1
|
Duan X, Xie W, Chen X, Zhang H, Zhao T, Huang J, Zhang R, Li X. Morphological and molecular mechanisms of floral nectary development in Chinese Jujube. BMC PLANT BIOLOGY 2024; 24:1041. [PMID: 39497044 PMCID: PMC11533333 DOI: 10.1186/s12870-024-05760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Chinese jujube (Ziziphus jujuba Mill.), also called Chinese date, is one of the oldest and widely cultivated fruit trees with great economic values, which, at least, can be attributed to the melliferous flower with highly developed nectary that can secret huge amount of nectar in a rather tiny floral size. However, the morphological nature, metabolic products, developmental process, as well as molecular and regulatory mechanisms of jujube nectary remain largely unknown. RESULTS Here, we selected Z. jujuba 'Dongzao' as a system to address these questions. We uncovered that the jujube nectary is an annular or donut-shaped secretory protrusion that surrounds the base of the carpels, along with emerald and glistening hues, which can produce a bulk honey with many metabolic compounds (e.g. saccharides and flavonoids) that has a high nutritional value and benefit for human health. The development of jujube nectary is a dynamic process of earlier cell division followed by later cell expansion. We also identified putative genes associated with the nectary development and found that the CRABS CLAW (CRC) ortholog (ZjCRC) is the key to nectary development: the gene is highly expressed in nectary; ectopic expression of it in the Arabidopsis crc-1 mutant rescued the lost nectary (also the carpel and silique defects). We also demonstrated that a MADS-box transcription factor ZjAGAMOUS1 (ZjAG1) is required for the direct activation of ZjCRC expression. CONCLUSIONS Taken together, our results not only provide a comprehensive portrait of the jujube nectary, but also pave the way to effective utilization of jujube and other woody crops.
Collapse
Affiliation(s)
- Xiaoshan Duan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Wenjie Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiling Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanghang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyang Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Research Centre for Jujube Engineering and Technology of State Forestry and Grassland Administration, Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Zhang P, Xie Y, Xie W, Li L, Zhang H, Duan X, Zhang R, Guo L. Roles of the APETALA3-3 ortholog in the petal identity specification and morphological differentiation in Delphinium anthriscifolium flowers. HORTICULTURE RESEARCH 2024; 11:uhae097. [PMID: 38855416 PMCID: PMC11161261 DOI: 10.1093/hr/uhae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 06/11/2024]
Abstract
The genus Delphinium (Ranunculaceae) with its unique and highly complex floral structure is an ideal system to address some key questions in terms of morphological and evolutionary studies in flowers. In D. anthriscifolium, for example, the original eight petal primordia differentiate into three types at maturity (i.e., two dorsal spurred, two lateral flat, and four ventral reduced petals). The mechanisms underlying their identity determination and morphological differentiation remain unclear. Here, through a comprehensive approach combining digital gene expression (DGE) profiles, in situ hybridization, and virus-induced gene silencing (VIGS), we explore the role of the APETALLATA3-3 (AP3-3) ortholog in D. anthriscifolium. Our findings reveal that the DeanAP3-3 not only functions as a traditionally known petal identity gene but also plays a critical role in petal morphological differentiation. The DeanAP3-3 gene is expressed in all the petal primordia before their morphological differentiation at earlier stages, but shows a gradient expression level difference along the dorsventral floral axis, with higher expression level in the dorsal spurred petals, intermediate level in the lateral flat petals and lower level in the ventral reduced petals. VIGS experiments revealed that flowers with strong phenotypic changes showed a complete transformation of all the three types of petals into non-spurred sepals. However, in the flowers with moderate phenotypic changes, the transformation of spurred petals into flat petals is associated with moderate silencing of the DeanAP3-3 gene, suggesting a significant impact of expression level on petal morphological differentiation. This research also shed some insights into the role of changes in gene expression levels on morphological differentiation in plants.
Collapse
Affiliation(s)
- Peng Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Yanru Xie
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Wenjie Xie
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Li Li
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Hanghang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Xiaoshan Duan
- College of Forestry, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Rui Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Liping Guo
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| |
Collapse
|
3
|
Wang Y, Pan Y, Peng L, Wang J. Seasonal variation of two floral patterns in Clematis 'Vyvyan Pennell' and its underlying mechanism. BMC PLANT BIOLOGY 2024; 24:22. [PMID: 38166716 PMCID: PMC10759560 DOI: 10.1186/s12870-023-04696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Floral patterns are crucial for insect pollination and plant reproduction. Generally, once these patterns are established, they exhibit minimal changes under natural circumstances. However, the Clematis cultivar' Vyvyan Pennell', the apetalous lineage in the Ranunculaceae family, produces two distinct types of flowers during different seasons. The regulatory mechanism responsible for this phenomenon remains largely unknown. In this study, we aim to shed light on this floral development with shifting seasonal patterns by conducting extensive morphological, transcriptomic, and hormone metabolic analyses. Our findings are anticipated to contribute valuable insights into the diversity of flowers in the Ranunculaceae family. RESULTS The morphological analysis revealed that the presence of extra petaloid structures in the spring double perianth was a result of the transformation of stamens covered with trichomes during the 5th developmental stage. A de novo reference transcriptome was constructed by comparing buds and organs within double and single perianth from both seasons. A total of 209,056 unigenes were assembled, and 5826 genes were successfully annotated in all six databases. Among the 69,888 differentially expressed genes from the comparative analysis, 48 genes of utmost significance were identified. These critical genes are associated with various aspects of floral development. Interestingly, the A-, B-, and C-class genes exhibited a wider range of expression and were distinct within two seasons. The determination of floral organ identity was attributed to the collaborative functioning of all the three classes genes, aligning with a modified "fading border model". The phytohormones GA3, salicylic acid, and trans-zeatin riboside may affect the formation of the spring double perianth, whereas GA7 and abscisic acid may affect single flowers in autumn. CONCLUSIONS We presumed that the varying temperatures between the two seasons served as the primary factor in the alteration of floral patterns, potentially affecting the levels of plant hormones and expressions of organ identity genes. However, a more thorough investigation is necessary to fully comprehend the entire regulatory network. Nonetheless, our study provides some valuable informations for understanding the underlying mechanism of floral pattern alterations in Clematis.
Collapse
Affiliation(s)
- Ying Wang
- College of Landscape Architecture and Horticulture Science, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224, China, Yunnan
| | - Yue Pan
- College of Landscape Architecture and Horticulture Science, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224, China, Yunnan
| | - Lei Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jin Wang
- College of Landscape Architecture and Horticulture Science, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224, China, Yunnan.
| |
Collapse
|
4
|
Cabin Z, Derieg NJ, Garton A, Ngo T, Quezada A, Gasseholm C, Simon M, Hodges SA. Non-pollinator selection for a floral homeotic mutant conferring loss of nectar reward in Aquilegia coerulea. Curr Biol 2022; 32:1332-1341.e5. [PMID: 35176226 DOI: 10.1016/j.cub.2022.01.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Here, we describe a polymorphic population of Aquilegia coerulea with a naturally occurring floral homeotic mutant, A. coerulea var. daileyae, where the characteristic petals with nectar spurs are replaced with a second set of sepals. Although it would be expected that this loss of pollinator reward would be disadvantageous to the mutant, we find that it has reached relatively high frequency (∼25%) and is under strong, positive selection across multiple seasons (s = 0.17-0.3) primarily due to reduced floral herbivory. We identify the underlying locus (APETALA3-3) and multiple causal loss-of-function mutations indicating an ongoing soft sweep. Elevated linkage disequilibrium around the two most common causal alleles indicates that positive selection has been occurring for many generations. Lastly, genotypic frequencies at AqAP3-3 indicate a degree of positive assortative mating by morphology. Together, these data provide both a compelling example that large-scale discontinuous morphological changes differentiating taxa can occur due to single mutations and a particularly clear example of linking genotype, phenotype, and fitness.
Collapse
Affiliation(s)
- Zachary Cabin
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Nathan J Derieg
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alexandra Garton
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Timothy Ngo
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ashley Quezada
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Constantine Gasseholm
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mark Simon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Scott A Hodges
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
5
|
Xie DF, Cheng RY, Fu X, Zhang XY, Price M, Lan YL, Wang CB, He XJ. A Combined Morphological and Molecular Evolutionary Analysis of Karst-Environment Adaptation for the Genus Urophysa (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:667988. [PMID: 34177982 PMCID: PMC8223000 DOI: 10.3389/fpls.2021.667988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
The karst environment is characterized by low soil water content, periodic water deficiency, and poor nutrient availability, which provides an ideal natural laboratory for studying the adaptive evolution of its inhabitants. However, how species adapt to such a special karst environment remains poorly understood. Here, transcriptome sequences of two Urophysa species (Urophysa rockii and Urophysa henryi), which are Chinese endemics with karst-specific distribution, and allied species in Semiaquilegia and Aquilegia (living in non-karst habitat) were collected. Single-copy genes (SCGs) were extracted to perform the phylogenetic analysis using concatenation and coalescent methods. Positively selected genes (PSGs) and clusters of paralogous genes (Mul_genes) were detected and subsequently used to conduct gene function annotation. We filtered 2,271 SCGs and the coalescent analysis revealed that 1,930 SCGs shared the same tree topology, which was consistent with the topology detected from the concatenated tree. Total of 335 PSGs and 243 Mul_genes were detected, and many were enriched in stress and stimulus resistance, transmembrane transport, cellular ion homeostasis, calcium ion transport, calcium signaling regulation, and water retention. Both molecular and morphological evidences indicated that Urophysa species evolved complex strategies for adapting to hostile karst environments. Our findings will contribute to a new understanding of genetic and phenotypic adaptive mechanisms of karst adaptation in plants.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Fu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiang-Yi Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan-Ling Lan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | | | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|