1
|
Gardiner LJ, Bansept-Basler P, El-Soda M, Hall A, O’Sullivan DM. A framework for gene mapping in wheat demonstrated using the Yr7 yellow rust resistance gene. PLoS One 2020; 15:e0231157. [PMID: 32294096 PMCID: PMC7159211 DOI: 10.1371/journal.pone.0231157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
Abstract
We used three approaches to map the yellow rust resistance gene Yr7 and identify associated SNPs in wheat. First, we used a traditional QTL mapping approach using a double haploid (DH) population and mapped Yr7 to a low-recombination region of chromosome 2B. To fine map the QTL, we then used an association mapping panel. Both populations were SNP array genotyped allowing alignment of QTL and genome-wide association scans based on common segregating SNPs. Analysis of the association panel spanning the QTL interval, narrowed the interval down to a single haplotype block. Finally, we used mapping-by-sequencing of resistant and susceptible DH bulks to identify a candidate gene in the interval showing high homology to a previously suggested Yr7 candidate and to populate the Yr7 interval with a higher density of polymorphisms. We highlight the power of combining mapping-by-sequencing, delivering a complete list of gene-based segregating polymorphisms in the interval with the high recombination, low LD precision of the association mapping panel. Our mapping-by-sequencing methodology is applicable to any trait and our results validate the approach in wheat, where with a near complete reference genome sequence, we are able to define a small interval containing the causative gene.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- IBM Research, Warrington, England, United Kingdom
- Earlham Institute, Norwich, England, United Kingdom
| | | | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Anthony Hall
- Earlham Institute, Norwich, England, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, England, United Kingdom
| | - Donal M. O’Sullivan
- School of Agriculture, Policy and Development, University of Reading, Reading, England, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
Gardiner LJ, Brabbs T, Akhunov A, Jordan K, Budak H, Richmond T, Singh S, Catchpole L, Akhunov E, Hall A. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. Gigascience 2019; 8:5304888. [PMID: 30715311 PMCID: PMC6461119 DOI: 10.1093/gigascience/giz018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/21/2018] [Accepted: 01/27/2019] [Indexed: 11/17/2022] Open
Abstract
Background Whole-genome shotgun resequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome, making it difficult to unambiguously assign variation. Resequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented complementary DNA/exon or gene-based probe sets in which the promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences. Results We present and validate 2 gold standard capture probe sets for hexaploid bread wheat, a gene and a putative promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high-confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low-confidence genes and associated promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for single-nucleotide polymorphism calling while significantly reducing cost per sample for gene and putative promoter capture. Conclusions We show that a capture design employing an “island strategy” can enable analysis of the large gene/putative promoter space of wheat with only 2 × 160 Mbp probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,IBM Research, The Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - Thomas Brabbs
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alina Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Todd Richmond
- Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI, 53719, USA
| | - Sukhwinder Singh
- CIMMYT, Calle Dr Norman E Borlaug, Ciudad Obregon, 85208, Mexico
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| |
Collapse
|
3
|
Michikawa A, Yoshida K, Okada M, Sato K, Takumi S. Genome-wide polymorphisms from RNA sequencing assembly of leaf transcripts facilitate phylogenetic analysis and molecular marker development in wild einkorn wheat. Mol Genet Genomics 2019; 294:1327-1341. [PMID: 31187273 DOI: 10.1007/s00438-019-01581-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/24/2019] [Indexed: 12/20/2022]
Abstract
A survey of genome-wide polymorphisms between closely related species is required to understand the molecular basis of the evolutionary differentiation of their genomes. Two wild diploid wheat species, namely Triticum monococcum ssp. aegilopoides and T. urartu, are closely related and harbour the Am and A genomes, respectively. The A-genome donor of tetraploid and common wheat is T. urartu, and T. monococcum ssp. monococcum is the cultivated form derived from the wild einkorn wheat subspecies aegilopoides. Although subspecies aegilopoides has been a useful genetic resource in wheat breeding, genome-wide molecular markers for this subspecies have not been sufficiently developed. Here, we describe the detection of genome-wide polymorphisms such as single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) from RNA sequencing (RNA-seq) data of leaf transcripts in 15 accessions of the two diploid wheat species. The SNPs and indels, detected using the A genome of common wheat as the reference genome, covered the entire chromosomes of these species. The polymorphism information facilitated a comparison of the genetic diversity of einkorn wheat with that of two related diploid Aegilops species, namely, Ae. tauschii and Ae. umbellulata. Cleaved amplified polymorphic sequence (CAPS) markers converted from the SNP data were efficiently developed to confirm the addition of aegilopoides subspecies chromosomes to tetraploid wheat in nascent allohexaploid lines with AABBAmAm genomes. In addition, the CAPS markers permitted linkage map construction in mapping populations of aegilopoides subspecies accessions. Therefore, these RNA-seq data provide information for further breeding of closely related species with no reference genome sequence data.
Collapse
Affiliation(s)
- Asami Michikawa
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan.
| | - Moeko Okada
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
4
|
Gardiner LJ, Brabbs T, Akhunov A, Jordan K, Budak H, Richmond T, Singh S, Catchpole L, Akhunov E, Hall A. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. Gigascience 2019. [PMID: 30715311 DOI: 10.1101/363663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Whole-genome shotgun resequencing of wheat is expensive because of its large, repetitive genome. Moreover, sequence data can fail to map uniquely to the reference genome, making it difficult to unambiguously assign variation. Resequencing using target capture enables sequencing of large numbers of individuals at high coverage to reliably identify variants associated with important agronomic traits. Previous studies have implemented complementary DNA/exon or gene-based probe sets in which the promoter and intron sequence is largely missing alongside newly characterized genes from the recent improved reference sequences. RESULTS We present and validate 2 gold standard capture probe sets for hexaploid bread wheat, a gene and a putative promoter capture, which are designed using recently developed genome sequence and annotation resources. The captures can be combined or used independently. We demonstrate that the capture probe sets effectively enrich the high-confidence genes and putative promoter regions that were identified in the genome alongside a large proportion of the low-confidence genes and associated promoters. Finally, we demonstrate successful sample multiplexing that allows generation of adequate sequence coverage for single-nucleotide polymorphism calling while significantly reducing cost per sample for gene and putative promoter capture. CONCLUSIONS We show that a capture design employing an "island strategy" can enable analysis of the large gene/putative promoter space of wheat with only 2 × 160 Mbp probe sets. Furthermore, these assays extend the regions of the wheat genome that are amenable to analyses beyond its exome, providing tools for detailed characterization of these regulatory regions in large populations.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- IBM Research, The Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington, WA4 4AD, UK
| | - Thomas Brabbs
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Alina Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Katherine Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hikmet Budak
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Todd Richmond
- Roche Sequencing Solutions, 500 S Rosa Road, Madison, WI, 53719, USA
| | - Sukhwinder Singh
- CIMMYT, Calle Dr Norman E Borlaug, Ciudad Obregon, 85208, Mexico
| | - Leah Catchpole
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| |
Collapse
|
5
|
Bragina MK, Afonnikov DA, Salina EA. Progress in plant genome sequencing: research directions. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Since the first plant genome of Arabidopsis thaliana has been sequenced and published, genome sequencing technologies have undergone significant changes. New algorithms, sequencing technologies and bioinformatic approaches were adopted to obtain genome, transcriptome and exome sequences for model and crop species, which have permitted deep inferences into plant biology. As a result of an improved genome assembly and analysis methods, genome sequencing costs plummeted and the number of high-quality plant genome sequences is constantly growing. Consequently, more than 300 plant genome sequences have been published over the past twenty years. Although many of the published genomes are considered incomplete, they proved to be a valuable tool for identifying genes involved in the formation of economically valuable plant traits, for marker-assisted and genomic selection and for comparative analysis of plant genomes in order to determine the basic patterns of origin of various plant species. Since a high coverage and resolution of a genome sequence is not enough to detect all changes in complex samples, targeted sequencing, which consists in the isolation and sequencing of a specific region of the genome, has begun to develop. Targeted sequencing has a higher detection power (the ability to identify new differences/variants) and resolution (up to one basis). In addition, exome sequencing (the method of sequencing only protein-coding genes regions) is actively developed, which allows for the sequencing of non-expressed alleles and genes that cannot be found with RNA-seq. In this review, an analysis of sequencing technologies development and the construction of “reference” genomes of plants is performed. A comparison of the methods of targeted sequencing based on the use of the reference DNA sequence is accomplished.
Collapse
Affiliation(s)
| | - D. A. Afonnikov
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | | |
Collapse
|
6
|
Olohan L, Gardiner LJ, Lucaci A, Steuernagel B, Wulff B, Kenny J, Hall N, Hall A. A modified sequence capture approach allowing standard and methylation analyses of the same enriched genomic DNA sample. BMC Genomics 2018; 19:250. [PMID: 29653520 PMCID: PMC5899405 DOI: 10.1186/s12864-018-4640-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
Background Bread wheat has a large complex genome that makes whole genome resequencing costly. Therefore, genome complexity reduction techniques such as sequence capture make re-sequencing cost effective. With a high-quality draft wheat genome now available it is possible to design capture probe sets and to use them to accurately genotype and anchor SNPs to the genome. Furthermore, in addition to genetic variation, epigenetic variation provides a source of natural variation contributing to changes in gene expression and phenotype that can be profiled at the base pair level using sequence capture coupled with bisulphite treatment. Here, we present a new 12 Mbp wheat capture probe set, that allows both the profiling of genotype and methylation from the same DNA sample. Furthermore, we present a method, based on Agilent SureSelect Methyl-Seq, that will use a single capture assay as a starting point to allow both DNA sequencing and methyl-seq. Results Our method uses a single capture assay that is sequentially split and used for both DNA sequencing and methyl-seq. The resultant genotype and epi-type data is highly comparable in terms of coverage and SNP/methylation site identification to that generated from separate captures for DNA sequencing and methyl-seq. Furthermore, by defining SNP frequencies in a diverse landrace from the Watkins collection we highlight the importance of having genotype data to prevent false positive methylation calls. Finally, we present the design of a new 12 Mbp wheat capture and demonstrate its successful application to re-sequence wheat. Conclusions We present a cost-effective method for performing both DNA sequencing and methyl-seq from a single capture reaction thus reducing reagent costs, sample preparation time and DNA requirements for these complementary analyses. Electronic supplementary material The online version of this article (10.1186/s12864-018-4640-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lisa Olohan
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | | | - Anita Lucaci
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | | | - Brande Wulff
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - John Kenny
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | - Neil Hall
- Earlham Institute, Norwich research Park, Norwich, UK.,University of East Anglia, Norwich, UK
| | - Anthony Hall
- Earlham Institute, Norwich research Park, Norwich, UK. .,University of East Anglia, Norwich, UK.
| |
Collapse
|
7
|
Clevenger J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P. Mapping Late Leaf Spot Resistance in Peanut ( Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection. FRONTIERS IN PLANT SCIENCE 2018; 9:83. [PMID: 29459876 PMCID: PMC5807350 DOI: 10.3389/fpls.2018.00083] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/15/2018] [Indexed: 05/21/2023]
Abstract
Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated peanut (Arachis hypogaea). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.
Collapse
Affiliation(s)
- Josh Clevenger
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Ye Chu
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Stephanie Botton
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| | - Albert Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Thomas G. Isleib
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - C. C. Holbrook
- United States Department of Agriculture-Agricultural Research Service, Tifton, GA, United States
| | - Peggy Ozias-Akins
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, GA, United States
| |
Collapse
|
8
|
Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Ruggieri V, Anzar I, Paytuvi A, Calafiore R, Cigliano RA, Sanseverino W, Barone A. Exploiting the great potential of Sequence Capture data by a new tool, SUPER-CAP. DNA Res 2017; 24:81-91. [PMID: 28011720 PMCID: PMC5381350 DOI: 10.1093/dnares/dsw050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
The recent development of Sequence Capture methodology represents a powerful strategy for enhancing data generation to assess genetic variation of targeted genomic regions. Here, we present SUPER-CAP, a bioinformatics web tool aimed at handling Sequence Capture data, fine calculating the allele frequency of variations and building genotype-specific sequence of captured genes. The dataset used to develop this in silico strategy consists of 378 loci and related regulative regions in a collection of 44 tomato landraces. About 14,000 high-quality variants were identified. The high depth (>40×) of coverage and adopting the correct filtering criteria allowed identification of about 4,000 rare variants and 10 genes with a different copy number variation. We also show that the tool is capable to reconstruct genotype-specific sequences for each genotype by using the detected variants. This allows evaluating the combined effect of multiple variants in the same protein. The architecture and functionality of SUPER-CAP makes the software appropriate for a broad set of analyses including SNP discovery and mining. Its functionality, together with the capability to process large data sets and efficient detection of sequence variation, makes SUPER-CAP a valuable bioinformatics tool for genomics and breeding purposes.
Collapse
Affiliation(s)
- Valentino Ruggieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy.,Sequentia Biotech SL, Calle Compte d'Urgell, 240, 08035 Barcelona, Spain
| | - Irantzu Anzar
- Sequentia Biotech SL, Calle Compte d'Urgell, 240, 08035 Barcelona, Spain
| | - Andreu Paytuvi
- Sequentia Biotech SL, Calle Compte d'Urgell, 240, 08035 Barcelona, Spain
| | - Roberta Calafiore
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | | | - Walter Sanseverino
- Sequentia Biotech SL, Calle Compte d'Urgell, 240, 08035 Barcelona, Spain
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| |
Collapse
|
10
|
Pasquariello M, Ham J, Burt C, Jahier J, Paillard S, Uauy C, Nicholson P. The eyespot resistance genes Pch1 and Pch2 of wheat are not homoeoloci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:91-107. [PMID: 27665367 PMCID: PMC5214848 DOI: 10.1007/s00122-016-2796-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/15/2016] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Phenotyping and mapping data reveal that chromosome intervals containing eyespot resistance genes Pch1 and Pch2 on 7D and 7A, respectively, do not overlap, and thus, these genes are not homoeloci. Eyespot is a stem-base fungal disease of cereals growing in temperate regions. Two main resistances are currently available for use in wheat. Pch1 is a potent single major gene transferred to wheat from Aegilops ventricosa and located on the distal end of chromosome 7D. Pch2, a moderate resistance deriving from Cappelle Desprez, is located at the end of 7AL. The relative positions of Pch1 and Pch2 on 7D and 7A, respectively, suggest that they are homoeoloci. A single seed decent recombinant F7 population was used to refine the position of Pch2 on 7A. New markers designed to 7D also allowed the position of Pch1 to be further defined. We exploited the syntenic relationship between Brachypodium distachyon and wheat to develop 7A and 7D specific KASP markers tagging inter-varietal and interspecific SNPs and allow the comparison of the relative positions of Pch1 and Pch2 on 7D and 7A. Together, phenotyping and mapping data reveal that the intervals containing Pch1 and Pch2 do not overlap, and thus, they cannot be considered homoeloci. Using this information, we analysed two durum wheat lines carrying Pch1 on 7A to determine whether the Ae.ventricosa introgression extended into the region associated with Pch2. This identified that the introgression is distal to Pch2 on 7A, providing further evidence that the genes are not homoeoloci. However, it is feasible to use this material to pyramid Pch1 and Pch2 on 7A in a tetraploid background and also to increase the copy number of Pch1 in combination with Pch2 in a hexaploid background.
Collapse
Affiliation(s)
- M Pasquariello
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - J Ham
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - C Burt
- RAGT Seeds, Grange Road, Ickleton, Essex, CB10 1TA, UK
| | - J Jahier
- IGEPP, Institute for Genetics, Environment and Plant Protection, INRA, La Motte au Vicomte, 35650, Le Rheu, France
| | - S Paillard
- IGEPP, Institute for Genetics, Environment and Plant Protection, INRA, La Motte au Vicomte, 35650, Le Rheu, France
| | - C Uauy
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | - P Nicholson
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| |
Collapse
|
11
|
Lim HC, Braun MJ. High‐throughput
SNP
genotyping of historical and modern samples of five bird species via sequence capture of ultraconserved elements. Mol Ecol Resour 2016; 16:1204-23. [DOI: 10.1111/1755-0998.12568] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Haw Chuan Lim
- Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington DC 20560 USA
| | - Michael J. Braun
- Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington DC 20560 USA
| |
Collapse
|
12
|
Gardiner LJ, Bansept-Basler P, Olohan L, Joynson R, Brenchley R, Hall N, O'Sullivan DM, Hall A. Mapping-by-sequencing in complex polyploid genomes using genic sequence capture: a case study to map yellow rust resistance in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:403-19. [PMID: 27144898 PMCID: PMC5026171 DOI: 10.1111/tpj.13204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 05/20/2023]
Abstract
Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | | | - Lisa Olohan
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | - Ryan Joynson
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | - Rachel Brenchley
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | - Neil Hall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK
| | - Donal M O'Sullivan
- School of Agriculture, Policy and Development, University of Reading, PO Box 237, Whiteknights, Reading, RG6 6AR, UK
| | - Anthony Hall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| |
Collapse
|
13
|
Webb A, Cottage A, Wood T, Khamassi K, Hobbs D, Gostkiewicz K, White M, Khazaei H, Ali M, Street D, Duc G, Stoddard FL, Maalouf F, Ogbonnaya FC, Link W, Thomas J, O'Sullivan DM. A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:177-85. [PMID: 25865502 PMCID: PMC4973813 DOI: 10.1111/pbi.12371] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 05/20/2023]
Abstract
Faba bean (Vicia faba L.) is a globally important nitrogen-fixing legume, which is widely grown in a diverse range of environments. In this work, we mine and validate a set of 845 SNPs from the aligned transcriptomes of two contrasting inbred lines. Each V. faba SNP is assigned by BLAST analysis to a single Medicago orthologue. This set of syntenically anchored polymorphisms were then validated as individual KASP assays, classified according to their informativeness and performance on a panel of 37 inbred lines, and the best performing 757 markers used to genotype six mapping populations. The six resulting linkage maps were merged into a single consensus map on which 687 SNPs were placed on six linkage groups, each presumed to correspond to one of the six V. faba chromosomes. This sequence-based consensus map was used to explore synteny with the most closely related crop species, lentil and the most closely related fully sequenced genome, Medicago. Large tracts of uninterrupted colinearity were found between faba bean and Medicago, making it relatively straightforward to predict gene content and order in mapped genetic interval. As a demonstration of this, we mapped a flower colour gene to a 2-cM interval of Vf chromosome 2 which was highly colinear with Mt3. The obvious candidate gene from 78 gene models in the collinear Medicago chromosome segment was the previously characterized MtWD40-1 gene controlling anthocyanin production in Medicago and resequencing of the Vf orthologue showed a putative causative deletion of the entire 5' end of the gene.
Collapse
Affiliation(s)
- Anne Webb
- National Institute of Agricultural Botany, Cambridge, UK
| | - Amanda Cottage
- National Institute of Agricultural Botany, Cambridge, UK
| | - Thomas Wood
- National Institute of Agricultural Botany, Cambridge, UK
| | | | - Douglas Hobbs
- National Institute of Agricultural Botany, Cambridge, UK
| | | | | | - Hamid Khazaei
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Mohamed Ali
- Department of Crop Sciences, Georg-August-Universität, Göttingen, Germany
| | | | - Gérard Duc
- INRA, UMR1347 Agroécologie, Dijon, France
| | - Fred L Stoddard
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - Wolfgang Link
- Department of Crop Sciences, Georg-August-Universität, Göttingen, Germany
| | - Jane Thomas
- National Institute of Agricultural Botany, Cambridge, UK
| | - Donal M O'Sullivan
- National Institute of Agricultural Botany, Cambridge, UK
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, UK
| |
Collapse
|
14
|
Gardiner LJ, Quinton-Tulloch M, Olohan L, Price J, Hall N, Hall A. A genome-wide survey of DNA methylation in hexaploid wheat. Genome Biol 2015; 16:273. [PMID: 26653535 PMCID: PMC4674939 DOI: 10.1186/s13059-015-0838-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND DNA methylation is an important mechanism of epigenetic gene expression control that can be passed between generations. Here, we use sodium bisulfite treatment and targeted gene enrichment to study genome-wide methylation across the three sub-genomes of allohexaploid wheat. RESULTS While the majority of methylation is conserved across all three genomes we demonstrate that differential methylation exists between the sub-genomes in approximately equal proportions. We correlate sub-genome-specific promoter methylation with decreased expression levels and show that altered growing temperature has a small effect on methylation state, identifying a small but functionally relevant set of methylated genes. Finally, we demonstrate long-term methylation maintenance using a comparison between the D sub-genome of hexaploid wheat and its progenitor Aegilops tauschii. CONCLUSIONS We show that tri-genome methylation is highly conserved with the diploid wheat progenitor while sub-genome-specific methylation shows more variation.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Mark Quinton-Tulloch
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Lisa Olohan
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Jonathan Price
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Neil Hall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Anthony Hall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| |
Collapse
|
15
|
Wulff BBH, Moscou MJ. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. FRONTIERS IN PLANT SCIENCE 2014; 5:692. [PMID: 25538723 PMCID: PMC4255625 DOI: 10.3389/fpls.2014.00692] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/20/2014] [Indexed: 05/19/2023]
Abstract
The domestication of wheat in the Fertile Crescent 10,000 years ago led to a genetic bottleneck. Modern agriculture has further narrowed the genetic base by introducing extreme levels of uniformity on a vast spatial and temporal scale. This reduction in genetic complexity renders the crop vulnerable to new and emerging pests and pathogens. The wild relatives of wheat represent an important source of genetic variation for disease resistance. For nearly a century farmers, breeders, and cytogeneticists have sought to access this variation for crop improvement. Several barriers restricting interspecies hybridization and introgression have been overcome, providing the opportunity to tap an extensive reservoir of genetic diversity. Resistance has been introgressed into wheat from at least 52 species from 13 genera, demonstrating the remarkable plasticity of the wheat genome and the importance of such natural variation in wheat breeding. Two main problems hinder the effective deployment of introgressed resistance genes for crop improvement: (1) the simultaneous introduction of genetically linked deleterious traits and (2) the rapid breakdown of resistance when deployed individually. In this review, we discuss how recent advances in molecular genomics are providing new opportunities to overcome these problems.
Collapse
Affiliation(s)
- Brande B. H. Wulff
- Department of Crop Genetics, John Innes Centre, Norwich, Norfolk, UK
- *Correspondence: Brande B. H. Wulff, Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK e-mail: ; Matthew J. Moscou, The Sainsbury Laboratory, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK e-mail:
| | - Matthew J. Moscou
- The Sainsbury Laboratory, Norwich, Norfolk, UK
- *Correspondence: Brande B. H. Wulff, Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK e-mail: ; Matthew J. Moscou, The Sainsbury Laboratory, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK e-mail:
| |
Collapse
|