1
|
Hmidi D, Muraya F, Fizames C, Véry AA, Roelfsema MRG. Potassium extrusion by plant cells: evolution from an emergency valve to a driver of long-distance transport. THE NEW PHYTOLOGIST 2024. [PMID: 39462778 DOI: 10.1111/nph.20207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 10/29/2024]
Abstract
The ability to accumulate nutrients is a hallmark for living creatures and plants evolved highly effective nutrient transport systems, especially for the uptake of potassium (K+). However, plants also developed mechanisms that enable the rapid extrusion of K+ in combination with anions. The combined release of K+ and anions is probably an ancient extrusion system, as it is found in the Characeae that are closely related to land plants. We postulate that the ion extrusion mechanisms have developed as an emergency valve, which enabled plant cells to rapidly reduce their turgor, and prevent them from bursting. Later in evolution, seed plants adapted this system for various responses, such as the closure of stomata, long-distance stress waves, dropping of leaves by pulvini, and loading of xylem vessels. We discuss the molecular nature of the transport proteins that are involved in ion extrusion-based functions of plants and describe the functions that they obtained during evolution.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro-INRAE, 34060, Montpellier Cedex 2, France
| | - Florence Muraya
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, D-97082, Würzburg, Germany
| | - Cécile Fizames
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro-INRAE, 34060, Montpellier Cedex 2, France
| | - Anne-Aliénor Véry
- Institut des Sciences des Plantes de Montpellier, Univ Montpellier, CNRS, INRAE, Institut Agro, Campus SupAgro-INRAE, 34060, Montpellier Cedex 2, France
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, D-97082, Würzburg, Germany
| |
Collapse
|
2
|
Zi Y, Zhang Z, Zhao K, Yang X, Zhu L, Yin T, Chen C, Wen K, Li X, Zhang H, Liu X. Genome-wide identification of kiwifruit K + channel Shaker family members and their response to low-K + stress. BMC PLANT BIOLOGY 2024; 24:833. [PMID: 39243055 PMCID: PMC11378538 DOI: 10.1186/s12870-024-05555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND 'Hongyang' kiwifruit (Actinidia chinensis cv 'Hongyang') is a high-quality variety of A. chinensis with the advantages of high yield, early ripening, and high stress tolerance. Studies have confirmed that the Shaker K+ genes family is involved in plant uptake and distribution of potassium (K+). RESULTS Twenty-eight Shaker genes were identified and analyzed from the 'Hongyang' kiwifruit (A. chinensis cv 'Hongyang') genome. Subcellular localization results showed that more than one-third of the AcShaker genes were on the cell membrane. Phylogenetic analysis indicated that the AcShaker genes were divided into six subfamilies (I-VI). Conservative model, gene structure, and structural domain analyses showed that AcShaker genes of the same subfamily have similar sequence features and structure. The promoter cis-elements of the AcShaker genes were classified into hormone-associated cis-elements and environmentally stress-associated cis-elements. The results of chromosomal localization and duplicated gene analysis demonstrated that AcShaker genes were distributed on 18 chromosomes, and segmental duplication was the prime mode of gene duplication in the AcShaker family. GO enrichment analysis manifested that the ion-conducting pathway of the AcShaker family plays a crucial role in regulating plant growth and development and adversity stress. Compared with the transcriptome data of the control group, all AcShaker genes were expressed under low-K+stress, and the expression differences of three genes (AcShaker15, AcShaker17, and AcShaker22) were highly significant. The qRT-PCR results showed a high correlation with the transcriptome data, which indicated that these three differentially expressed genes could regulate low-K+ stress and reduce K+ damage in kiwifruit plants, thus improving the resistance to low-K+ stress. Comparison between the salt stress and control transcriptomic data revealed that the expression of AcShaker11 and AcShaker18 genes was significantly different and lower under salt stress, indicating that both genes could be involved in salt stress resistance in kiwifruit. CONCLUSION The results showed that 28 AcShaker genes were identified and all expressed under low K+ stress, among which AcShaker22 was differentially and significantly upregulated. The AcShaker22 gene can be used as a candidate gene to cultivate new varieties of kiwifruit resistant to low K+ and provide a reference for exploring more properties and functions of the AcShaker genes.
Collapse
Affiliation(s)
- Yinqiang Zi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Zhiming Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China
| | - Ke Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xiuyao Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ling Zhu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Chaoying Chen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Ke Wen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xulin Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China.
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming, 650224, Yunnan Province, China.
| |
Collapse
|
3
|
Muraoka Y, Yang G, Munemasa S, Takeuchi Y, Ishimaru Y, Murata Y, Uozumi N, Ueda M. An outward-rectifying plant K + channel SPORK2 exhibits temperature-sensitive ion-transport activity. Curr Biol 2023; 33:5488-5494.e7. [PMID: 38016479 DOI: 10.1016/j.cub.2023.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Temperature sensing is critical for the survival of living organisms.1,2 Thermosensitive transient receptor-potential (TRP) cation channels function as thermosensors in mammals.2,3,4,5,6 In contrast to animals, land plants lack TRP genes.7,8,9 Previous patch-clamp studies in plant cells suggested the presence of ion channels whose activities are related to temperature, implying the presence of TRP-like channels.10,11,12,13,14 However, the molecular entities of such temperature-sensitive ion channels were still unknown in land plants. In this study, we observed that the unique rainfall-induced leaf-folding movement of the legume tree Samanea saman15 was temperature-sensitive by using a rainfall-mimicking assay. Chilling-induced leaf folding in S. saman was shown to be related to the swelling of the motor cells16,17 at the base of the leaflet. This swelling suggested involvement of temperature-sensitive inactivation of K+ currents, independent of fluctuations in ion channel gene expression in motor cells. These findings led us to examine the temperature sensitivity of an outward-rectifying K+ channel, SPORK2, which was reported as an ion channel responsible for the nyctinastic (circadian-rhythmic) leaf movement of S. saman.18 We also discovered that SPORK2 exhibits temperature-sensitive K+ transport activity in the Xenopus oocyte expression system. Using chimeric channels, we showed that two domains of SPORK2 regulated the temperature sensitivity. Furthermore, heterologously expressed SPORK2 in Arabidopsis guard cells induced temperature-dependent stomatal closure. Therefore, SPORK2 is an ion channel in land plants with temperature-sensitive ion-transport activity that functions similarly to mammalian TRP channels. Our current findings advance the molecular understanding of temperature-sensing mechanisms in plants.
Collapse
Affiliation(s)
- Yuki Muraoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Gangqiang Yang
- School of Pharmacy, Yantai University, 30, Qingquan RD, Laishan District, Yantai 264005, China
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yusuke Takeuchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
4
|
Nieves-Cordones M, Amo J, Hurtado-Navarro L, Martínez-Martínez A, Martínez V, Rubio F. Inhibition of SlSKOR by SlCIPK23-SlCBL1/9 uncovers CIPK-CBL-target network rewiring in land plants. THE NEW PHYTOLOGIST 2023; 238:2495-2511. [PMID: 36967582 DOI: 10.1111/nph.18910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/19/2023] [Indexed: 05/19/2023]
Abstract
Transport of K+ to the xylem is a key process in the mineral nutrition of the shoots. Although CIPK-CBL complexes have been widely shown to regulate K+ uptake transport systems, no information is available about the xylem ones. Here, we studied the physiological roles of the voltage-gated K+ channel SlSKOR and its regulation by the SlCIPK23-SlCBL1/9 complexes in tomato plants. We phenotyped gene-edited slskor and slcipk23 tomato knockout mutants and carried out two-electrode voltage-clamp (TEVC) and BiFC assays in Xenopus oocytes as key approaches. SlSKOR was preferentially expressed in the root stele and was important not only for K+ transport to shoots but also, indirectly, for that of Ca2+ , Mg2+ , Na+ , NO3 - , and Cl- . Surprisingly, the SlCIPK23-SlCBL1/9 complexes turned out to be negative regulators of SlSKOR. Inhibition of SlSKOR by SlCIPK23-SlCBL1/9 was observed in Xenopus oocytes and tomato plants. Regulation of SKOR-like channels by CIPK23-CBL1 complexes was also present in Medicago, grapevine, and lettuce but not in Arabidopsis and saltwater cress. Our results provide a molecular framework for coordinating root K+ uptake and its translocation to the shoot by SlCIPK23-SlCBL1/9 in tomato plants. Moreover, they evidenced that CIPK-CBL-target networks have evolved differently in land plants.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Laura Hurtado-Navarro
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Almudena Martínez-Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| |
Collapse
|
5
|
Garcia K, Cloghessy K, Cooney DR, Shelley B, Chakraborty S, Kafle A, Busidan A, Sonawala U, Collier R, Jayaraman D, Ané JM, Pilot G. The putative transporter MtUMAMIT14 participates in nodule formation in Medicago truncatula. Sci Rep 2023; 13:804. [PMID: 36646812 PMCID: PMC9842706 DOI: 10.1038/s41598-023-28160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Transport systems are crucial in many plant processes, including plant-microbe interactions. Nodule formation and function in legumes involve the expression and regulation of multiple transport proteins, and many are still uncharacterized, particularly for nitrogen transport. Amino acids originating from the nitrogen-fixing process are an essential form of nitrogen for legumes. This work evaluates the role of MtN21 (henceforth MtUMAMIT14), a putative transport system from the MtN21/EamA-like/UMAMIT family, in nodule formation and nitrogen fixation in Medicago truncatula. To dissect this transporter's role, we assessed the expression of MtUMAMIT14 using GUS staining, localized the corresponding protein in M. truncatula root and tobacco leaf cells, and investigated two independent MtUMAMIT14 mutant lines. Our results indicate that MtUMAMIT14 is localized in endosomal structures and is expressed in both the infection zone and interzone of nodules. Comparison of mutant and wild-type M. truncatula indicates MtUMAMIT14, the expression of which is dependent on the presence of NIN, DNF1, and DNF2, plays a role in nodule formation and nitrogen-fixation. While the function of the transporter is still unclear, our results connect root nodule nitrogen fixation in legumes with the UMAMIT family.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7619, USA.
| | - Kaylee Cloghessy
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Danielle R Cooney
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7619, USA
| | - Brett Shelley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7619, USA
| | - Aymeric Busidan
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Unnati Sonawala
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Ray Collier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Molecular Technologies Department, Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Madison, WI, 53562, USA
| | | | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| |
Collapse
|
6
|
Lhamo D, Wang C, Gao Q, Luan S. Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families. Curr Genomics 2021; 22:164-180. [PMID: 34975289 PMCID: PMC8640845 DOI: 10.2174/1389202922666210225083634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).
Collapse
Affiliation(s)
- Dhondup Lhamo
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qifei Gao
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- 1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
7
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
8
|
Fedorova EE, Coba de la Peña T, Lara-Dampier V, Trifonova NA, Kulikova O, Pueyo JJ, Lucas MM. Potassium content diminishes in infected cells of Medicago truncatula nodules due to the mislocation of channels MtAKT1 and MtSKOR/GORK. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1336-1348. [PMID: 33130893 PMCID: PMC7904148 DOI: 10.1093/jxb/eraa508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/03/2020] [Indexed: 05/26/2023]
Abstract
Rhizobia establish a symbiotic relationship with legumes that results in the formation of root nodules, where bacteria encapsulated by a membrane of plant origin (symbiosomes), convert atmospheric nitrogen into ammonia. Nodules are more sensitive to ionic stresses than the host plant itself. We hypothesize that such a high vulnerability might be due to defects in ion balance in the infected tissue. Low temperature SEM (LTSEM) and X-ray microanalysis of Medicago truncatula nodules revealed a potassium (K+) decrease in symbiosomes and vacuoles during the life span of infected cells. To clarify K+ homeostasis in the nodule, we performed phylogenetic and gene expression analyses, and confocal and electron microscopy localization of two key plant Shaker K+ channels, AKT1 and SKOR/GORK. Phylogenetic analyses showed that the genome of some legume species, including the Medicago genus, contained one SKOR/GORK and one AKT1 gene copy, while other species contained more than one copy of each gene. Localization studies revealed mistargeting and partial depletion of both channels from the plasma membrane of M. truncatula mature nodule-infected cells that might compromise ion transport. We propose that root nodule-infected cells have defects in K+ balance due to mislocation of some plant ion channels, as compared with non-infected cells. The putative consequences are discussed.
Collapse
Affiliation(s)
- Elena E Fedorova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | | | - Natalia A Trifonova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | | | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
9
|
Dreyer I, Sussmilch FC, Fukushima K, Riadi G, Becker D, Schultz J, Hedrich R. How to Grow a Tree: Plant Voltage-Dependent Cation Channels in the Spotlight of Evolution. TRENDS IN PLANT SCIENCE 2021; 26:41-52. [PMID: 32868178 DOI: 10.1016/j.tplants.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Phylogenetic analysis can be a powerful tool for generating hypotheses regarding the evolution of physiological processes. Here, we provide an updated view of the evolution of the main cation channels in plant electrical signalling: the Shaker family of voltage-gated potassium channels and the two-pore cation (K+) channel (TPC1) family. Strikingly, the TPC1 family followed the same conservative evolutionary path as one particular subfamily of Shaker channels (Kout) and remained highly invariant after terrestrialisation, suggesting that electrical signalling was, and remains, key to survival on land. We note that phylogenetic analyses can have pitfalls, which may lead to erroneous conclusions. To avoid these in the future, we suggest guidelines for analyses of ion channel evolution in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile.
| | - Frances C Sussmilch
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany; School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Gonzalo Riadi
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Jörg Schultz
- Department of Bioinformatics, Biozentrum, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany.
| |
Collapse
|