; 12:22. [PMID: 36941656 PMCID: PMC10026442 DOI: 10.1186/s40249-023-01076-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Passive diagnosis of human African trypanosomiasis (HAT) at the health facility level is a major component of HAT control in Guinea. We examined which clinical signs and symptoms are associated with HAT, and assessed the performance of selected clinical presentations, of rapid diagnostic tests (RDT), and of reference laboratory tests on dried blood spots (DBS) for diagnosing HAT in Guinea. METHOD The study took place in 14 health facilities in Guinea, where 2345 clinical suspects were tested with RDTs (HAT Sero-K-Set, rHAT Sero-Strip, and SD Bioline HAT). Seropositives underwent parasitological examination (reference test) to confirm HAT and their DBS were tested in indirect enzyme-linked immunoassay (ELISA)/Trypanosoma brucei gambiense, trypanolysis, Loopamp Trypanosoma brucei Detection kit (LAMP) and m18S quantitative PCR (qPCR). Multivariable regression analysis assessed association of clinical presentation with HAT. Sensitivity, specificity, positive and negative predictive values of key clinical presentations, of the RDTs and of the DBS tests for HAT diagnosis were determined. RESULTS The HAT prevalence, as confirmed parasitologically, was 2.0% (48/2345, 95% CI: 1.5-2.7%). Odds ratios (OR) for HAT were increased for participants with swollen lymph nodes (OR = 96.7, 95% CI: 20.7-452.0), important weight loss (OR = 20.4, 95% CI: 7.05-58.9), severe itching (OR = 45.9, 95% CI: 7.3-288.7) or motor disorders (OR = 4.5, 95% CI: 0.89-22.5). Presence of at least one of these clinical presentations was 75.6% (95% CI: 73.8-77.4%) specific and 97.9% (95% CI: 88.9-99.9%) sensitive for HAT. HAT Sero-K-Set, rHAT Sero-Strip, and SD Bioline HAT were respectively 97.5% (95% CI: 96.8-98.1%), 99.4% (95% CI: 99.0-99.7%) and 97.9% (95% CI: 97.2-98.4%) specific, and 100% (95% CI: 92.5-100.0%), 59.6% (95% CI: 44.3-73.3%) and 93.8% (95% CI: 82.8-98.7%) sensitive for HAT. The RDT's positive and negative predictive values ranged from 45.2-66.7% and 99.2-100% respectively. All DBS tests had specificities ≥ 92.9%. While LAMP and m18S qPCR sensitivities were below 50%, trypanolysis and ELISA/T.b. gambiense had sensitivities of 85.3% (95% CI: 68.9-95.0%) and 67.6% (95% CI: 49.5-82.6%). CONCLUSIONS Presence of swollen lymph nodes, important weight loss, severe itching or motor disorders are simple but accurate clinical criteria for HAT referral in HAT endemic areas in Guinea. Diagnostic performances of HAT Sero-K-Set and SD Bioline HAT are sufficient for referring positives to microscopy. Trypanolysis on DBS may discriminate HAT patients from false RDT positives. Trial registration The trial was registered under NCT03356665 in clinicaltrials.gov (November 29, 2017, retrospectively registered https://clinicaltrials.gov/ct2/show/NCT03356665 ).
Collapse
Affiliation(s)
- Oumou Camara
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinea
| | - Mamadou Camara
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinea
| | - Laura Cristina Falzon
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hamidou Ilboudo
- Clinical Research Unit of Nanoro, Institute for Health Science Research (IRSS), Ouagadougou, Burkina Faso
| | - Jacques Kaboré
- Vector-Borne Diseases and Biodiversity Unit, International Research and Development Center on Livestock in Sub-Humid Areas (CIRDES), Bobo-Dioulasso, Burkina Faso
- Unit of Research and Training in Life and Earth Sciences, University of Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Charlie Franck Alfred Compaoré
- Vector-Borne Diseases and Biodiversity Unit, International Research and Development Center on Livestock in Sub-Humid Areas (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Eric Maurice Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bruno Bucheton
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinea
- UMR Intertryp IRD-CIRAD, French National Research Institute for Sustainable Development (IRD), University of Montpellier, Montpellier, France
| | - Veerle Lejon
- UMR Intertryp IRD-CIRAD, French National Research Institute for Sustainable Development (IRD), University of Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Compaoré CFA, Kaboré J, Ilboudo H, Thomas LF, Falzon LC, Bamba M, Sakande H, Koné M, Kaba D, Bougouma C, Adama I, Amathe O, Belem AMG, Fèvre EM, Büscher P, Lejon V, Jamonneau V. Monitoring the elimination of gambiense human African trypanosomiasis in the historical focus of Batié, South-West Burkina Faso. Parasite 2022; 29:25. [PMID: 35543528 PMCID: PMC9093133 DOI: 10.1051/parasite/2022024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
The World Health Organisation has targeted the elimination of human African trypanosomiasis (HAT) as zero transmission by 2030. Continued surveillance needs to be in place for early detection of re-emergent cases. In this context, the performance of diagnostic tests and testing algorithms for detection of the re-emergence of Trypanosoma brucei gambiense HAT remains to be assessed. We carried out a door-to-door active medical survey for HAT in the historical focus of Batié, South–West Burkina Faso. Screening was done using three rapid diagnostic tests (RDTs). Two laboratory tests (ELISA/T. b. gambiense and immune trypanolysis) and parasitological examination were performed on RDT positives only. In total, 5883 participants were screened, among which 842 (14%) tested positive in at least one RDT. Blood from 519 RDT positives was examined microscopically but no trypanosomes were observed. The HAT Sero-K-Set test showed the lowest specificity of 89%, while the specificities of SD Bioline HAT and rHAT Sero-Strip were 92% and 99%, respectively. The specificity of ELISA/T. b. gambiense and trypanolysis was 99% (98–99%) and 100% (99–100%), respectively. Our results suggest that T. b. gambiense is no longer circulating in the study area and that zero transmission has probably been attained. While a least cost analysis is still required, our study showed that RDT preselection followed by trypanolysis may be a useful strategy for post-elimination surveillance in Burkina Faso.
Collapse
Affiliation(s)
- Charlie Franck Alfred Compaoré
- Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, Unité de recherche sur les maladies à vecteurs et biodiversité, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso - Université Nazi Boni, Unité de Formation et de Recherche Sciences et Techniques, 01 BP 1091 Bobo-Dioulasso, Burkina-Faso
| | - Jacques Kaboré
- Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, Unité de recherche sur les maladies à vecteurs et biodiversité, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso - Université Nazi Boni, Unité de Formation et de Recherche Sciences et Techniques, 01 BP 1091 Bobo-Dioulasso, Burkina-Faso
| | - Hamidou Ilboudo
- Institut de Recherche en Sciences de la Santé, Unité de Recherche Clinique de Nanoro, 11 BP 218 Ouagadougou CMS 11, Burkina Faso
| | - Lian Francesca Thomas
- International Livestock Research Institute, PO Box 30709, Nairobi 00100, Kenya - University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool L69 3BX, United Kingdom
| | - Laura Cristina Falzon
- International Livestock Research Institute, PO Box 30709, Nairobi 00100, Kenya - University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool L69 3BX, United Kingdom
| | - Mohamed Bamba
- Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, Unité de recherche sur les maladies à vecteurs et biodiversité, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | - Hassane Sakande
- Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, Unité de recherche sur les maladies à vecteurs et biodiversité, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | - Minayégninrin Koné
- Institut Pierre Richet, Unité de Recherche et de Formation Trypanosomoses et Leishmanioses, 01 BP 1500 Bouake, Côte d'Ivoire
| | - Dramane Kaba
- Institut Pierre Richet, Unité de Recherche et de Formation Trypanosomoses et Leishmanioses, 01 BP 1500 Bouake, Côte d'Ivoire
| | - Clarisse Bougouma
- Programme National de Lutte contre les Maladies Tropicales Négligées, 03 BP 7009 Ouagadougou 03, Burkina Faso
| | - Ilboudo Adama
- Programme National de Lutte contre les Maladies Tropicales Négligées, 03 BP 7009 Ouagadougou 03, Burkina Faso
| | - Ouedraogo Amathe
- Programme National de Lutte contre les Maladies Tropicales Négligées, 03 BP 7009 Ouagadougou 03, Burkina Faso
| | - Adrien Marie Gaston Belem
- Université Nazi Boni, Unité de Formation et de Recherche Sciences et Techniques, 01 BP 1091 Bobo-Dioulasso, Burkina-Faso
| | - Eric Maurice Fèvre
- International Livestock Research Institute, PO Box 30709, Nairobi 00100, Kenya - University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Liverpool L69 3BX, United Kingdom
| | - Philippe Büscher
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Veerle Lejon
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD-CIRAD, Université de Montpellier, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier, France
| | - Vincent Jamonneau
- Institut Pierre Richet, Unité de Recherche et de Formation Trypanosomoses et Leishmanioses, 01 BP 1500 Bouake, Côte d'Ivoire - Institut de Recherche pour le Développement, UMR INTERTRYP IRD-CIRAD, Université de Montpellier, TA A-17/G, Campus International de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
6
|
Inocencio da Luz R, Tablado Alonso S, Büscher P, Verlé P, De Weggheleire A, Mumba Ngoyi D, Pyana PP, Hasker E. Two-Year Follow-Up of Trypanosoma brucei gambiense Serology after Successful Treatment of Human African Trypanosomiasis: Results of Four Different Sero-Diagnostic Tests. Diagnostics (Basel) 2022; 12:246. [PMID: 35204337 PMCID: PMC8871350 DOI: 10.3390/diagnostics12020246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
Gambiense human African trypanosomiasis (gHAT), also known as gambiense sleeping sickness, is a parasitic infection caused by Trypanosoma brucei gambiense. During the last decades, gHAT incidence has been brought to an all-time low. Newly developed serological tools and drugs for its diagnosis and treatment put the WHO goal of interruption of transmission by 2030 within reach. However, further research is needed to efficiently adapt these new advances to new control strategies. We assessed the serological evolution of cured gHAT patients over a two-year period using four different tests: the rapid diagnostic test (RDT) HAT Sero K-SeT, ELISA/T.b. gambiense, Trypanosoma brucei gambiense inhibition ELISA (iELISA), and the immune trypanolysis test. High seropositive rates were observed in all the tests, although sero-reversion rates were different in each test: ELISA/T.b. gambiense was the test most likely to become negative two years after treatment, whereas RDT HAT Sero-K-SeT was the least likely. iELISA and trypanolysis showed intermediate and comparable probabilities to become negative. Stage 1 patients were also noted to be more likely to become negative than Stage 2 patients in all four serological tests. Our results confirm previous findings that trypanosome-specific antibody concentrations in blood may persist for up to two years, implying that HAT control programs should continue to take the history of past HAT episodes into consideration.
Collapse
Affiliation(s)
- Raquel Inocencio da Luz
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| | - Sara Tablado Alonso
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| | - Philippe Büscher
- Unit of Diagnostic Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium;
| | - Paul Verlé
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| | - Anja De Weggheleire
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| | - Dieudonné Mumba Ngoyi
- Institut National de Recherce Biomédicale, Département de Parasitologie, Kinshasa 834, Congo; (D.M.N.); (P.P.P.)
| | - Pati Patient Pyana
- Institut National de Recherce Biomédicale, Département de Parasitologie, Kinshasa 834, Congo; (D.M.N.); (P.P.P.)
| | - Epco Hasker
- Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Department of Public Health, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (S.T.A.); (P.V.); (A.D.W.); (E.H.)
| |
Collapse
|
7
|
Raman spectroscopic analysis of skin as a diagnostic tool for Human African Trypanosomiasis. PLoS Pathog 2021; 17:e1010060. [PMID: 34780575 PMCID: PMC8629383 DOI: 10.1371/journal.ppat.1010060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/29/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
Human African Trypanosomiasis (HAT) has been responsible for several deadly epidemics throughout the 20th century, but a renewed commitment to disease control has significantly reduced new cases and motivated a target for the elimination of Trypanosoma brucei gambiense-HAT by 2030. However, the recent identification of latent human infections, and the detection of trypanosomes in extravascular tissues hidden from current diagnostic tools, such as the skin, has added new complexity to identifying infected individuals. New and improved diagnostic tests to detect Trypanosoma brucei infection by interrogating the skin are therefore needed. Recent advances have improved the cost, sensitivity and portability of Raman spectroscopy technology for non-invasive medical diagnostics, making it an attractive tool for gambiense-HAT detection. The aim of this work was to assess and develop a new non-invasive diagnostic method for T. brucei through Raman spectroscopy of the skin. Infections were performed in an established murine disease model using the animal-infective Trypanosoma brucei brucei subspecies. The skin of infected and matched control mice was scrutinized ex vivo using a confocal Raman microscope with 532 nm excitation and in situ at 785 nm excitation with a portable field-compatible instrument. Spectral evaluation and Principal Component Analysis confirmed discrimination of T. brucei-infected from uninfected tissue, and a characterisation of biochemical changes in lipids and proteins in parasite-infected skin indicated by prominent Raman peak intensities was performed. This study is the first to demonstrate the application of Raman spectroscopy for the detection of T. brucei by targeting the skin of the host. The technique has significant potential to discriminate between infected and non-infected tissue and could represent a unique, non-invasive diagnostic tool in the goal for elimination of gambiense-HAT as well as for Animal African Trypanosomiasis (AAT). Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a disease caused by the parasite Trypanosoma brucei and has been responsible for the death of millions of people across Africa in the 20th century. It is also a major economic burden for countries endemic for trypanosomiasis, affecting livestock productivity in rural areas (Animal African Trypanosomiasis). A long-term international collaboration with the help of the World Health Organisation has resulted in the rate of human infection decreasing to less than 1000 new cases per year. However, the human disease continues to spread within remote villages. Current diagnosis is based on the detection of parasites in blood and serum samples, but this is challenging during chronic human infections with low or non-detectable parasitaemia. However, the recent discovery of extravascular skin-dwelling trypanosomes indicates that a reservoir of infection remains undetected, threatening the effort to eliminate the disease. In this study we have targeted the skin as a site for diagnosis using Raman spectroscopy and demonstrate that this method showed great promise in the laboratory, laying the foundation for field studies to examine its potential to strengthen current diagnostic strategies for detecting HAT cases.
Collapse
|
8
|
Passive surveillance of human African trypanosomiasis in Côte d'Ivoire: Understanding prevalence, clinical symptoms and signs, and diagnostic test characteristics. PLoS Negl Trop Dis 2021; 15:e0009656. [PMID: 34460829 PMCID: PMC8432893 DOI: 10.1371/journal.pntd.0009656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/10/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
Background Little is known about the diagnostic performance of rapid diagnostic tests (RDTs) for passive screening of human African trypanosomiasis (HAT) in Côte d’Ivoire. We determined HAT prevalence among clinical suspects, identified clinical symptoms and signs associated with HAT RDT positivity, and assessed the diagnostic tests’ specificity, positive predictive value and agreement. Methods Clinical suspects were screened with SD Bioline HAT, HAT Sero-K-Set and rHAT Sero-Strip. Seropositives were parasitologically examined, and their dried blood spots tested in trypanolysis, ELISA/Tbg, m18S-qPCR and LAMP. The HAT prevalence in the study population was calculated based on RDT positivity followed by parasitological confirmation. The association between clinical symptoms and signs and RDT positivity was determined using multivariable logistic regression. The tests’ Positive Predictive Value (PPV), specificity and agreement were determined. Results Over 29 months, 3433 clinical suspects were tested. The RDT positivity rate was 2.83%, HAT prevalence 0.06%. Individuals with sleep disturbances (p<0.001), motor disorders (p = 0.002), convulsions (p = 0.02), severe weight loss (p = 0.02) or psychiatric problems (p = 0.04) had an increased odds (odds ratios 1.7–4.6) of being HAT RDT seropositive. Specificities ranged between 97.8%-99.6% for individual RDTs, and 93.3–98.9% for subsequent tests on dried blood spots. The PPV of the individual RDTs was below 14.3% (CI 2–43), increased to 33.3% (CI 4–78) for serial RDT combinations, and reached 67% for LAMP and ELISA/Tbg on RDT positives. Agreement between diagnostic tests was poor to moderate (Kappa ≤ 0.60), except for LAMP and ELISA/Tbg (Kappa = 0.66). Conclusion Identification of five key clinical symptoms and signs may simplify referral for HAT RDT screening. The results confirm the appropriateness of the diagnostic algorithm presently applied, with screening by SD Bioline HAT or HAT Sero-K-Set, supplemented with trypanolysis. ELISA/Tbg could replace trypanolysis and is simpler to perform. Trial registration ClinicalTrials.gov NCT03356665. As human African trypanosomiasis (HAT) or sleeping sickness is approaching elimination, case management is progressively transferred from specialized teams to front line health care centres. This approach raises practical questions. What clinical symptoms and signs should trigger HAT testing? What rapid diagnostic tests (RDT) are suitable for screening? Which unconfirmed serological suspects should be examined further? During this study conducted in Côte d’Ivoire, individuals with sleep disturbances, motor disorders, convulsions, severe weight loss, or psychiatric problems were more often positive in RDTs. These symptoms and signs should trigger referral for HAT screening. Our results confirm appropriateness of the existing HAT screening strategy with SD Bioline HAT or HAT Sero-K-Set having specificities of 97.8% and 98.9%. Subsequent tests on dried blood spots from RDT positives were 93.3% to 98.9% specific, and increased the positive predictive value from below 15% up to 67%. For selection of RDT seropositives for additional parasitological examinations, trypanolysis on dried blood spots is suitable, but could be replaced by ELISA, which can be performed locally. The optimal diagnostic test algorithm for Côte d’Ivoire, in terms of cost-effectiveness, remains to be determined.
Collapse
|
9
|
Feasibility of a dried blood spot strategy for serological screening and surveillance to monitor elimination of Human African Trypanosomiasis in the Democratic Republic of the Congo. PLoS Negl Trop Dis 2021; 15:e0009407. [PMID: 34115754 PMCID: PMC8195376 DOI: 10.1371/journal.pntd.0009407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
In recent years, the number of reported Human African Trypanosomiasis (HAT) cases caused by Trypanosoma brucei (T.b.) gambiense has been markedly declining, and the goal of ‘elimination as a public health problem’ is within reach. For the next stage, i.e. interruption of HAT transmission by 2030, intensive screening and surveillance will need to be maintained, but with tools and strategies more efficiently tailored to the very low prevalence. We assessed the sequential use of ELISA and Immune Trypanolysis (ITL) on dried blood spot (DBS) samples as an alternative to the traditional HAT field testing and confirmation approach. A cross-sectional study was conducted in HAT endemic and previously endemic zones in Kongo Central province, and a non-endemic zone in Haut Katanga province in the Democratic Republic of the Congo (DRC). Door-to-door visits were performed to collect dried blood spot (DBS) samples on filter paper. ELISA/T.b. gambiense was conducted followed by ITL for those testing positive by ELISA and in a subset of ELISA negatives. In total, 11,642 participants were enrolled. Of these, 11,535 DBS were collected and stored in appropriate condition for ELISA testing. Ninety-seven DBS samples tested positive on ELISA. In the endemic zone, ELISA positivity was 1.34% (95%CI: 1.04–1.64). In the previously endemic zone and non-endemic zone, ELISA positivity was 0.34% (95% CI: 0.13–0.55) and 0.37% (95% CI: 0.15–0.60) respectively. Among the ELISA positives, only two samples had a positive ITL result, both from the endemic zone. One of those was from a former HAT patient treated in 2008 and the other from an individual who unfortunately had deceased prior to the follow-up visit. Our study showed that a surveillance strategy, based on DBS samples and centralized testing with retracing of patients if needed, is feasible in DRC. ELISA seems well suited as initial test with a similar positivity rate as traditional screening tests, but ITL remains complex. Alternatives for the latter, also analyzable on DBS, should be further explored. Human African Trypanosomiasis (HAT), also known as sleeping sickness is a parasitic disease, transmitted by tsetse flies, that is usually fatal if untreated. The number of cases have been rapidly declining over the past years indicating that elimination of the disease as a public health problem is within reach. To achieve the next stage, i.e. interruption of HAT transmission by 2030, intensive screening and surveillance will need to be maintained, but with tools and strategies more efficiently tailored to the very low prevalence. In contrast to the traditional approach of sending laboratory expertise to the field, we assessed an alternative approach based on the collection of dried blood samples on filter paper that were tested in a regional laboratory. Samples were taken in endemic, previously endemic and non-endemic villages and tested by ELISA and Immune Trypanolysis. The ELISA positivity rates were similar to those of other screening techniques currently used and Immune Trypanolysis was highly specific. Hence for surveillance in HAT endemic areas, collecting dried blood samples followed by centralized testing could become an alternative to the current strategy of active screening by mobile teams with on the spot confirmation. It has also potential for post-elimination surveillance to monitor resurgence and for exploratory surveillance in historic foci. Though highly specific, Immune Trypanolysis remains too complex for use in intermediate level laboratories, to further expand this strategy an alternative second step test is required.
Collapse
|
10
|
Geerts M, Van Reet N, Leyten S, Berghmans R, S Rock K, Ht Coetzer T, E-A Eyssen L, Büscher P. Trypanosoma brucei gambiense-iELISA: a promising new test for the post-elimination monitoring of human African trypanosomiasis. Clin Infect Dis 2020; 73:e2477-e2483. [PMID: 32856049 PMCID: PMC8563279 DOI: 10.1093/cid/ciaa1264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Background The World Health Organization targeted Trypanosoma brucei gambiense human African trypanosomiasis (gHAT) for elimination as a public health problem and for elimination of transmission. To measure gHAT elimination success with prevalences close to zero, highly specific diagnostics are necessary. Such a test exists in the form of an antibody-mediated complement lysis test, the trypanolysis test, but biosafety issues and technological requirements prevent its large-scale use. We developed an inhibition ELISA with high specificity and sensitivity that is applicable in regional laboratories in gHAT endemic countries. Methods The T. b. gambiense inhibition ELISA (g-iELISA) is based on the principle that binding of monoclonal antibodies to specific epitopes of T. b. gambiense surface glycoproteins can be inhibited by circulating antibodies of gHAT patients directed against the same epitopes. Using trypanolysis as reference test, the diagnostic accuracy of the g-iELISA was evaluated on plasma samples from 739 gHAT patients and 619 endemic controls and on dried blood spots prepared with plasma of 95 gHAT and 37 endemic controls. Results Overall sensitivity and specificity on plasma were, respectively, 98.0% (95% CI 96.7–98.9) and 99.5% (95% CI 98.6–99.9). With dried blood spots, sensitivity was 92.6% (95% CI 85.4–97.0), and specificity was 100% (95% CI 90.5–100.0). The g-iELISA is stable for at least 8 months when stored at 2–8°C. Conclusion The g-iELISA might largely replace trypanolysis for monitoring gHAT elimination and for postelimination surveillance. The g-iELISA kit is available for evaluation in reference laboratories in endemic countries.
Collapse
Affiliation(s)
- Manon Geerts
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Belgium
| | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Belgium
| | - Sander Leyten
- Advanced Practical Diagnostics BVBA, Turnhout, Belgium
| | - Raf Berghmans
- Advanced Practical Diagnostics BVBA, Turnhout, Belgium
| | - Kat S Rock
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Theresa Ht Coetzer
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lauren E-A Eyssen
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Belgium
| |
Collapse
|
11
|
Dama E, Camara O, Kaba D, Koffi M, Camara M, Compaoré C, Ilboudo H, Courtin F, Kaboré J, N'Gouan EK, Büscher P, Lejon V, Bucheton B, Jamonneau V. Immune trypanolysis test as a promising bioassay to monitor the elimination of gambiense human African trypanosomiasis. ACTA ACUST UNITED AC 2019; 26:68. [PMID: 31755862 PMCID: PMC6873819 DOI: 10.1051/parasite/2019066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/30/2019] [Indexed: 01/07/2023]
Abstract
The World Health Organization (WHO) has set the goal of gambiense-Human African trypanosomiasis (HAT) elimination as a public health problem for 2020 and interruption of transmission in humans for 2030. In this context, it is crucial to monitor progress towards these targets using accurate tools to assess the level of transmission in a given area. The aim of this study was to investigate the relevance of the immune trypanolysis test (TL) as a population-based bioassay to evaluate Trypanosoma brucei gambiense transmission in various epidemiological contexts. Significant correlations were observed between HAT endemicity levels and the percentage of TL-positive individuals in the population. TL therefore appears to be a suitable population-based biomarker of the intensity of transmission. In addition to being used as a tool to assess the HAT status at an individual level, assessing the proportion of TL positive individuals in the population appears as a promising and easy alternative to monitor the elimination of gambiense HAT in a given area.
Collapse
Affiliation(s)
- Emilie Dama
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Unité de recherches sur les maladies à vecteurs et biodiversité, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso - Université Nazi Boni, Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso, Burkina Faso
| | - Oumou Camara
- Programme National de Lutte contre la Trypanosomose Humaine Africaine, BP 851, Conakry, Guinée
| | - Dramane Kaba
- Institut Pierre Richet, Unité de Recherche « Trypanosomoses », 01 BP 1500, Bouaké, Côte d'Ivoire
| | - Mathurin Koffi
- Université Jean Lorougnon Guédé, Laboratoire de biodiversité et Gestion durable des écosystèmes tropicaux, Unité de Recherche en Génétique et Epidémiologie moléculaire, BP 150 Daloa, Côte d'Ivoire
| | - Mamadou Camara
- Programme National de Lutte contre la Trypanosomose Humaine Africaine, BP 851, Conakry, Guinée
| | - Charlie Compaoré
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Unité de recherches sur les maladies à vecteurs et biodiversité, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | - Hamidou Ilboudo
- Institut de Recherche en Sciences de la Santé (IRSS), Unité de Recherche Clinique de Nanoro (URCN), 11 BP 218 Ouagadougou CMS 11, Burkina Faso
| | - Fabrice Courtin
- Institut Pierre Richet, Unité de Recherche « Trypanosomoses », 01 BP 1500, Bouaké, Côte d'Ivoire - Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD-CIRAD, Université de Montpellier, TA A-17/G, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Jacques Kaboré
- Centre International de Recherche-Développement sur l'Elevage en zones Subhumides (CIRDES), Unité de recherches sur les maladies à vecteurs et biodiversité, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso - Université Nazi Boni, Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso, Burkina Faso
| | | | - Philippe Büscher
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Veerle Lejon
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD-CIRAD, Université de Montpellier, TA A-17/G, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Bruno Bucheton
- Programme National de Lutte contre la Trypanosomose Humaine Africaine, BP 851, Conakry, Guinée - Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD-CIRAD, Université de Montpellier, TA A-17/G, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Vincent Jamonneau
- Institut Pierre Richet, Unité de Recherche « Trypanosomoses », 01 BP 1500, Bouaké, Côte d'Ivoire - Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD-CIRAD, Université de Montpellier, TA A-17/G, Campus International de Baillarguet, F-34398 Montpellier, France
| |
Collapse
|
12
|
Courtin F, Camara O, Camara M, Kagbadouno M, Bucheton B, Solano P, Jamonneau V. Sleeping sickness in the historical focus of forested Guinea: update using a geographically based method. Parasite 2019; 26:61. [PMID: 31599229 PMCID: PMC6785972 DOI: 10.1051/parasite/2019061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/18/2019] [Indexed: 11/14/2022] Open
Abstract
In 2017, 1447 new cases of Human African Trypanosomiasis (HAT) were reported, which reflects considerable progress towards the World Health Organisation's target of eliminating HAT as a public health problem by 2020. However, current epidemiological data are still lacking for a number of areas, including historical HAT foci. In order to update the HAT situation in the historical focus of forested Guinea, we implemented a geographically based methodology: Identification of Villages at Risk (IVR). The methodology is based on three sequential steps: Desk-based IVR (IVR-D), which selects villages at risk of HAT on the basis of HAT archives and geographical items; Field-based IVR (IVR-F), which consists in collecting additional epidemiological and geographical information in the field in villages at risk; and to be Medically surveyed IVR (IVR-M), a field data analysis through a Geographic Information System (GIS), to compile a list of the villages most at risk of HAT, suitable to guide active screening and passive surveillance. In an area of 2385 km2 with 1420,530 inhabitants distributed in 1884 settlements, 14 villages with a population of 11,236 inhabitants were identified as most at risk of HAT and selected for active screening. Although no HAT cases could be confirmed, subjects that had come into contact with Trypanosoma brucei gambiense were identified and two sentinel sites were chosen to implement passive surveillance. IVR, which could be applied to any gambiense areas where the situation needs to be clarified, could help to reach the objective of HAT elimination.
Collapse
Affiliation(s)
- Fabrice Courtin
-
Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD INTERTRYP, Institut Pierre Richet/Institut National de Santé Publique Bouaké Côte d’Ivoire
| | - Oumou Camara
-
Programme National de Lutte contre la THA, Ministère de la Santé Conakry Guinea
| | - Mamadou Camara
-
Programme National de Lutte contre la THA, Ministère de la Santé Conakry Guinea
| | - Moïse Kagbadouno
-
Programme National de Lutte contre la THA, Ministère de la Santé Conakry Guinea
| | - Bruno Bucheton
-
Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD INTERTRYP, Programme National de Lutte contre la THA Conakry Guinea
| | - Philippe Solano
-
Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD INTERTRYP Montpellier France
| | - Vincent Jamonneau
-
Institut de Recherche pour le Développement (IRD), UMR 177 IRD-CIRAD INTERTRYP, Institut Pierre Richet/Institut National de Santé Publique Bouaké Côte d’Ivoire
| |
Collapse
|
13
|
Selby R, Wamboga C, Erphas O, Mugenyi A, Jamonneau V, Waiswa C, Torr SJ, Lehane M. Gambian human African trypanosomiasis in North West Uganda. Are we on course for the 2020 target? PLoS Negl Trop Dis 2019; 13:e0007550. [PMID: 31412035 PMCID: PMC6693741 DOI: 10.1371/journal.pntd.0007550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/13/2019] [Indexed: 01/28/2023] Open
Abstract
In 1994, combined active and passive screening reported 1469 cases from the historic Gambian Human African Trypanosomiasis (gHAT) foci of West Nile, Uganda. Since 2011 systematic active screening has stopped and there has been reliance on passive screening. During 2014, passive screening alone detected just nine cases. In the same year a tsetse control intervention was expanded to cover the main gHAT foci in West Nile to curtail transmission of gHAT contributing to the elimination of gHAT as a public health problem in the area. It is known that sole reliance on passive screening is slow to detect cases and can underestimate the actual true number. We therefore undertook an active screening programme designed to test the efficacy of these interventions against gHAT transmission and clarify disease status. Screening was conducted in 28 randomly selected villages throughout the study area, aiming to sample all residents. Whole blood from 10,963 participants was analysed using CATT and 97 CATT suspects (0.9%) were evaluated with microscopy and trypanolysis. No confirmed cases were found providing evidence that the gHAT prevention programmes in West Nile have been effective. Results confirm gHAT prevalence in the study area of West Nile is below the elimination threshold (1 new case / 10,000 population), making elimination on course across this study area if status is maintained. The findings of this study can be used to guide future HAT and tsetse management in other gHAT foci, where reduced caseloads necessitate a shift from active to passive screening. The number of gHAT cases across West Nile, Uganda has declined in the last 20 years. This decline is due to the impact of programmes of active and passive case detection and treatment which have recently been combined with tsetse control operations (post 2011). We carried out an active survey of gHAT to evaluate the prevalence in areas where vector control has been introduced. Our results confirm that the overall prevalence of gHAT is below 1 case per 10,000 people at risk in the historical foci and shows that results from passive screening are providing an accurate picture of gHAT prevalence in the area.
Collapse
Affiliation(s)
- Richard Selby
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- * E-mail:
| | - Charles Wamboga
- Vector Control Division, Ministry of Health, Wandegeya, Kampala, Uganda
| | - Olema Erphas
- Vector Control Division, Ministry of Health, Wandegeya, Kampala, Uganda
| | - Albert Mugenyi
- Co-ordinating Office for Control of Trypanosomiasis Uganda, Wandegeya, Kampala, Uganda
| | - Vincent Jamonneau
- UMR 177 Intertryp, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Charles Waiswa
- Co-ordinating Office for Control of Trypanosomiasis Uganda, Wandegeya, Kampala, Uganda
| | - Steve J. Torr
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Michael Lehane
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
14
|
Lee SJ, Palmer JJ. Integrating innovations: a qualitative analysis of referral non-completion among rapid diagnostic test-positive patients in Uganda's human African trypanosomiasis elimination programme. Infect Dis Poverty 2018; 7:84. [PMID: 30119700 PMCID: PMC6098655 DOI: 10.1186/s40249-018-0472-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The recent development of rapid diagnostic tests (RDTs) for human African trypanosomiasis (HAT) enables elimination programmes to decentralise serological screening services to frontline health facilities. However, patients must still undertake multiple onwards referral steps to either be confirmed or discounted as cases. Accurate surveillance thus relies not only on the performance of diagnostic technologies but also on referral support structures and patient decisions. This study explored why some RDT-positive suspects failed to complete the diagnostic referral process in West Nile, Uganda. METHODS Between August 2013 and June 2015, 85% (295/346) people who screened RDT-positive were examined by microscopy at least once; 10 cases were detected. We interviewed 20 RDT-positive suspects who had not completed referral (16 who had not presented for their first microscopy examination, and 4 who had not returned for a second to dismiss them as cases after receiving discordant [RDT-positive, but microscopy-negative results]). Interviews were analysed thematically to examine experiences of each step of the referral process. RESULTS Poor provider communication about HAT RDT results helped explain non-completion of referrals in our sample. Most patients were unaware they were tested for HAT until receiving results, and some did not know they had screened positive. While HAT testing and treatment is free, anticipated costs for transportation and ancillary health services fees deterred many. Most expected a positive RDT result would lead to HAT treatment. RDT results that failed to provide a definitive diagnosis without further testing led some to question the expertise of health workers. For the four individuals who missed their second examination, complying with repeat referral requests was less attractive when no alternative diagnostic advice or treatment was given. CONCLUSIONS An RDT-based surveillance strategy that relies on referral through all levels of the health system is inevitably subject to its limitations. In Uganda, a key structural weakness was poor provider communication about the possibility of discordant HAT test results, which is the most common outcome for serological RDT suspects in a HAT elimination programme. Patient misunderstanding of referral rationale risks harming trust in the whole system and should be addressed in elimination programmes.
Collapse
Affiliation(s)
- Shona J Lee
- Centre of African Studies, University of Edinburgh, George Square, Edinburgh, EH8 9LD, UK.
| | - Jennifer J Palmer
- Centre of African Studies, University of Edinburgh, George Square, Edinburgh, EH8 9LD, UK.,Health in Humanitarian Crises Centre, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
15
|
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet 2017; 390:2397-2409. [PMID: 28673422 DOI: 10.1016/s0140-6736(17)31510-6] [Citation(s) in RCA: 430] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/20/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Human African trypanosomiasis (sleeping sickness) is a parasitic infection that almost invariably progresses to death unless treated. Human African trypanosomiasis caused devastating epidemics during the 20th century. Thanks to sustained and coordinated efforts over the past 15 years, the number of reported cases has fallen to an historically low level. Fewer than 3000 cases were reported in 2015, and the disease is targeted for elimination by WHO. Despite these recent successes, the disease is still endemic in parts of sub-Saharan Africa, where it is a considerable burden on rural communities, most notably in central Africa. Since patients are also reported from non-endemic countries, human African trypanosomiasis should be considered in differential diagnosis for travellers, tourists, migrants, and expatriates who have visited or lived in endemic areas. In the absence of a vaccine, disease control relies on case detection and treatment, and vector control. Available drugs are suboptimal, but ongoing clinical trials provide hope for safer and simpler treatments.
Collapse
Affiliation(s)
- Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations, Sub-regional Office for Eastern Africa, Addis Ababa, Ethiopia
| | - Vincent Jamonneau
- UMR INTERTRYP, Institut de Recherche pour le Développement, Montpellier, France
| | - Gerardo Priotto
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| |
Collapse
|
16
|
Birhanu H, Fikru R, Said M, Kidane W, Gebrehiwot T, Hagos A, Alemu T, Dawit T, Berkvens D, Goddeeris BM, Büscher P. Epidemiology of Trypanosoma evansi and Trypanosoma vivax in domestic animals from selected districts of Tigray and Afar regions, Northern Ethiopia. Parasit Vectors 2015; 8:212. [PMID: 25889702 PMCID: PMC4403896 DOI: 10.1186/s13071-015-0818-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/19/2015] [Indexed: 11/12/2022] Open
Abstract
Background African animal trypanosomosis, transmitted cyclically by tsetse flies or mechanically by other biting flies, causes serious inflictions to livestock health. This study investigates the extent of non-tsetse transmitted animal trypanosomosis (NTTAT) by Trypanosoma (T.) evansi and T. vivax in domestic animals in the tsetse-free regions of Northern Ethiopia, Afar and Tigray. Methods A cross sectional study was conducted on 754 dromedary camels, 493 cattle, 264 goats, 181 sheep, 84 donkeys, 25 horses and 10 mules. The microhaematocrit centrifugation technique was used as parasitological test. Plasma was collected for serodiagnosis with CATT/T.evansi and RoTat 1.2 immune trypanolysis (ITL) while buffy coat specimens were collected for molecular diagnosis with T. evansi type A specific RoTat 1.2 PCR, T. evansi type B specific EVAB PCR and T. vivax specific TvPRAC PCR. Results The parasitological prevalence was 4.7% in Tigray and 2.7% in Afar and significantly higher (z = 2.53, p = 0.011) in cattle (7.3%) than in the other hosts. Seroprevalence in CATT/T.evansi was 24.6% in Tigray and 13.9% in Afar and was significantly higher (z = 9.39, p < 0.001) in cattle (37.3%) than in the other hosts. On the other hand, seroprevalence assessed by ITL was only 1.9% suggesting cross reaction of CATT/T.evansi with T. vivax or other trypanosome infections. Molecular prevalence of T. evansi type A was 8.0% in Tigray and in Afar and varied from 28.0% in horses to 2.2% in sheep. It was also significantly higher (p < 0.001) in camel (11.7%) than in cattle (6.1%), donkey (6%), goat (3.8%), and sheep (2.2%). Four camels were positive for T. evansi type B. Molecular prevalence of T. vivax was 3.0% and was similar in Tigray and Afar. It didn’t differ significantly among the host species except that it was not detected in horses and mules. Conclusions NTTAT caused by T. vivax and T. evansi, is an important threat to animal health in Tigray and Afar. For the first time, we confirm the presence of T. evansi type B in Ethiopian camels. Unexplained results obtained with the current diagnostic tests in bovines warrant particular efforts to isolate and characterise trypanosome strains that circulate in Northern Ethiopia.
Collapse
Affiliation(s)
- Hadush Birhanu
- College of Veterinary Medicine, Mekelle University, P. O. Box 2084, Mekelle, Ethiopia. .,Department of Biosystems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 30, B-3001, Leuven, Belgium. .,Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium.
| | - Regassa Fikru
- Department of Biosystems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 30, B-3001, Leuven, Belgium. .,Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium. .,College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia.
| | - Mussa Said
- Department of Statistics, College of Natural and Computational Sciences, Mekelle University, P.O.Box 231, Mekelle, Ethiopia.
| | - Weldu Kidane
- College of Veterinary Medicine, Mekelle University, P. O. Box 2084, Mekelle, Ethiopia.
| | - Tadesse Gebrehiwot
- College of Veterinary Medicine, Mekelle University, P. O. Box 2084, Mekelle, Ethiopia.
| | - Ashenafi Hagos
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia.
| | - Tola Alemu
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P.O. Box 34, Bishoftu, Ethiopia.
| | - Tesfaye Dawit
- School of Veterinary Medicine, Hawassa University, P.O. Box 05, Hawassa, Ethiopia.
| | - Dirk Berkvens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium.
| | - Bruno Maria Goddeeris
- Department of Biosystems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 30, B-3001, Leuven, Belgium.
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, Belgium.
| |
Collapse
|
17
|
Accuracy of individual rapid tests for serodiagnosis of gambiense sleeping sickness in West Africa. PLoS Negl Trop Dis 2015; 9:e0003480. [PMID: 25642701 PMCID: PMC4314185 DOI: 10.1371/journal.pntd.0003480] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
Background Individual rapid tests for serodiagnosis (RDT) of human African trypanosomiasis (HAT) are particularly suited for passive screening and surveillance. However, so far, no large scale evaluation of RDTs has been performed for diagnosis of Trypanosoma brucei gambiense HAT in West Africa. The objective of this study was to assess the diagnostic accuracy of 2 commercial HAT-RDTs on stored plasma samples from West Africa. Methodology/Principal findings SD Bioline HAT and HAT Sero-K-Set were performed on 722 plasma samples originating from Guinea and Côte d’Ivoire, including 231 parasitologically confirmed HAT patients, 257 healthy controls, and 234 unconfirmed individuals whose blood tested antibody positive in the card agglutination test but negative by parasitological tests. Immune trypanolysis was performed as a reference test for trypanosome specific antibody presence. Sensitivities in HAT patients were respectively 99.6% for SD Bioline HAT, and 99.1% for HAT Sero-K-Set, specificities in healthy controls were respectively 87.9% and 88.3%. Considering combined positivity in both RDTs, increased the specificity significantly (p≤0.0003) to 93.4%, while 98.7% sensitivity was maintained. Specificities in controls were 98.7–99.6% for the combination of one or two RDTs with trypanolysis, maintaining a sensitivity of at least 98.1%. Conclusions/Significance The observed specificity of the single RDTs was relatively low. Serial application of SD Bioline HAT and HAT Sero-K-Set might offer superior specificity compared to a single RDT, maintaining high sensitivity. The combination of one or two RDTs with trypanolysis seems promising for HAT surveillance. Screening for gambiense human African trypanosomiasis (HAT) or sleeping sickness is traditionally based on detection of trypanosome specific antibodies in blood. Whereas the card agglutination test is particularly suited for mass screening, individual rapid serodiagnostic tests (RDTs) are rather adapted for use in peripheral health-care centres. Two RDTs have been commercialized recently, and we assessed their diagnostic accuracy on stored plasma samples from West Africa. Immune trypanolysis was performed as a laboratory reference test for antibody presence. Although sensitivity for serodiagnosis of HAT in West Africa was high for both RDTs, their specificity was only 88%. Taking into account the high number of false positive test results, combined seropositivity in both RDTs was considered, raising specificity to 93%. Serial application of two RDTs should therefore be considered as an option for passive case finding, especially in settings with low HAT prevalence. A combination of one or two RDTs with immune trypanolysis further improved specificity for HAT to 99%, while maintaining sensitivity at 99% and seems promising for HAT surveillance.
Collapse
|
18
|
Sudarshi D, Lawrence S, Pickrell WO, Eligar V, Walters R, Quaderi S, Walker A, Capewell P, Clucas C, Vincent A, Checchi F, MacLeod A, Brown M. Human African trypanosomiasis presenting at least 29 years after infection--what can this teach us about the pathogenesis and control of this neglected tropical disease? PLoS Negl Trop Dis 2014; 8:e3349. [PMID: 25522322 PMCID: PMC4270486 DOI: 10.1371/journal.pntd.0003349] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Darshan Sudarshi
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Sarah Lawrence
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | | | - Vinay Eligar
- Princess of Wales Hospital, Bridgend Hospital, Wales, United Kingdom
| | - Richard Walters
- Morriston Hospital, Swansea, Wales, United Kingdom
- Princess of Wales Hospital, Bridgend Hospital, Wales, United Kingdom
| | - Shumonta Quaderi
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Alice Walker
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
| | - Paul Capewell
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Clucas
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Angela Vincent
- Nuffield Dept of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - Francesco Checchi
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Annette MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Michael Brown
- Hospital for Tropical Diseases, University College London Hospital, London, United Kingdom
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Performance of parasitological and molecular techniques for the diagnosis and surveillance of gambiense sleeping sickness. PLoS Negl Trop Dis 2014; 8:e2954. [PMID: 24921941 PMCID: PMC4055587 DOI: 10.1371/journal.pntd.0002954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Objectives Recently, improvements have been made to diagnostics for gambiense sleeping sickness control but their performance remains poorly documented and may depend on specimen processing prior to examination. In a prospective study in the Democratic Republic of the Congo, we compared the diagnostic performance of several parasite detection techniques, immune trypanolysis and of m18S PCR on whole blood stored in a stabilisation buffer or dried on filter paper. Methods Individuals with CATT whole blood (WB) titer ≥1∶4 or with clinical signs indicative for sleeping sickness were examined for presence of trypanosomes in lymph node aspirate (LNA) and/or in blood. Blood was examined with Capillary Centrifugation Technique (CTC), mini-Anion Exchange Centrifugation Technique (mAECT) and mAECT on buffy coat (BC). PCR was performed on whole blood (i) stored in guanidine hydrochloride EDTA (GE) stabilisation buffer and (ii) dried on filter paper, and repeatability and reproducibility were assessed. Immune trypanolysis (TL) was performed on plasma. Results A total of 237 persons were included. Among 143 parasitologically confirmed cases, 85.3% had a CATT-WB titre of ≥1/8, 39.2% were positive in LNA, 47.5% in CTC, 80.4% in mAECT-WB, 90.9% in mAECT-BC, 95.1% in TL and up to 89.5% in PCR on GE-stabilised blood. PCR on GE-stabilised blood showed highest repeatability (87.8%) and inter-laboratory reproducibility (86.9%). Of the 94 non-confirmed suspects, respectively 39.4% and 23.4% were TL or PCR positive. Suboptimal specificity of PCR and TL was also suggested by latent class analysis. Conclusion The combination of LNA examination with mAECT-BC offered excellent diagnostic sensitivity. For PCR, storage of blood in stabilisation buffer is to be preferred over filter paper. TL as well as PCR are useful for remote diagnosis but are not more sensitive than mAECT-BC. For TL and PCR, the specificity, and thus usefulness for management of non-confirmed suspects remain to be determined. Human African trypanosomiasis or sleeping sickness still causes considerable suffering in sub-Sahara Africa. Diagnostics for this infectious disease constantly improve but their performance in terms of accuracy and reproducibility should be evaluated prior to implementation in control activities. We evaluated the diagnostic performance of several microscopic, serological and molecular diagnostic tests on a cohort of 237 sleeping sickness suspects in the Democratic Republic of the Congo. Since molecular diagnostics are rather sophisticated, we also assessed their repeatability and reproducibility. In the absence of a golden standard test, latent class analysis revealed that the suboptimal specificity of the serological and molecular tests is an issue. Our study shows the superior diagnostic sensitivity of the combination of lymph node aspirate examination and separation of trypanosomes from blood by mini Anion Exchange Centrifugation Techniques.
Collapse
|