1
|
Zhang Y, Tian P, Duan G, Gao F, Schnabel G, Zhan J, Chen F. Histone H3 gene is not a suitable marker to distinguish Alternaria tenuissima from A. alternata affecting potato. PLoS One 2020; 15:e0231961. [PMID: 32324785 PMCID: PMC7179870 DOI: 10.1371/journal.pone.0231961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/03/2020] [Indexed: 11/21/2022] Open
Abstract
Potato Alternaria leaf blight is one of the economically most important disease in potato production worldwide. A recent study reported a quick method to distinguish main Alternaria pathogens A. tenuissima, A. alternata, and A. solani using partial histone H3 gene sequences. Using this method, our collection of 79 isolates from 8 provinces in China were presumably separated into A. tenussima and A. alternata. But in depth morphological and genetic analysis casted doubt on this identification. Culture morphologies of six presumed A. alternata isolates (PresA_alt) and six presumed A. tenuissima isolates (PresA_ten) were not significantly different. PresA_ten isolates also produced conidia in branched chains which supposed to be A. aternata. Phylogenetic analyses were conducted using internal transcribed spacer region (ITS) and five genes commonly used for species identification including glyceraldehyde-3-phosphate dehydrogenase (GPDH), translation elongation factor 1-alpha (TEF1), β-tubulin, plasma membrane ATPase (ATPase), and calmodulin genes. The results showed that GPDH and TEF1 sequences of PresA_alt and PresA_ten isolates were identical. The 12 isolates did not cluster by presumed species neither by individual or concatenated sequence comparisons. The phylogeny–trait association analysis confirmed that the two group isolates were undistinguishable by those molecular markers. Analysis of histone H3 gene sequences revealed variable intron sequences between PresA_ten and PresA_alt isolates, but the amino acid sequences were identical. Our results indicate that the previously published method to distinguish Alternaria species based on histone H3 gene sequence variation is inaccurate and that the prevalence of A. tenuissima isolates in China was likely overestimated.
Collapse
Affiliation(s)
- Yue Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peiyu Tian
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guohua Duan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangluan Gao
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States of America
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (FC); (JZ)
| | - Fengping Chen
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail: (FC); (JZ)
| |
Collapse
|
2
|
Wang Y, Ye X, Yang K, Shi Z, Wang N, Yang L, Chen J. Characterization, expression, and functional analysis of polyamine oxidases and their role in selenium-induced hydrogen peroxide production in Brassica rapa. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4082-4093. [PMID: 30761554 DOI: 10.1002/jsfa.9638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Selenium (Se)-induced phytotoxicity has been linked to oxidative injury triggered by the accumulation of reactive oxygen species (ROS) due to the disturbance of anti-oxidative systems. However, the way Se stress induces hydrogen peroxide (H2 O2 ) production in plants is a long-standing question. Here we identified the role of polyamine oxidase (PAO) in H2 O2 production in the root of Brassica rapa upon Se stress. RESULTS Studying Se-induced growth inhibition, H2 O2 accumulation, and oxidative injury in the root of Brassica rapa, we found that excessive Se exposure resulted in a remarkable increase in PAO activity. Inhibition of PAO activity led to decreased H2 O2 content and alleviated oxidative injury in the Se-treated root. These results indicated that Se stress induced PAO-dependent H2 O2 production. A total of six BrPAO family members were discovered in the genome of B. rapa by in silico analysis. Se stress pronouncedly upregulated the expression of most BrPAOs and further transient expression analysis proved that it could lead to H2 O2 production. CONCLUSION These results suggest that Se stress upregulates the expression of a set of BrPAOs which further enhances PAO activity, contributing to H2 O2 generation in roots. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongzhu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiefeng Ye
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou, China
| | - Kang Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiqi Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ning Wang
- Central Laboratory, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lifei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
3
|
Chen F, Song Y, Li X, Chen J, Mo L, Zhang X, Lin Z, Zhang L. Genome sequences of horticultural plants: past, present, and future. HORTICULTURE RESEARCH 2019; 6:112. [PMID: 31645966 PMCID: PMC6804536 DOI: 10.1038/s41438-019-0195-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/27/2019] [Accepted: 08/10/2019] [Indexed: 05/18/2023]
Abstract
Horticultural plants play various and critical roles for humans by providing fruits, vegetables, materials for beverages, and herbal medicines and by acting as ornamentals. They have also shaped human art, culture, and environments and thereby have influenced the lifestyles of humans. With the advent of sequencing technologies, there has been a dramatic increase in the number of sequenced genomes of horticultural plant species in the past decade. The genomes of horticultural plants are highly diverse and complex, often with a high degree of heterozygosity and a high ploidy due to their long and complex history of evolution and domestication. Here we summarize the advances in the genome sequencing of horticultural plants, the reconstruction of pan-genomes, and the development of horticultural genome databases. We also discuss past, present, and future studies related to genome sequencing, data storage, data quality, data sharing, and data visualization to provide practical guidance for genomic studies of horticultural plants. Finally, we propose a horticultural plant genome project as well as the roadmap and technical details toward three goals of the project.
Collapse
Affiliation(s)
- Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yunfeng Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaojiang Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Junhao Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300 China
| | - Lan Mo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300 China
| | - Xingtan Zhang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO 63103 USA
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology and Quality Science and Processing Technology in Special Starch, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Crop Science, Fuzhou, China
| |
Collapse
|
4
|
Abstract
Mistranslation errors compromise fitness by wasting resources on nonfunctional proteins. In order to reduce the cost of mistranslations, natural selection chooses the most accurately translated codons at sites that are particularly important for protein structure and function. We investigated the determinants underlying selection for translational accuracy in several species of plants belonging to three clades: Brassicaceae, Fabidae, and Poaceae. Although signatures of translational selection were found in genes from a wide range of species, the underlying factors varied in nature and intensity. Indeed, the degree of synonymous codon bias at evolutionarily conserved sites varied among plant clades while remaining uniform within each clade. This is unlikely to solely reflect the diversity of tRNA pools because there is little correlation between synonymous codon bias and tRNA abundance, so other factors must affect codon choice and translational accuracy in plant genes. Accordingly, synonymous codon choice at a given site was affected not only by the selection pressure at that site, but also its participation in protein domains or mRNA secondary structures. Although these effects were detected in all the species we analyzed, their impact on translation accuracy was distinct in evolutionarily distant plant clades. The domain effect was found to enhance translational accuracy in dicot and monocot genes with a high GC content, but to oppose the selection of more accurate codons in monocot genes with a low GC content.
Collapse
|
5
|
Ma MY, Che XR, Porceddu A, Niu DK. Evaluation of the mechanisms of intron loss and gain in the social amoebae Dictyostelium. BMC Evol Biol 2015; 15:286. [PMID: 26678305 PMCID: PMC4683709 DOI: 10.1186/s12862-015-0567-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 11/18/2022] Open
Abstract
Background Spliceosomal introns are a common feature of eukaryotic genomes. To approach a comprehensive understanding of intron evolution on Earth, studies should look beyond repeatedly studied groups such as animals, plants, and fungi. The slime mold Dictyostelium belongs to a supergroup of eukaryotes not covered in previous studies. Results We found 441 precise intron losses in Dictyostelium discoideum and 202 precise intron losses in Dictyostelium purpureum. Consistent with these observations, Dictyostelium discoideum was found to have significantly more copies of reverse transcriptase genes than Dictyostelium purpureum. We also found that the lost introns are significantly further from the 5′ end of genes than the conserved introns. Adjacent introns were prone to be lost simultaneously in Dictyostelium discoideum. In both Dictyostelium species, the exonic sequences flanking lost introns were found to have a significantly higher GC content than those flanking conserved introns. Together, these observations support a reverse-transcription model of intron loss in which intron losses were caused by gene conversion between genomic DNA and cDNA reverse transcribed from mature mRNA. We also identified two imprecise intron losses in Dictyostelium discoideum that may have resulted from genomic deletions. Ninety-eight putative intron gains were also observed. Consistent with previous studies of other lineages, the source sequences were found in only a small number of cases, with only two instances of intron gain identified in Dictyostelium discoideum. Conclusions Although they diverged very early from animals and fungi, Dictyostelium species have similar mechanisms of intron loss. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0567-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Yue Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China. .,Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xun-Ru Che
- The High School Affiliated to Renmin University of China, Beijing, 100080, China.
| | - Andrea Porceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy.
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China. .,Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|