1
|
Bezalel-Hazony N, Zer H, Nathanson S, Shevtsov-Tal S, Ostersetzer-Biran O, Keren N. Functional flexibility of cyanobacterial light harvesting phycobilisomes enable acclimation to the complex light regime of mixing marine water columns. FEBS J 2023; 290:400-411. [PMID: 35993149 PMCID: PMC10086978 DOI: 10.1111/febs.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023]
Abstract
The light environment in a mixing water column is arguably the most erratic condition under which photosynthesis functions. Shifts in light intensity, by an order of magnitude, can occur over the time scale of hours. In marine Synechococcus, light is harvested by massive, membrane attached, phycobilisome chromophore-protein complexes (PBS). We examined the ability of a phycobilisome-containing marine Synechococcus strain (WH8102) to acclimate to illumination perturbations on this scale. Although changes in pigment composition occurred gradually over the course of days, we did observe significant and reversible changes in the pigment's fluorescence emission spectra on a time scale of hours. Upon transition to ten-fold higher intensities, we observed a decrease in the energy transferred to Photosystem II. At the same time, the spectral composition of PBS fluorescence emission shifted. Unlike fluorescence quenching mechanisms, this phenomenon resulted in increased fluorescence intensities. These data suggest a mechanism by which marine Synechococcus WH8102 detaches hexamers from the phycobilisome structure. The fluorescence yield of these uncoupled hexamers is high. The detachment process does not require protein synthesis as opposed to reattachment. Hence, the most likely process would be the degradation and resynthesis of labile PBS linker proteins. Experiments with additional species yielded similar results, suggesting that this novel mechanism might be broadly used among PBS-containing organisms.
Collapse
Affiliation(s)
- Noa Bezalel-Hazony
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Hagit Zer
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Shiri Nathanson
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Sofia Shevtsov-Tal
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
2
|
Sangphukieo A, Laomettachit T, Ruengjitchatchawalya M. PhotoModPlus: A web server for photosynthetic protein prediction from genome neighborhood features. PLoS One 2021; 16:e0248682. [PMID: 33730083 PMCID: PMC7968678 DOI: 10.1371/journal.pone.0248682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
A new web server called PhotoModPlus is presented as a platform for predicting photosynthetic proteins via genome neighborhood networks (GNN) and genome neighborhood-based machine learning. GNN enables users to visualize the overview of the conserved neighboring genes from multiple photosynthetic prokaryotic genomes and provides functional guidance on the query input. In the platform, we also present a new machine learning model utilizing genome neighborhood features for predicting photosynthesis-specific functions based on 24 prokaryotic photosynthesis-related GO terms, namely PhotoModGO. The new model performed better than the sequence-based approaches with an F1 measure of 0.872, based on nested five-fold cross-validation. Finally, we demonstrated the applications of the webserver and the new model in the identification of novel photosynthetic proteins. The server is user-friendly, compatible with all devices, and available at bicep.kmutt.ac.th/photomod.
Collapse
Affiliation(s)
- Apiwat Sangphukieo
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, Thailand
- School of Information Technology, KMUTT, Thung Khru, Bangkok, Thailand
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, Thailand
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, Thailand
- Biotechnology Program, School of Bioresources and Technology, KMUTT, Bang Khun Thian, Bangkok, Thailand
- Algal Biotechnology Research Group, Pilot Plant Development and Training Institute, KMUTT, Bang Khun Thian, Bangkok, Thailand
| |
Collapse
|
3
|
Qiu GW, Lis H, Qiu BS, Keren N. Long-term iron deprivation and subsequent recovery uncover heterogeneity in the response of cyanobacterial populations. Environ Microbiol 2021; 23:1793-1804. [PMID: 33615658 DOI: 10.1111/1462-2920.15443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 11/29/2022]
Abstract
Cyanobacteria are globally important primary producers and nitrogen fixers. They are frequently limited by iron bioavailability in natural environments that often fluctuate due to rapid consumption and irregular influx of external Fe. Here we identify a succession of physiological changes in Synechocystis sp. PCC 6803 occurring over 14-16 days of iron deprivation and subsequent recovery. We observe several adaptive strategies that allow cells to push their metabolic limits under the restriction of declining intracellular Fe quotas. Interestingly, cyanobacterial populations exposed to prolonged iron deprivation showed discernible heterogeneity in cellular auto-fluorescence during the recovery process. Using FACS and microscopy techniques we revealed that only cells with high auto-fluorescence were able to grow and reconstitute thylakoid membranes. We propose that ROS-mediated damage is likely to be associated with the emergence of the two subpopulations, and, indeed, a rapid increase in intracellular ROS content was observed during the first hours following iron addition to Fe-starved cultures. These results suggest that an increasing iron supply is a double-edged sword - posing both an opportunity and a risk. Therefore, phenotypic heterogeneity within populations is crucial for the survival and proliferation of organisms facing iron fluctuations within natural environments.
Collapse
Affiliation(s)
- Guo-Wei Qiu
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190402, Israel.,School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Hagar Lis
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190402, Israel
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Nir Keren
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190402, Israel
| |
Collapse
|
4
|
Qiu GW, Jiang HB, Lis H, Li ZK, Deng B, Shang JL, Sun CY, Keren N, Qiu BS. A unique porin meditates iron-selective transport through cyanobacterial outer membranes. Environ Microbiol 2020; 23:376-390. [PMID: 33196124 DOI: 10.1111/1462-2920.15324] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are globally important primary producers and nitrogen fixers with high iron demands. Low ambient dissolved iron concentrations in many aquatic environments mean that these organisms must maintain sufficient and selective transport of iron into the cell. However, the nature of iron transport pathways through the cyanobacterial outer membrane remains obscure. Here we present multiple lines of experimental evidence that collectively support the existence of a novel class of substrate-selective iron porin, Slr1908, in the outer membrane of the cyanobacterium Synechocystis sp. PCC 6803. Elemental composition analysis and short-term iron uptake assays with mutants in Slr1908 reveal that this protein is primarily involved in inorganic iron uptake and contributes less to the accumulation of other metals. Homologues of Slr1908 are widely distributed in both freshwater and marine cyanobacteria, most notably in unicellular marine diazotrophs. Complementary experiments with a homologue of Slr1908 in Synechococcus sp. PCC 7002 restored the phenotype of Synechocystis knockdown mutants, showing that this siderophore producing species also possesses a porin with a similar function in Fe transport. The involvement of a substrate-selective porins in iron uptake may allow cyanobacteria to tightly control iron flux into the cell, particularly in environments where iron concentrations fluctuate.
Collapse
Affiliation(s)
- Guo-Wei Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Hai-Bo Jiang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Hagar Lis
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Zheng-Ke Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Bin Deng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Jin-Long Shang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Chuan-Yu Sun
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
5
|
Over Expression of the Cyanobacterial Pgr5-Homologue Leads to Pseudoreversion in a Gene Coding for a Putative Esterase in Synechocystis 6803. Life (Basel) 2020; 10:life10090174. [PMID: 32899164 PMCID: PMC7555055 DOI: 10.3390/life10090174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Pgr5 proteins play a major direct role in cyclic electron flow paths in plants and eukaryotic phytoplankton. The genomes of many cyanobacterial species code for Pgr5-like proteins but their function is still uncertain. Here, we present evidence that supports a link between the Synechocystis sp. PCC6803 Pgr5-like protein and the regulation of intracellular redox balance. The knockout strain, pgr5KO, did not display substantial phenotypic response under our experimental conditions, confirming results obtained in earlier studies. However, the overexpression strain, pgr5OE, accumulated 2.5-fold more chlorophyll than the wild type and displayed increased content of photosystems matching the chlorophyll increase. As a result, electron transfer rates through the photosynthetic apparatus of pgr5OE increased, as did the amount of energy stored as glycogen. While, under photoautotrophic conditions, this metabolic difference had only minor effects, under mixotrophic conditions, pgr5OE cultures collapsed. Interestingly, this specific phenotype of pgr5OE mutants displayed a tendency for reverting, and cultures which previously collapsed in the presence of glucose were now able to survive. DNA sequencing of a pgr5OE strain revealed a second site suppression mutation in slr1916, a putative esterase associated with redox regulation. The phenotype of the slr1916 knockout is very similar to that of the strain reported here and to that of the pmgA regulator knockout. These data demonstrate that, in Synechocystis 6803, there is strong selection against overexpression of the Pgr5-like protein. The pseudoreversion event in a gene involved in redox regulation suggests a connection of the Pgr5-like protein to this network.
Collapse
|
6
|
Riediger M, Kadowaki T, Nagayama R, Georg J, Hihara Y, Hess WR. Biocomputational Analyses and Experimental Validation Identify the Regulon Controlled by the Redox-Responsive Transcription Factor RpaB. iScience 2019; 15:316-331. [PMID: 31103851 PMCID: PMC6525291 DOI: 10.1016/j.isci.2019.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022] Open
Abstract
Oxygenic photosynthesis requires the coordination of environmental stimuli with the regulation of transcription. The transcription factor RpaB is conserved from the simplest unicellular cyanobacteria to complex eukaryotic algae, representing more than 1 billion years of evolution. To predict the RpaB-controlled regulon in the cyanobacterium Synechocystis, we analyzed the positional distribution of binding sites together with high-resolution mapping data of transcriptional start sites (TSSs). We describe more than 150 target promoters whose activity responds to fluctuating light conditions. Binding sites close to the TSS mediate repression, whereas sites centered ∼50 nt upstream mediate activation. Using complementary experimental approaches, we found that RpaB controls genes involved in photoprotection, cyclic electron flow and state transitions, photorespiration, and nirA and isiA for which we suggest cross-regulation with the transcription factors NtcA or FurA. The deep integration of RpaB with diverse photosynthetic gene functions makes it one of the most important and versatile transcriptional regulators. RpaB controls a complex regulon, widely beyond the photosynthetic machinery The expression of the RNA regulators IsrR, PsrR1, and others depends on RpaB RpaB exhibits cross-regulations with other transcription factors, NtcA and Fur RpaB is a crucial transcriptional regulator in a photosynthetic microorganism
Collapse
Affiliation(s)
- Matthias Riediger
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Taro Kadowaki
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Ryuta Nagayama
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Jens Georg
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, 79104 Freiburg, Germany.
| |
Collapse
|