1
|
Sullivan A, Lombardo MN, Pasha A, Lau V, Zhuang JY, Christendat A, Pereira B, Zhao T, Li Y, Wong R, Qureshi FZ, Provart NJ. 20 years of the Bio-Analytic Resource for Plant Biology. Nucleic Acids Res 2024:gkae920. [PMID: 39441075 DOI: 10.1093/nar/gkae920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The Bio-Analytic Resource for Plant Biology ('the BAR', at https://bar.utoronto.ca) is celebrating its 20th year in operation in 2025. The BAR encompasses and provides visualization tools for large 'omics data sets from plants. The BAR covers data from Arabidopsis, tomato, wheat, barley and 29 other plant species (with data for 2 others to be released soon). These data include nucleotide and protein sequence data, gene expression data, protein-protein and protein-DNA interactions, protein structures, subcellular localizations, and polymorphisms. The data are stored in more than 200 relational databases holding 186 GB of data and are presented to the researchers via web apps. These web apps provide data analysis and visualization tools. Some of the most popular tools are eFP ('electronic fluorescent pictograph') Browsers, ePlants and ThaleMine (an Arabidopsis-specific instance of InterMine). The BAR was designated a Global Core Biodata Resource in 2023. Like other GCBRs, the BAR has excellent operational stability, provides access without login requirement, and provides an API for researchers to be able to access BAR data programmatically. We present in this update a new overarching search tool called Gaia that permits easy access to all BAR data, powered by machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Alexander Sullivan
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Michael N Lombardo
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa ON L1G OC5, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Vincent Lau
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Jian Yun Zhuang
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Ashley Christendat
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Bruno Pereira
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Tianhui Zhao
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Youyang Li
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Rachel Wong
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Faisal Z Qureshi
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa ON L1G OC5, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
2
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
3
|
Zaidi MA, O'Leary SJB, Gagnon C, Chabot D, Wu S, Hubbard K, Tran F, Sprott D, Hassan D, Vucurevich T, Sheedy C, Laroche A, Gleddie S, Robert LS. A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall. PLANT CELL REPORTS 2020; 39:1185-1197. [PMID: 32638075 DOI: 10.1007/s00299-020-02556-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 05/28/2023]
Abstract
A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.
Collapse
Affiliation(s)
- Mohsin Abbas Zaidi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Stephen J B O'Leary
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council, of Canada, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Christine Gagnon
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Denise Chabot
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Shaobo Wu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610052, Sichuan, China
| | - Keith Hubbard
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Frances Tran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Dave Sprott
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Dhuha Hassan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Tara Vucurevich
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Claudia Sheedy
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - André Laroche
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Steve Gleddie
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
4
|
Robinson AJ, Tamiru M, Salby R, Bolitho C, Williams A, Huggard S, Fisch E, Unsworth K, Whelan J, Lewsey MG. AgriSeqDB: an online RNA-Seq database for functional studies of agriculturally relevant plant species. BMC PLANT BIOLOGY 2018; 18:200. [PMID: 30231853 PMCID: PMC6146512 DOI: 10.1186/s12870-018-1406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND The genome-wide expression profile of genes in different tissues/cell types and developmental stages is a vital component of many functional genomic studies. Transcriptome data obtained by RNA-sequencing (RNA-Seq) is often deposited in public databases that are made available via data portals. Data visualization is one of the first steps in assessment and hypothesis generation. However, these databases do not typically include visualization tools and establishing one is not trivial for users who are not computational experts. This, as well as the various formats in which data is commonly deposited, makes the processes of data access, sharing and utility more difficult. Our goal was to provide a simple and user-friendly repository that meets these needs for data-sets from major agricultural crops. DESCRIPTION AgriSeqDB ( https://expression.latrobe.edu.au/agriseqdb ) is a database for viewing, analysing and interpreting developmental and tissue/cell-specific transcriptome data from several species, including major agricultural crops such as wheat, rice, maize, barley and tomato. The disparate manner in which public transcriptome data is often warehoused and the challenge of visualizing raw data are both major hurdles to data reuse. The popular eFP browser does an excellent job of presenting transcriptome data in an easily interpretable view, but previous implementation has been mostly on a case-by-case basis. Here we present an integrated visualisation database of transcriptome data-sets from six species that did not previously have public-facing visualisations. We combine the eFP browser, for gene-by-gene investigation, with the Degust browser, which enables visualisation of all transcripts across multiple samples. The two visualisation interfaces launch from the same point, enabling users to easily switch between analysis modes. The tools allow users, even those without bioinformatics expertise, to mine into data-sets and understand the behaviour of transcripts of interest across samples and time. We have also incorporated an additional graphic download option to simplify incorporation into presentations or publications. CONCLUSION Powered by eFP and Degust browsers, AgriSeqDB is a quick and easy-to-use platform for data analysis and visualization in five crops and Arabidopsis. Furthermore, it provides a tool that makes it easy for researchers to share their data-sets, promoting research collaborations and data-set reuse.
Collapse
Affiliation(s)
| | - Muluneh Tamiru
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Rachel Salby
- Library, La Trobe University, Melbourne, Australia
| | | | | | | | - Eva Fisch
- Library, La Trobe University, Melbourne, Australia
| | | | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Mathew G. Lewsey
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Melbourne, Australia
| |
Collapse
|
5
|
Abstract
Bioinformatic tools have become part of the way plant researchers undertake investigations. Large data sets encompassing genomes, transcriptomes, proteomes, epigenomes, and other "-omes" that have been generated in the past decade may be easily accessed with such tools, such that hypotheses may be generated at the click of a mouse. In this chapter, we'll cover the use of bioinformatic tools available at the Bio-Analytic Resource for Plant Biology at http://bar.utoronto.ca for exploring gene expression and coexpression patterns, undertaking promoter analyses, performing functional classification enrichment analyses for sets of genes, and examining protein-protein interactions. We also touch on some newer bioinformatic tools that allow integration of data from several sources for improved hypothesis generation, both for Arabidopsis and translationally. Most of the data sets come from Arabidopsis, but useful BAR tools for other species will be mentioned where appropriate.
Collapse
|
6
|
Zaidi MA, O'Leary SJB, Wu S, Chabot D, Gleddie S, Laroche A, Eudes F, Robert LS. Investigating Triticeae anther gene promoter activity in transgenic Brachypodium distachyon. PLANTA 2017; 245:385-396. [PMID: 27787603 DOI: 10.1007/s00425-016-2612-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
In this report, we demonstrate that Brachypodium distachyon could serve as a relatively high throughput in planta functional assay system for Triticeae anther-specific gene promoters. There remains a vast gap in our knowledge of the promoter cis-acting elements responsible for the transcriptional regulation of Triticeae anther-specific genes. In an attempt to identify conserved cis-elements, 14 pollen-specific and 8 tapetum-specific Triticeae putative promoter sequences were analyzed using different promoter sequence analysis tools. Several cis-elements were found to be enriched in these sequences and their possible role in gene expression regulation in the anther is discussed. Despite the fact that potential cis-acting elements can be identified within putative promoter sequence datasets, determining whether particular promoter sequences can in fact direct proper tissue-specific and developmental gene expression still needs to be confirmed via functional assays preferably performed in closely related plants. Transgenic functional assays with Triticeae species remain challenging and Brachypodium distachyon may represent a suitable alternative. The promoters of the triticale pollen-specific genes group 3 pollen allergen (PAL3) and group 4 pollen allergen (PAL4), as well as the tapetum-specific genes chalcone synthase-like 1 (CHSL1), from wheat and cysteine-rich protein 1 (CRP1) from triticale were fused to the green fluorescent protein gene (GFP) and analyzed in transgenic Brachypodium. This report demonstrates that this model species could serve to accelerate the functional analysis of Triticeae anther-specific gene promoters.
Collapse
Affiliation(s)
- Mohsin A Zaidi
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Stephen J B O'Leary
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- National Research Council of Canada, Aquatic and Crop Resource Development, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Shaobo Wu
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, No. 8 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, People's Republic of China
| | - Denise Chabot
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Steve Gleddie
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - André Laroche
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - François Eudes
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
7
|
Nazemof N, Couroux P, Xing T, Robert LS. Proteomic analysis of the mature Brassica stigma reveals proteins with diverse roles in vegetative and reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:51-58. [PMID: 27457983 DOI: 10.1016/j.plantsci.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The stigma, the specialized apex of the Brassicaceae gynoecium, plays a role in pollen capture, discrimination, hydration, germination, and guidance. Despite this crucial role in reproduction, the global proteome underlying Brassicaceae stigma development and function remains largely unknown. As a contribution towards the characterization of the Brassicaceae dry stigma global proteome, more than 2500 Brassica napus mature stigma proteins were identified using three different gel-based proteomics approaches. Most stigma proteins participated in Metabolic Processes, Responses to Stimulus or Stress, Cellular or Developmental Processes, and Transport. The stigma was found to express a wide variety of proteins with demonstrated roles in cellular and organ development including proteins known to be involved in cellular expansion and morphogenesis, embryo development, as well as gynoecium and stigma development. Comparisons to a corresponding proteome from a very morphologically different Poaceae dry stigma showed a very similar distribution of proteins among different functional categories, but also revealed evident distinctions in protein composition especially in glucosinolate and carotenoid metabolism, photosynthesis, and self-incompatibility. To our knowledge, this study reports the largest Brassicaceae stigma protein dataset described to date.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
8
|
Li M, Wang K, Li S, Yang P. Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. J Proteomics 2015; 131:214-226. [PMID: 26546731 DOI: 10.1016/j.jprot.2015.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022]
Abstract
UNLABELLED Pollen-stigma interaction is a multi-step and complex physiological process which contains different signaling and biochemical pathways. However, little is known about the molecular mechanism underlying this process in rice (Oryza sativa). In this study, the changes of gene expression were investigated through a combination study of transcriptome and proteome profiles in rice pistil during pollination. Totally, 1117 differentially expressed genes were identified, among which 962 and 167 were detected at transcriptional and protein level respectively. Functional categorization analysis showed that the genes involved in central metabolism were up-regulated, which can lead to the enhancement of these metabolisms. The reactive oxygen species (ROS) were over-accumulated in the stigma. In response to this, the proteins or transcripts involved in redox homeostasis regulation were differentially expressed. Furthermore, significant changes of protein ubiquitination and its related genes or proteins, especially some E3 ligases encoding genes, indicate that protein ubiquitination might play important roles in cell signal transduction during the pollination process. Our study sheds some lights on gene and protein expression profiles of rice pistil pollination process, and gives us a comprehensive understanding of the basic molecular mechanisms controlling pollination in rice. BIOLOGICAL SIGNIFICANCE Using RNA-seq, 2-DE and iTRAQ assays, we have generated the large-scale transcriptomic and proteomic data containing abundant information on genes involved in pollen and pistil interaction. Our results showed that ROS were significantly accumulated in stigma after pollination, and the abundance of genes involve in redox homeostasis system were changed variously. We also show that, changes of some E3 ligases encoding genes might indicate that protein ubiquitination play important roles in cell signal transduction during the pollination process. Data in this study might be helpful to deeply understand the pollination in rice.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
9
|
Castillo AM, Sánchez-Díaz RA, Vallés MP. Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association. FRONTIERS IN PLANT SCIENCE 2015; 6:402. [PMID: 26150821 PMCID: PMC4471355 DOI: 10.3389/fpls.2015.00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/19/2015] [Indexed: 05/10/2023]
Abstract
Ovary pre-conditioned medium and ovary co-culture increased the efficiency of green doubled haploid plant production in bread wheat anther culture. The positive effect of this medium led to a 6- and 11-fold increase in the numbers of embryos and green plants, respectively, having a greater effect on a medium-low responding cultivar. Ovary genotype and developmental stage significantly affected microspore embryogenesis. By the use of Caramba ovaries it was possible to reach a 2-fold increase in the number of embryos and green plants, and to decrease the rate of albinism. Mature ovaries from flowers containing microspores at a late binucleate stage raised the number of embryos and green plants by 25-46% as compared to immature ovaries (excised from flowers with microspores at a mid-late uninucleate stage). The highest numbers of embryos and green plants were produced when using mature Caramba ovaries. Ovaries from Galeón, Tigre, and Kilopondio cultivars successfully induced microspore embryogenesis at the same rate as Caramba ovaries. Moreover, Tigre ovaries raised the percentage of spontaneous chromosome doubling up to 71%. Attempts were made to identify molecular mechanisms associated to the inductive effect of the ovaries on microspore embryogenesis. The genes TAA1b, FLA26, and WALI6 associated to wheat microspore embryogenesis, the CGL1 gene involved in glycan biosynthesis or degradation, and the FER gene involved in the ovary signaling process were expressed and/or induced at different rates during ovary culture. The expression pattern of FLA26 and FER could be related to the differences between genotypes and developmental stages in the inductive effect of the ovary. Our results open opportunities for new approaches to increase bread wheat doubled haploid production by anther culture, and to identify the functional components of the ovary inductive effect on microspore embryogenesis.
Collapse
Affiliation(s)
- Ana M. Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC)Zaragoza, Spain
| | | | | |
Collapse
|
10
|
Identification and characterization of rye genes not expressed in allohexaploid triticale. BMC Genomics 2015; 16:281. [PMID: 25886913 PMCID: PMC4396786 DOI: 10.1186/s12864-015-1480-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 03/23/2015] [Indexed: 12/31/2022] Open
Abstract
Background One of the most important evolutionary processes in plants is polyploidization. The combination of two or more genomes in one organism often initially leads to changes in gene expression and extensive genomic reorganization, compared to the parental species. Hexaploid triticale (x Triticosecale) is a synthetic hybrid crop species generated by crosses between T. turgidum and Secale cereale. Because triticale is a recent synthetic polyploid it is an important model for studying genome evolution following polyploidization. Molecular studies have demonstrated that genomic sequence changes, consisting of sequence elimination or loss of expression of genes from the rye genome, are common in triticale. High-throughput DNA sequencing allows a large number of genes to be surveyed, and transcripts from the different homeologous copies of the genes that have high sequence similarity can be better distinguished than hybridization methods previously employed. Results The expression levels of 23,503 rye cDNA reference contigs were analyzed in 454-cDNA libraries obtained from anther, root and stem from both triticale and rye, as well as in five 454-cDNA data sets created from triticale seedling shoot, ovary, stigma, pollen and seed tissues to identify the classes of rye genes silenced or absent in the recent synthetic hexaploid triticale. Comparisons between diploid rye and hexaploid triticale detected 112 rye cDNA contigs (~0.5%) that were totally undetected by expression analysis in all triticale tissues, although their expression was relatively high in rye tissues. Non-expressed rye genes were found to be strikingly less similar to their closest BLASTN matches in the wheat genome or in the other Triticum genomes than a test set of 200 random rye genes. Genes that were not detected in the RNA-seq data were further characterized by testing for their presence in the triticale genome by PCR using genomic DNA as a template. Conclusion Genes with low similarity between rye sequences and their closest matches in the Triticum genome have a higher probability to be repressed or absent in the allopolyploid genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1480-x) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Bokvaj P, Hafidh S, Honys D. Transcriptome profiling of male gametophyte development in Nicotiana tabacum. GENOMICS DATA 2014; 3:106-11. [PMID: 26484158 PMCID: PMC4535457 DOI: 10.1016/j.gdata.2014.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022]
Abstract
Pollen, an extremely reduced bicellular or tricellular male reproductive structure of flowering plants, serves as a model for numerous studies covering wide range of developmental and physiological processes. The pollen development represents a fragile and vital phase of plant ontogenesis and pollen was among the first singular plant tissues thoroughly characterized at the transcriptomic level (Honys and Twell [5]). Arabidopsis pollen developmental transcriptome has been published over a decade ago (Honys and Twell, 2004) and transcriptomes of developing pollen of other species have followed (Rice, Deveshwar et al. [2]; Triticeae, Tran et al. [11]; upland cotton, Ma et al. [8]). However, the transcriptomic data describing the development of tobacco pollen, a bicellular model for cell biology studies, have been missing. Here we provide the transcriptomic data covering three stages (Tupý et al., 1983) of wild type tobacco (Nicotiana tabacum, cv. Samsun) pollen development: uninucleate microspores (UNM, stage 1), early bicellular pollen (eBCP, stage 3) and late bicellular pollen (lBCP, stage 5) as a supplement to the mature pollen (MP), 4 h-pollen tube (PT4), 24 h-pollen tubes (PT24), leaf (LF) and root (RT) transcriptomic data presented in our previous studies (Hafidh et al., 2012a; Hafidh et al., 2012b). We characterized these transcriptomes to refine the knowledge base of male gametophyte-enriched genes as well as genes expressed preferentially at the individual stages of pollen development. Alongside updating the list of tissue-specific genes, we have investigated differentially expressed genes with respect to early expressed genes. Pollen tube growth and competition of pollen tubes in female pistil can be viewed as a race of the fittest. Accordingly, there is an apparent evolutionary trend among higher plants to store significant material reserves and nutrients during pollen maturation. This supply ensures that after pollen germination, the pollen tube utilizes its resource predominantly for its rapid elongation in the female pistil. Previous transcriptomic data from Arabidopsis showed massive expression of genes encoding proteins forming both ribosomal subunits that were accumulated in developing pollen, whereas their expression was not detectable in growing pollen tubes (Honys and Twell, 2004). We observed a similar phenomenon in less advanced bicellular tobacco pollen. Here, we describe in detail how we obtained and analyzed validated microarray dataset deposited in Gene Expression Omnibus (GSE62349).
Collapse
Affiliation(s)
- Pavel Bokvaj
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| |
Collapse
|
12
|
Nazemof N, Couroux P, Rampitsch C, Xing T, Robert LS. Proteomic profiling reveals insights into Triticeae stigma development and function. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6069-80. [PMID: 25170101 PMCID: PMC4203142 DOI: 10.1093/jxb/eru350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6 Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Cereal Research Centre, 101 Route 100, Morden, MB, Canada R6M 1Y5
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| |
Collapse
|
13
|
Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK. Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 2014; 9:1480-92. [PMID: 25349922 DOI: 10.1002/biot.201400063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
The transcript pool of a plant part, under any given condition, is a collection of mRNAs that will pave the way for a biochemical reaction of the plant to stimuli. Over the past decades, transcriptome study has advanced from Northern blotting to RNA sequencing (RNA-seq), through other techniques, of which real-time quantitative polymerase chain reaction (PCR) and microarray are the most significant ones. The questions being addressed by such studies have also matured from a solitary process to expression atlas and marker-assisted genetic enhancement. Not only genes and their networks involved in various developmental processes of plant parts have been elucidated, but also stress tolerant genes have been highlighted. The transcriptome of a plant with altered expression of a target gene has given information about the downstream genes. Marker information has been used for breeding improved varieties. Fortunately, the data generated by transcriptome analysis has been made freely available for ample utilization and comparison. The review discusses this wide variety of transcriptome data being generated in plants, which includes developmental stages, abiotic and biotic stress, effect of altered gene expression, as well as comparative transcriptomics, with a special emphasis on microarray and RNA-seq. Such data can be used to determine the regulatory gene networks, which can subsequently be utilized for generating improved plant varieties.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang K, Zhao Y, Li M, Gao F, Yang MK, Wang X, Li S, Yang P. Analysis of phosphoproteome in rice pistil. Proteomics 2014; 14:2319-34. [PMID: 25074045 DOI: 10.1002/pmic.201400004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 11/07/2022]
Abstract
As the female reproductive part of a flower, the pistil consists of the ovary, style, and stigma, and is a critical organ for the process from pollen recognition to fertilization and seed formation. Previous studies on pollen-pistil interaction mainly focused on gene expression changes with comparative transcriptomics or proteomics method. However, studies on protein PTMs are still lacking. Here we report a phosphoproteomic study on mature pistil of rice. Using IMAC enrichment, hydrophilic interaction chromatography fraction and high-accuracy MS instrument (TripleTOF 5600), 2347 of high-confidence (Ascore ≥ 19, p ≤ 0.01), phosphorylation sites corresponding to 1588 phosphoproteins were identified. Among them, 1369 phosphorylation sites within 654 phosphoproteins were newly identified; 41 serine phosphorylation motifs, which belong to three groups: proline-directed, basophilic, and acidic motifs were identified after analysis by motif-X. Two hundred and one genes whose phosphopeptides were identified here showed tissue-specific expression in pistil based on information mining of previous microarray data. All MS data have been deposited in the ProteomeXchange with identifier PXD000923 (http://proteomecentral.proteomexchange.org/dataset/PXD000923). This study will help us to understand pistil development and pollination on the posttranslational level.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Khalil HB, Brunetti SC, Pham UM, Maret D, Laroche A, Gulick PJ. Characterization of the caleosin gene family in the Triticeae. BMC Genomics 2014; 15:239. [PMID: 24673767 PMCID: PMC3986672 DOI: 10.1186/1471-2164-15-239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 02/22/2014] [Indexed: 12/01/2022] Open
Abstract
Background The caleosin genes encode proteins with a single conserved EF hand calcium-binding domain and comprise small gene families found in a wide range of plant species. Some members of the gene family have been shown to be upregulated by environmental stresses including low water availability and high salinity. Caleosin 3 from wheat has been shown to interact with the α-subunit of the heterotrimeric G proteins, and to act as a GTPase activating protein (GAP). This study characterizes the size and diversity of the gene family in wheat and related species and characterizes the differential tissue-specific expression of members of the gene family. Results A total of 34 gene family members that belong to eleven paralogous groups of caleosins were identified in the hexaploid bread wheat, T. aestivum. Each group was represented by three homeologous copies of the gene located on corresponding homeologous chromosomes, except the caleosin 10, which has four gene copies. Ten gene family members were identified in diploid barley, Hordeum vulgare, and in rye, Secale cereale, seven in Brachypodium distachyon, and six in rice, Oryza sativa. The analysis of gene expression was assayed in triticale and rye by RNA-Seq analysis of 454 sequence sets and members of the gene family were found to have diverse patterns of gene expression in the different tissues that were sampled in rye and in triticale, the hybrid hexaploid species derived from wheat and rye. Expression of the gene family in wheat and barley was also previously determined by microarray analysis, and changes in expression during development and in response to environmental stresses are presented. Conclusions The caleosin gene family had a greater degree of expansion in the Triticeae than in the other monocot species, Brachypodium and rice. The prior implication of one member of the gene family in the stress response and heterotrimeric G protein signaling, points to the potential importance of the caleosin gene family. The complexity of the family and differential expression in various tissues and under conditions of abiotic stress suggests the possibility that caleosin family members may play diverse roles in signaling and development that warrants further investigation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-239) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrick J Gulick
- Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|