1
|
Zhang G, Zheng H, Wang X, Han S, Liu W, Sun C, Hu Q, Ma C. Flexible substrate-based mass spectrometry platform for in situ non-destructive molecular imaging of living plants. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39364753 DOI: 10.1111/pbi.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 09/23/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Monitoring and localizing molecules on living plants is critical for understanding their growth, development and disease. However, current techniques for molecular imaging of living plants often lack spatial information or require tedious pre-labelling. Here, we proposed a novel molecular imaging platform that combines sliver nanowire-doped Ti3C2 MXene (Ag NWs@MXene) flexible film substrate with laser desorption/ionization mass spectrometry imaging (AMF-LDI-MSI) to study the spatial distribution of biomolecules on the surface of living plants. This platform overcomes the MSI challenges posed by difficult-to-slice plant tissues (e.g., tough or water-rich roots and fragile flowers) and enables precisely transfer and visualize the molecule. Comparisons of the measurement results to those from matrix-assisted LDI-MSI (MALDI-MSI) technology demonstrate the accuracy and reliability of the platform. Biocompatibility evaluations indicated that the platform without observable adverse effects on the health of living plants. The distribution of growth and disease-associated signalling molecules, such as choline, organic acids and carbohydrates, can be in situ non-destructively detected on the surfaces of living plants, which is important for tracking the health of plants and their diseased areas. AMF-LDI-MSI platform can serve as a promising tool for label-free, in situ and non-destructive monitoring of functional biomolecules and plant growth from a spatial perspective.
Collapse
Affiliation(s)
- Guanhua Zhang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Zheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shuxin Han
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenglong Sun
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiongzheng Hu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Ntelkis N, Goossens A, Šola K. Cell type-specific control and post-translational regulation of specialized metabolism: opening new avenues for plant metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102575. [PMID: 38901289 DOI: 10.1016/j.pbi.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Although plant metabolic engineering enables the sustainable production of valuable metabolites with many applications, we still lack a good understanding of many multi-layered regulatory networks that govern metabolic pathways at the metabolite, protein, transcriptional and cellular level. As transcriptional regulation is better understood and often reviewed, here we highlight recent advances in the cell type-specific and post-translational regulation of plant specialized metabolism. With the advent of single-cell technologies, we are now able to characterize metabolites and their transcriptional regulators at the cellular level, which can refine our searches for missing biosynthetic enzymes and cell type-specific regulators. Post-translational regulation through enzyme inhibition, protein phosphorylation and ubiquitination are clearly evident in specialized metabolism regulation, but not frequently studied or considered in metabolic engineering efforts. Finally, we contemplate how advances in cell type-specific and post-translational regulation can be applied in metabolic engineering efforts in planta, leading to optimization of plants as metabolite production vehicles.
Collapse
Affiliation(s)
- Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium; Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa.
| | - Krešimir Šola
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| |
Collapse
|
3
|
Zou Y, Tang W, Li B. Exploring natural product biosynthesis in plants with mass spectrometry imaging. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00231-0. [PMID: 39341734 DOI: 10.1016/j.tplants.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
The biosynthesis of natural products (NPs) is a complex dynamic spatial and temporal process that requires the collaboration of multiple disciplines to explore the underlying mechanisms. Mass spectrometry imaging (MSI) is a powerful technique for studying NPs due to its high molecular coverage and sensitivity without the need for labeling. To date, many analysts still use MSI primarily for visualizing the distribution of NPs in heterogeneous tissues, although studies have proved that it can provide crucial insights into the specialized spatial metabolic process of NPs. In this review we strive to bring awareness of the importance of MSI, and we advocate further exploitation of the spatial information obtained from MSI to establish metabolite-gene expression relationships.
Collapse
Affiliation(s)
- Yuchen Zou
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Yin Z, Huang W, Li K, Fernie AR, Yan S. Advances in mass spectrometry imaging for plant metabolomics-Expanding the analytical toolbox. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2168-2180. [PMID: 38990529 DOI: 10.1111/tpj.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly popular in plant science due to its ability to characterize complex chemical, spatial, and temporal aspects of plant metabolism. Over the past decade, as the emerging and unique features of various MSI techniques have continued to support new discoveries in studies of plant metabolism closely associated with various aspects of plant function and physiology, spatial metabolomics based on MSI techniques has positioned it at the forefront of plant metabolic studies, providing the opportunity for far higher resolution than was previously available. Despite these efforts, profound challenges at the levels of spatial resolution, sensitivity, quantitative ability, chemical confidence, isomer discrimination, and spatial multi-omics integration, undoubtedly remain. In this Perspective, we provide a contemporary overview of the emergent MSI techniques widely used in the plant sciences, with particular emphasis on recent advances in methodological breakthroughs. Having established the detailed context of MSI, we outline both the golden opportunities and key challenges currently facing plant metabolomics, presenting our vision as to how the enormous potential of MSI technologies will contribute to progress in plant science in the coming years.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Institute of Advanced Science Facilities, Shenzhen, 518107, Guangdong, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Kun Li
- Guangdong Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| |
Collapse
|
5
|
Luo Y, Ma S, Zhang J, Zhang Q, Zhang Y, Mao J, Yuan H, Ouyang G, Zhang S, Zhao W. Developing a novel strategy for fabricating matrix film to assess the distribution of potassium perfluorooctanic sulfonate by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chim Acta 2024; 1303:342528. [PMID: 38609267 DOI: 10.1016/j.aca.2024.342528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Matrix deposition plays a critical role in image quality of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To improve the ionization efficiency and overcome the limitation of traditional matrix deposition methods in the face of difficult-to-sublimate or difficult-to-dissolve matrix, covalent organic frameworks (COFs) named COF-DhaTab was successfully synthesized and firstly used as matrix film. It was fabricated by imprinting of sieved COF-DhaTab powder on the surface of a double-sided adhesive tape. Outstanding reproducibility and uniformity of COF-DhaTab film were demonstrated by relative standard deviation (RSD) within 8.37% and 7.71% from dot-to-dot and plate-to-plate, respectively. With the introduction of double-sided adhesive tape, water contact angle (WCA) of COF-DhaTab film increased from 55° to 141°, resulting in significant suppression of analyte diffusion. Moreover, the intensity of potassium perfluorooctanic sulfonate (PFOS, C8F17SO3-, m/z 498.93) was 9.3 × 105, more than six hundred times higher than that using DHB matrix. This enhancement was attributed to the rough surface and multiple branches of the synthesized COF-DhaTab. To verify the ability of COF-DhaTab film as substrate, the spatial distribution of PFOS in zebrafish, rat liver and kidney tissues was explored. Superior imaging capability was displayed with high-spatial resolution and reliable location distribution. These results not only demonstrate the outstanding ability of COF-DhaTab as matrix for MALDI-MS and MALDI-MSI, but also provide a facile approach for fabrication of novel matrix films for MALDI-MSI.
Collapse
Affiliation(s)
- Yake Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shanshan Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianxun Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Qidong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Yanhao Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Mao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; The Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Horn PJ, Chapman KD. Imaging plant metabolism in situ. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1654-1670. [PMID: 37889862 PMCID: PMC10938046 DOI: 10.1093/jxb/erad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progress that enhances the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.
Collapse
Affiliation(s)
- Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA
| |
Collapse
|
7
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
8
|
Gao C, Wang Y, Zhang H, Hang W. Titania Nanosheet as a Matrix for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis and Imaging. Anal Chem 2023; 95:650-658. [PMID: 36577518 DOI: 10.1021/acs.analchem.2c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Surface-assisted laser desorption/ionization (SALDI) acts as a soft desorption/ionization technique, which has been widely recognized in small-molecule analysis owing to eliminating the requirement of the organic matrix. Herein, titania nanosheets (TiO2 NSs) were applied as novel substrates for simultaneous analysis and imaging of low-mass molecules and lipid species. A wide variety of representative analytes containing amino acids, bases, drugs, peptides, endogenous small molecules, and saccharide-spiked urine were examined by the TiO2 NS-assisted LDI mass spectrometry (MS). Compared with conventional organic matrices and substrates [Ag nanoparticles (NPs), Au NPs, carbon nanotubes, carbon NPs, CeO2 microparticles, and P25 TiO2], the TiO2 NS-assisted LDI MS method shows higher sensitivity and less spectral interference. Repeatability was evaluated with batch-to-batch relative standard deviations for 5-hydroxytryptophan, glucose-spiked urine, and glucose with addition of internal standard, which were 17.4, 14.9, and 2.8%, respectively. The TiO2 NS-assisted LDI MS method also allows the determination of blood glucose levels in mouse serum with a linear range of 0.5-10 mM. Owing to the nanoscale size and uniform deposition of the TiO2 NS matrix, spatial distributions of 16 endogenous small molecules and 16 lipid species from the horizontal section of the mouse brain tissue can be visualized at a 50 μm spatial resolution. These successful applications confirm that the TiO2-assisted LDI MS method has promising prospects in the field of life science.
Collapse
Affiliation(s)
- Chaohong Gao
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yubing Wang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Heng Zhang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Shen S, Zhan C, Yang C, Fernie AR, Luo J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. MOLECULAR PLANT 2023; 16:43-63. [PMID: 36114669 DOI: 10.1016/j.molp.2022.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Plants are natural experts in organic synthesis, being able to generate large numbers of specific metabolites with widely varying structures that help them adapt to variable survival challenges. Metabolomics is a research discipline that integrates the capabilities of several types of research including analytical chemistry, statistics, and biochemistry. Its ongoing development provides strategies for gaining a systematic understanding of quantitative changes in the levels of metabolites. Metabolomics is usually performed by targeting either a specific cell, a specific tissue, or the entire organism. Considerable advances in science and technology over the last three decades have propelled us into the era of multi-omics, in which metabolomics, despite at an earlier developmental stage than genomics, transcriptomics, and proteomics, offers the distinct advantage of studying the cellular entities that have the greatest influence on end phenotype. Here, we summarize the state of the art of metabolite detection and identification, and illustrate these techniques with four case study applications: (i) comparing metabolite composition within and between species, (ii) assessing spatio-temporal metabolic changes during plant development, (iii) mining characteristic metabolites of plants in different ecological environments and upon exposure to various stresses, and (iv) assessing the performance of metabolomics as a means of functional gene identification , metabolic pathway elucidation, and metabolomics-assisted breeding through analyzing plant populations with diverse genetic variations. In addition, we highlight the prominent contributions of joint analyses of plant metabolomics and other omics datasets, including those from genomics, transcriptomics, proteomics, epigenomics, phenomics, microbiomes, and ion-omics studies. Finally, we discuss future directions and challenges exploiting metabolomics-centered approaches in understanding plant metabolic diversity.
Collapse
Affiliation(s)
- Shuangqian Shen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chuansong Zhan
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chenkun Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
10
|
Wu ZH, Wang RZ, Sun ZL, Su Y, Xiao LT. A mass spectrometry imaging approach on spatiotemporal distribution of multiple alkaloids in Gelsemium elegans. FRONTIERS IN PLANT SCIENCE 2022; 13:1051756. [PMID: 36466241 PMCID: PMC9718364 DOI: 10.3389/fpls.2022.1051756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Gelsemium elegans contains multiple alkaloids with pharmacological effects, thus researchers focus on the identification and application of alkaloids extracted from G. elegans. Regretfully, the spatiotemporal distribution of alkaloids in G. elegans is still unclear. In this study, the desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was applied to simultaneously analyze the distribution of pharmacologically important alkaloids in different organ/tissue sections of G. elegans at different growth stages. Finally, 23 alkaloids were visualized in roots, stems and leaves at seedling stage and 19 alkaloids were observed at mature stage. In mature G. elegans, 16 alkaloids were distributed in vascular bundle region of mature roots, 15 alkaloids were mainly located in the pith region of mature stems and 2 alkaloids were enriched in epidermis region of mature stems. A total of 16 alkaloids were detected in leaf veins of mature leaves and 17 alkaloids were detected in shoots. Interestingly, diffusion and transfer of multiple alkaloids in tissues have been observed along with the development and maturation. This study comprehensively characterized the spatial metabolomics of G. elegans alkaloids, and the spatiotemporal distribution of alkaloid synthesis. In addition, the results also have reference value for the development and application of Gelsemium elegans and other medicinal plants.
Collapse
Affiliation(s)
- Zi-Han Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ruo-Zhong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yi Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Lang-Tao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Wu L, Qi K, Liu C, Hu Y, Xu M, Pan Y. Enhanced Coverage and Sensitivity of Imprint DESI Mass Spectrometry Imaging for Plant Leaf Metabolites by Post-photoionization. Anal Chem 2022; 94:15108-15116. [PMID: 36201321 DOI: 10.1021/acs.analchem.2c03329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant metabolites exhibit a variety of different chemical properties, physiological activities, and biological functions. However, untargeted imaging of highly diverse metabolic profiles is still a great challenge. Here, metabolites in plant leaves were imaged via imprint, followed by desorption electrospray ionization/post-photoionization (imprint DESI/PI) mass spectrometry imaging. In contrast to the traditional imprint DESI method, quite a few metabolites, such as terpenoids, flavonoids, glycosides, alkylphenols, amino acids, phenolic acids, tannins, and lipids, in fresh sage leaves, ginkgo leaves, and tea leaves were well detected and imaged by imprint DESI/PI. More than 80 metabolites were additionally identified, and more than 1 order of magnitude higher signal intensities were obtained for most metabolites in the negative ion mode. By virtue of the significant improvement of coverage and sensitivity of PI, the catechin biosynthesis network in fresh tea leaves could be clearly illustrated, indicating the potential applicability of imprint DESI/PI in exploring the sites and pathways of plant metabolic conversion.
Collapse
Affiliation(s)
- Liutian Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yonghua Hu
- Center of Technology, China Tobacco Anhui Industrial Co, Ltd., Hefei 230088, Anhui, P. R. China
| | - Minggao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
12
|
Wu ZH, Su Y, Luo ZF, Sun ZL, Gong ZH, Xiao LT. In Situ Visual Distribution of Gelsemine, Koumine, and Gelsenicine by MSI in Gelsemiumelegans at Different Growth Stages. Molecules 2022; 27:1810. [PMID: 35335173 PMCID: PMC8952314 DOI: 10.3390/molecules27061810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/26/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023] Open
Abstract
The distribution of pharmatically important alkaloids gelsemine, koumine, and gelsenicine in Gelsemium elegans tissues is a hot topic attracting research attention. Regretfully, the in planta visual distribution details of these alkaloids are far from clear although several researches reported the alkaloid quantification in G. elegans by LC-MS/MS. In this study, mass imaging spectrometry (MSI) was employed to visualize the in situ visualization of gelsemine, koumine, and gelsenicine in different organs and tissues of G. elegans at different growth stages, and the relative quantification of three alkaloids were performed according to the image brightness intensities captured by the desorption electrospray ionization MSI (DESI-MSI). The results indicated that these alkaloids were mainly accumulated in pith region and gradually decreased from pith to epidermis. Interestingly, three alkaloids were found to be present in higher abundance in the leaf vein. Along with the growth and development, the accumulation of these alkaloids was gradually increased in root and stem. Moreover, we employed LC-MS/MS to quantify three alkaloids and further validated the in situ distributions. The content of koumine reached 249.2 μg/g in mature roots, 272.0 μg/g in mature leaves, and 149.1 μg/g in mature stems, respectively, which is significantly higher than that of gelsemine and gelsenicine in the same organ. This study provided an accurately in situ visualization of gelsemine, koumine, and gelsenicine in G. elegans, and would be helpful for understanding their accumulation in plant and guiding application.
Collapse
Affiliation(s)
- Zi-Han Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| | - Yi Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| | - Zhou-Fei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhi-Hong Gong
- Waters Technology (Shanghai) Co., Ltd., Shanghai 200120, China;
| | - Lang-Tao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| |
Collapse
|
13
|
Huang H, Ouyang D, Lin ZA. Recent Advances in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry and Its Imaging for Small Molecules. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Su CH, Wang BW, Dutkiewicz EP, Hsu CC, Yang YL. Surface-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry (SALDI-IMS)-Based Detection of Vinca Alkaloids Distribution in the Petal of Madagascar Periwinkle. Methods Mol Biol 2022; 2505:45-58. [PMID: 35732935 DOI: 10.1007/978-1-0716-2349-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The surface-assisted laser desorption/ionization (SALDI) technique uses inorganic materials to aid desorption and ionization of molecules. SALDI is suitable for analyzing small molecules due to the absence of interfering signals in the low m/z range originating from the organic matrix. Imaging mass spectrometry (IMS) is a versatile imaging approach with high spatial resolution for analyzing various molecular species, but its application depends heavily on the ionization method. We have developed a functionalized titanium dioxide (TiO2) nanowire as a solid substrate for SALDI-MS detection of low-molecular-weight molecules. We apply this novel substrate for imprinting fragile specimens such as petals and further SALDI-IMS analysis. The TiO2 nanowire substrate is prepared from a commercial Ti plate by a hydrothermal process and subsequently chemically modified to improve the quality and selectivity of imprinting as well as the sensitivity of SALDI-IMS analysis. Here, the functionalized TiO2 nanowire substrate is applied to visualize the distribution of vinca alkaloids in the petal of Madagascar periwinkle (Catharanthus roseus).
Collapse
Affiliation(s)
- Chun-Han Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Bo-Wei Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ewelina P Dutkiewicz
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
15
|
Wang XN, Li B. Monolithic Gold Nanoparticles/Thiol-β-cyclodextrin-Functionalized TiO 2 Nanowires for Enhanced SALDI MS Detection and Imaging of Natural Products. Anal Chem 2021; 94:952-959. [PMID: 34932904 DOI: 10.1021/acs.analchem.1c03764] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) has been successfully applied in the analysis of various small molecules. In this work, gold nanoparticles/thiol-β-cyclodextrin-functionalized TiO2 nanowires (AuNPs/SH-β-CD-TiO2 NWs) were prepared to enhance the performance of SALDI MS and mass spectrometry imaging (MSI). A monolithic TiO2 film was first grown on an indium tin oxide (ITO) glass slide via a modified sol-gel method and treated in an alkaline environment to form nanowires. TiO2 NWs were chemically modified by SH-β-CD for immobilizing AuNPs densely and strongly. Compared with the conventional organic matrix 2,5-dihydroxybenzoic acid (DHB), the prepared AuNPs/SH-β-CD-TiO2 NWs showed superior performances on detection sensitivity, repeatability, and analyte coverage. Analytes typically detectable with negative-ion matrix-assisted laser desorption/ionization (MALDI) MS could also be observed using AuNPs/SH-β-CD-TiO2 NWs in the positive ion mode. Its successful usage efficiently enhanced the SALDI MS detection of various small molecules such as carbohydrates, fatty acids, and bile acids in the positive ion mode. The developed SALDI substrate was further used to characterize and discriminate the natural and in vitro cultured Calculus Bovis, as well as natural and artificial Moschus. Furthermore, the spatial distribution of several natural products in spearmint leaves and potato tubers was explored by tissue imprinting and deposition on the AuNPs/SH-β-CD-TiO2 NW surface for SALDI MSI in dual-polarity mode, respectively. The wide application and satisfied detection sensitivity make AuNPs/SH-β-CD-TiO2 NWs ideal for SALDI MS and MSI of various natural products.
Collapse
Affiliation(s)
- Xian-Na Wang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
16
|
Tang X, Zhao M, Chen Z, Huang J, Chen Y, Wang F, Wan K. Visualizing the spatial distribution of metabolites in Clausena lansium (Lour.) skeels using matrix-assisted laser desorption/ionization mass spectrometry imaging. PHYTOCHEMISTRY 2021; 192:112930. [PMID: 34481177 DOI: 10.1016/j.phytochem.2021.112930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Clausena lansium (Lour.) Skeels (Rutaceae) is a natural bioactive plant. Its roots, stems, leaves, and seeds are widely used in Chinese traditional and folk medicine. Although the characterization and functional analysis of bioactive components in Clausena lansium (Lour.) Skeels has been widely reported, the spatial distribution of these compounds within the main plant tissues remains undefined. Here, we adopted matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to reveal the spatial distribution of active alkaloids, coumarins, sugars and organic acids in C. lansium. Using a combined wet and dry matrix covering method to enhance sensitivity, we detected alkaloids throughout the fruit including 3-methylcarbazole and murrastinine which were especially rich in the kernel tissues but were restricted to the stem xylem and medulla and in the leaf epidermal region. Interestingly, murrayanine and heptaphylline were mainly found in pulp tissues with very low content in the stems and leaves while girinimbine was only distributed within the outer kernel skin. Coumarins were mainly distributed in the fruit pericarp and leaf vein tissues but with no clear spatial specificity in stems. Lastly, hexoses were mainly evident in the fruit pulp, although sucrose was also found in the pericarp, pulp, and pulp fibers with citric acid being distributed throughout the fruit. The accurate spatial and chemical information obtained provides new insights into the specific accumulation of metabolites in individual tissues.
Collapse
Affiliation(s)
- Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Meiyan Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhiting Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianxiang Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Fuhua Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
17
|
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Balcheva-Sivenova ZP, Georgiev MI. Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci 2021; 78:6487-6503. [PMID: 34410445 PMCID: PMC8558153 DOI: 10.1007/s00018-021-03918-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
During the past decade metabolomics has emerged as one of the fastest developing branches of “-omics” technologies. Metabolomics involves documentation, identification, and quantification of metabolites through modern analytical platforms in various biological systems. Advanced analytical tools, such as gas chromatography–mass spectrometry (GC/MS), liquid chromatography–mass spectroscopy (LC/MS), and non-destructive nuclear magnetic resonance (NMR) spectroscopy, have facilitated metabolite profiling of complex biological matrices. Metabolomics, along with transcriptomics, has an influential role in discovering connections between genetic regulation, metabolite phenotyping and biomarkers identification. Comprehensive metabolite profiling allows integration of the summarized data towards manipulation of biosynthetic pathways, determination of nutritional quality markers, improvement in crop yield, selection of desired metabolites/genes, and their heritability in modern breeding. Along with that, metabolomics is invaluable in predicting the biological activity of medicinal plants, assisting the bioactivity-guided fractionation process and bioactive leads discovery, as well as serving as a tool for quality control and authentication of commercial plant-derived natural products. Metabolomic analysis of human biofluids is implemented in clinical practice to discriminate between physiological and pathological state in humans, to aid early disease biomarker discovery and predict individual response to drug therapy. Thus, metabolomics could be utilized to preserve human health by improving the nutritional quality of crops and accelerating plant-derived bioactive leads discovery through disease diagnostics, or through increasing the therapeutic efficacy of drugs via more personalized approach. Here, we attempt to explore the potential value of metabolite profiling comprising the above-mentioned applications of metabolomics in crop improvement, medicinal plants utilization, and, in the prognosis, diagnosis and management of complex diseases.
Collapse
Affiliation(s)
- Andrey S Marchev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Liliya V Vasileva
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Kristiana M Amirova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Martina S Savova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Zhivka P Balcheva-Sivenova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria. .,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
18
|
Hu W, Han Y, Sheng Y, Wang Y, Pan Q, Nie H. Mass spectrometry imaging for direct visualization of components in plants tissues. J Sep Sci 2021; 44:3462-3476. [PMID: 34245221 DOI: 10.1002/jssc.202100138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry is considered the most informative technique for components identification and has been widely adopted in plant sciences. However, the spatial distribution of compounds in the plant, which is vital for the exploration of plant physiological mechanisms, is missed in MS analysis. In recent years, mass spectrometry imaging has brought a great breakthrough in plant analysis because it can determine both the molecular compositions and spatial distributions, which is conducive to understand functions and regulation pathways of specific components in plants. Mass spectrometry imaging analysis of plant tissue is toward high sensitivity, high spatial resolution, and even single-cell analysis. Despite many challenges and technical barriers, such as difficulties of sample pretreatment caused by morphological diversity of plant tissues, obstacles for high spatial resolution imaging, and so on, lots of researches have contributed to remarkable progress, including improvement in tissue preparation, matrix innovation, and ionization mode development. This review focuses on the advances of mass spectrometry imaging analysis of plants in the last 5 years, including commonly used ionization techniques, technical advances, and recent applications of mass spectrometry imaging in plants.
Collapse
Affiliation(s)
- Wenya Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yiqi Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Yinghao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Qiong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, P. R. China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
19
|
Li B, Ge J, Liu W, Hu D, Li P. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging. THE NEW PHYTOLOGIST 2021; 231:892-902. [PMID: 33864691 DOI: 10.1111/nph.17393] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/01/2021] [Indexed: 05/26/2023]
Abstract
Paeonia suffruticosa (PS) and Paeonia lactiflora (PL) belong to the only genus in the family Paeoniaceae. Comparative analysis of the spatial metabolomes of PS and PL has rarely been performed. In this work, combined with multiple matrixes and dual-polarity detection, high mass resolution matrix-assisted laser desorption/ionization MS imaging (MALDI MSI) and MALDI tandem MSI were performed on the root sections of the two Paeonia species. The spatial distributions of many metabolites including monoterpene and paeonol glycosides, tannins, flavonoids, saccharides and lipids were systematically characterized. The ambiguous tissue distribution of the two isomers paeoniflorin and albiflorin were distinguished by tandem MSI using lithium salt doped 2,5-dihydroxybenzoate matrix. In addition, the major intermediates involved in the biosynthetic pathway of gallotannins were successfully localized and visualized in the root sections. High-mass resolution MALDI full-scan MSI provides comprehensive and accurate spatial distribution of metabolites. The analytical power of the technique was further tested in the tandem MSI of two isomers. The ion images of individual metabolites provide chemical and microscopic characteristics beyond morphological identification, and the detailed spatiochemical information could not only improve our understanding of the biosynthetic pathway of hydrolyzable tannins, but also ensure the safety and effectiveness of their medicinal use.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junyue Ge
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dejun Hu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|